

© 2023 Javier Esparza and Michael Blondin

This work is subject to a Creative Commons CC-BY-ND-NC license.

Subject to such license, all rights are reserved.

The MIT Press would like to thank the anonymous peer reviewers who provided
comments on drafts of this book. The generous work of academic experts is essen-
tial for establishing the authority and quality of our publications. We acknowledge
with gratitude the contributions of these otherwise uncredited readers.

 Version of the book

This version of the book is maintained by the authors for online distribution
on their webpage. The typesetting differs partly from the official version. In
particular, it is colored and it was set in XCharter and inconsolata. This doc-
ument was last compiled on October 20, 2023. The official version of the book
is distributed by

The MIT Press
Cambridge, Massachusetts
London, England

To the memory of Wilfried Brauer, a noble spirit who also wrote one.

Contents

Preface x
Why This Book? . x
Acknowledgments? . xi

0 Overview 1
0.1 Introduction . 1
0.2 Outline and Structure . 3
0.3 On the Exercises . 5

I Automata on Finite Words 7

1 Automata Classes and Conversions 8
1.1 Alphabets, Letters, Words, and Languages 8
1.2 Regular Expressions: A Language to Describe Languages 9
1.3 Automata Classes . 11

1.3.1 Deterministic Finite Automata 11
1.3.2 Using DFAs as Data Structures 13
1.3.3 Nondeterministic Finite Automata 17
1.3.4 Nondeterministic Finite Automata with ε-Transitions 18
1.3.5 Nondeterministic Finite Automata with Regular Expressions 19
1.3.6 A Normal Form for Automata 20

1.4 Conversion Algorithms . 20
1.4.1 From NFA to DFA . 21
1.4.2 From NFA-ε to NFA . 25
1.4.3 From NFA-reg to NFA-ε . 28
1.4.4 From NFA-ε to Regular Expressions 29

1.5 A Tour of Conversions . 32
1.6 Exercises . 34

2 Minimization and Reduction 45
2.1 Minimal DFAs . 46

2.1.1 The Master Automaton . 50

v

CONTENTS vi

2.2 Minimizing DFAs . 52
2.2.1 Computing the Language Partition 52
2.2.2 Quotienting . 54
2.2.3 Hopcroft’s Algorithm . 56

2.3 Reducing NFAs . 58
2.3.1 The Reduction Algorithm 58
2.3.2 ⋆ Minimality Is PSPACE-Complete 60

2.4 A Characterization of Regular Languages 62
2.5 Exercises . 63

3 Operations on Sets: Implementations 69
3.1 Implementation on DFAs . 71

3.1.1 Membership . 71
3.1.2 Complementation . 71
3.1.3 Binary Boolean Operations 72
3.1.4 Emptiness . 75
3.1.5 Universality . 75
3.1.6 Inclusion . 75
3.1.7 Equality . 77

3.2 Implementation on NFAs . 77
3.2.1 Membership . 77
3.2.2 Complementation . 78
3.2.3 Union and Intersection . 79
3.2.4 Emptiness and Universality 81
3.2.5 Inclusion and Equality . 83
3.2.6 ⋆ Universality and Inclusion Are PSPACE-Complete 85

3.3 Exercises . 86

4 Application I: Pattern Matching 93
4.1 The General Case . 93
4.2 The Word Case . 95

4.2.1 Lazy DFAs . 98
4.3 Exercises . 101

5 Operations on Relations: Implementations 104
5.1 Encodings . 105
5.2 Transducers and Regular Relations 106
5.3 Implementing Operations on Relations 108

5.3.1 Projection . 108
5.3.2 Join, Post and Pre . 110

5.4 Relations of Higher Arity . 114
5.5 Exercises . 115

6 Finite Universes and Decision Diagrams 120
6.1 Fixed-Length Languages and the Master Automaton 121
6.2 A Data Structure for Fixed-Length Languages 122
6.3 Operations on Fixed-Length Languages 124
6.4 Determinization and Minimization 129

6.4.1 An Application: Equivalence of Digital Circuits 131

CONTENTS vii

6.5 Operations on Fixed-Length Relations 133
6.6 Decision Diagrams . 137

6.6.1 Decision Diagrams and Kernels 138
6.6.2 Operations on Kernels . 141
6.6.3 Determinization and Minimization 144

6.7 Exercises . 146

7 Application II: Verification 150
7.1 The Automata-Theoretic Approach to Verification 150
7.2 Programs as Networks of Automata 152

7.2.1 Parallel Composition of Languages 156
7.2.2 Asynchronous Product . 157
7.2.3 State- and Action-Based Properties 159

7.3 Concurrent Programs . 159
7.3.1 Expressing and Checking Properties 161

7.4 Coping with the State-Explosion Problem 162
7.4.1 ⋆ Verification Is PSPACE-Complete 163
7.4.2 On-the-Fly Verification . 163
7.4.3 Compositional Verification 165
7.4.4 Symbolic State-Space Exploration 167

7.5 Safety and Liveness Properties . 173
7.6 Exercises . 174

8 Automata and Logic 178
8.1 Predicate Logic on Words: An Informal Introduction 179
8.2 Syntax and Semantics . 180

8.2.1 Syntax . 180
8.2.2 Semantics . 181

8.3 Macros and Examples . 185
8.4 Expressive Power of FO(Σ) . 187
8.5 Monadic Second-Order Logic on Words 190
8.6 Syntax and Semantics . 191

8.6.1 Syntax . 191
8.6.2 Semantics . 192

8.7 Macros and Examples . 193
8.8 All Regular Languages Are Expressible in MSO(Σ) 195
8.9 All Languages Expressible in MSO(Σ) Are Regular 198
8.10 Exercises . 208

9 Application III: Presburger Arithmetic 212
9.1 Syntax and Semantics . 212
9.2 An NFA for the Solutions over the Naturals 214

9.2.1 Equations . 218
9.3 An NFA for the Solutions over the Integers 219

9.3.1 Equations . 222
9.3.2 Algorithms . 223

9.4 Exercises . 224

CONTENTS viii

II Automata on Infinite Words 227

10 Classes of ω-Automata and Conversions 228
10.1 ω-Languages and ω-Regular Expressions 228
10.2 ω-Automata and the Quest for an ω-Trinity 230

10.2.1 The Quest for an ω-Trinity 231
10.2.2 Büchi Automata . 232
10.2.3 Co-Büchi automata . 237
10.2.4 Rabin Automata . 242

10.3 Beyond ω-Trinities . 246
10.3.1 Rabin Automata, Again . 247
10.3.2 Streett Automata . 248
10.3.3 Parity Automata . 254
10.3.4 Muller Automata . 257

10.4 Summary . 263
10.5 Exercises . 264

11 Boolean Operations: Implementations 268
11.1 Generalized Büchi Automata . 269
11.2 Union and Intersection . 270
11.3 Complement . 273

11.3.1 Rankings and Level Rankings 275
11.3.2 The Complement NBA A . 280
11.3.3 A Lower Bound on the Size of A 283

11.4 Exercises . 286

12 Emptiness Check: Implementations 289
12.1 Emptiness Algorithms Based on Depth-First Search 290

12.1.1 The Nested-DFS Algorithm 293
12.1.2 An Algorithm Based on Strongly Connected Components . . 299

12.2 Algorithms Based on Breadth-First Search 307
12.2.1 Emerson–Lei’s Algorithm . 308
12.2.2 A Modified Emerson–Lei’s Algorithm 310
12.2.3 Comparing the Algorithms 311

12.3 Exercises . 312

13 Application I: Verification and Temporal Logic 316
13.1 Automata-Based Verification of Liveness Properties 316

13.1.1 Checking Liveness Properties 317
13.1.2 Networks of Automata and Fairness 319

13.2 Linear Temporal Logic . 321
13.3 From LTL Formulas to Generalized Büchi Automata 325

13.3.1 Satisfaction Sequences and Hintikka Sequences 325
13.3.2 Constructing the NGA for an LTL Formula 329
13.3.3 Size of the NGA . 331

13.4 Automatic Verification of LTL Formulas 332
13.5 Exercises . 334

14 Application II: MSO Logics on ω-Words and Linear Arithmetic 339

CONTENTS ix

14.1 Monadic Second-Order Logic on ω-Words 339
14.1.1 Expressive Power of MSO(Σ) on ω-Words 340

14.2 Linear Arithmetic . 341
14.2.1 Encoding Real Numbers . 341
14.2.2 Constructing an NGA for the Real Solutions 342

14.3 Exercises . 347

Solutions 350

Solutions for Chapter 1 351

Solutions for Chapter 2 379

Solutions for Chapter 3 390

Solutions for Chapter 4 409

Solutions for Chapter 5 416

Solutions for Chapter 6 425

Solutions for Chapter 7 437

Solutions for Chapter 8 446

Solutions for Chapter 9 452

Solutions for Chapter 10 461

Solutions for Chapter 11 469

Solutions for Chapter 12 477

Solutions for Chapter 13 493

Solutions for Chapter 14 504

Bibliographic Notes 509

Bibliography 517

Index 529

Preface

Why This Book?

There are excellent textbooks on automata theory, ranging from course books for
undergraduates to research monographs for specialists. Why another one?

During the 1960s and 1970s, the main application of automata theory was the
development of lexicographic analyzers, parsers, and compilers. Analyzers and
parsers determine whether an input string conforms to a given syntax, while com-
pilers transform strings conforming to a syntax into equivalent strings conforming
to another. With these applications in mind, it was natural to look at automata
as abstract machines that accept, reject, or transform input strings, and this view
deeply influenced the textbook presentation of automata theory. The expressive
power of machines (which languages are recognized by finite automata or push-
down automata), equivalences between models (are nondeterministic and deter-
ministic automata equivalent?), or closure properties (are context-free languages
closed under intersection?) received much attention, while constructions on au-
tomata, like the powerset or product constructions, often played a subordinate
role.

This can already be observed in the article “Finite Automata and Their Decision
Problems” by Rabin and Scott, a foundational paper published in the IBM Journal
of Research and Development in 1959. The paper introduces a large part of the
theory of finite automata taught in current undergraduate courses: deterministic
finite automata (DFAs) and nondeterministic finite automata (NFAs), the powerset
construction, closure of the regular languages under boolean operations and oth-
ers, decision algorithms for emptiness and finiteness of the language recognized
by a given automaton, and uniqueness of the minimal DFA for a given language.
Much of the presentation style of this paper survives in today’s textbooks, and the
style is not algorithmically oriented. For example, the powerset construction is not
introduced as an algorithm that, given an NFA as input, produces an equivalent
DFA as output but as a mathematical definition (definition 11): a DFA whose states
are all the subsets of states of the original automaton. The simple but computa-
tionally important fact that only the states of the DFA reachable from the initial
state need to be constructed is not mentioned. Another example can be found in
section 4, which studies the emptiness problem for DFAs. It contains a corollary

x

CONTENTS xi

(corollary 7.1) stating that, “given an automatonA, there is an effective procedure
whereby in a finite number of steps it can be decided whether L (A) is empty.” The
effective procedure, which is only sketched, consists of checking for all words of
length up to the number of states of A whether they are accepted; this procedure
has exponential complexity, while the problem can be solved in linear time.

We claim that this presentation style, summarized by the slogan automata are
abstract machines, is no longer adequate. In particular, during the second half of
the 1980s and in the 1990s, program verification emerged as a new and exciting
application of automata theory. Automata were used to describe the behavior of
hardware and software systems, not their syntax, and this shift from syntax to
semantics had important consequences. While automata for lexical or syntactical
analysis typically have at most some thousands of states, automata for semantic
descriptions can easily have tens of millions. In order to handle automata of this
size, it became imperative to pay special attention to efficient constructions and
algorithmic issues, and research in this direction made great progress. Moreover,
automata on infinite words, a class of automata models originally introduced in the
1960s to solve abstract problems in logic, became the model of choice to specify
and verify liveness properties of software. These automata run over words of infi-
nite length, and so they can hardly be seen as machines accepting or rejecting an
input; they could only do so after infinite time!

This book intends to reflect this evolution of automata theory. The modern
change of focus, from expressivity to algorithmic questions, is captured by the
new slogan automata as data structures. Hash tables and Fibonacci heaps are
adequate data structures for representing sets when one needs the operations of
a dictionary and a priority queue, respectively. Similarly, automata are the right
data structure for representing sets and relations when the required operations are
union, intersection, complement, projections, and joins. From this point of view,
it is the algorithmic implementation of the operations that gets the limelight, and
it constitutes the spine of this book.

The shape of the book is also very influenced by two further design decisions.
First, automata-theoretic constructions are best explained by means of examples,
and examples are best presented with the help of pictures. Automata on words
are blessed with a graphical representation of instantaneous appeal. We have in-
vested much effort into finding illustrative, nontrivial examples whose graphical
representation still fits in one page. Second, students learning directly from a book
often find solved exercises more illustrative than any written explanation and es-
sential to self-evaluate their progress. This book contains a large number of solved
exercises, ranging from mechanic applications of algorithms to relatively involved
proofs.

Acknowledgments

First and foremost, we thank Orna Kupferman and Moshe Vardi. This book grew
out of a joint attempt to write a research monograph on the automata-theoretic
approach to model checking and automatic synthesis. The project started in the
early 2000s, but, like so many projects without a deadline, it was postponed mul-
tiple times. In 2007, the first author moved to the Technical University of Munich
and started to teach a new master course on automata theory. The initial version

CONTENTS xii

of the course was focused on automata on infinite words, and it heavily relied on
course material by Orna and Moshe. The course notes assumed familiarity with
automata on finite words, as taught in a standard introductory course to theo-
retical computer science. However, students had difficulties in refreshing their
knowledge on automata—which usually had not been presented in an algorith-
mic way—and connecting it to the new algorithmic approach. Addressing these
issues required producing additional notes on automata on finite words. With a
new student cohort demanding better notes year after year, the notes grew step
by step, until they covered pattern matching, applications to verification, decision
procedures for several logics, and binary decision diagrams. The final result is the
book you have in your hands, which would not exist without Orna and Moshe’s
initial push.

Special thanks go to Jörg Kreiker, Jan Kretínský, Michael Luttenberger, Sa-
lomon Sickert, and Stefan Schwoon for their contributions to several chapters and
for many discussions. In particular, Jan contributed a lot to chapter 4 on pat-
tern matching, and Stefan Schwoon graciously allowed us to use his unpublished
lecture notes in chapter 12 on emptiness checking of Büchi automata.

We also express our gratitude to many colleagues and students who helped
us in various ways. Udi Boker patiently answered many questions, and his work
strongly influenced chapter 10 on the relations between different classes of ω-
automata. Breno Faria helped to draw many (former) figures; he was funded by a
program at the Computer Science Department of the Technical University of Mu-
nich. Noé Canva, François Ladouceur, and Alex Sansfaçon-Buchanan proofread
the book while taking a dedicated master’s course at the Université de Sherbrooke.
Philipp Czerner, Debarghya Ghoshdastidar, Kush Grover, Roland Guttenberg, Mar-
ijana Lazic, Mikhail Raskin, Salomon Sickert, Chana Weil-Kennedy, and Markus
Wenzel proofread chapters at the Technical University of Munich. Hardik Arora,
Joe Bedard, Fabio Bove, Birgit Engelmann, Tabea Frisch, Tobias Forner, Moritz
Fuchs, Matthias Heizmann, Barbara König, Stefan Krusche, Siyun Liang, Philipp
Müller, Batikan Bora Ormanci, Martin Perzl, Marcel Ruegenberg, Franz Saller,
Hayk Shoukourian, Ala Sleimi, Alexander Simon Treml, Radu Vintan, Theresa
Wasserer, Yi Wei, and Daniel Weißauer spotted mistakes and provided very helpful
comments. We also wish to express our gratitude to all those who have assisted in
making this publication possible, notably Elisabeth Swayze and Matthew Valades
from the MIT Press and the production team at Westchester Publishing Services
led by Madhulika Jain.

Chapter 0
Overview

0.1 Introduction

Courses on data structures show how to represent sets of objects in a computer so
that operations like insertion, deletion, lookup, and many others can be efficiently
implemented. Typical representations are hash tables, search trees, or heaps.

This textbook also deals with the problem of representing and manipulating
sets of objects but with respect to a different family of operations: the boolean op-
erations of set theory (union, intersection, and complement with respect to some
universe set), some tests that check basic properties (whether a set is empty, con-
tains all elements of the universe, or is contained in another set), and operations
on relations between objects, like joins and projections. Table 0.1 defines the oper-
ations we would like to support, where U denotes some universe of objects, X,Y
are subsets of U , x is an element of U , and R,S ⊆ U × U are binary relations
on U . Note that many other operations, like set difference, can be reduced to the
ones in the table and that operations on n-ary relations for n ≥ 3 can be reduced
to operations on binary relations.

We want a data structure that is able to represent infinite subsets of an infinite
universe set, like infinite sets of natural numbers. For example, the constraint
x > 5 is a finite representation of the infinite set {6, 7, 8, . . .}, and the logical
formula ∃y 3y = x is a finite representation of the set of multiples of 3—that is, of
the set {0, 3, 6, 9, . . .}. It is easy to see that no data structure can finitely represent
every infinite set.1 Because of this limitation, every good data structure for infinite
sets must find a reasonable compromise between expressivity (which sets it can
finitely represent) and manipulability (which operations can be carried out and
at which cost). This book introduces the compromise offered by finite automata,
which, as shown by more than sixty years of research on the theory of formal
languages, is the best one available for many practical purposes. Finite automata,
as we will call them throughout the book, represent and manipulate sets whose

1An infinite universe, like the set of natural numbers, has uncountably many subsets. However, a
data structure only has a countable number of instances; indeed, an instance of a data structure—say,
a tree—can always be encoded as a string, and there are only a countable number of strings over a
finite alphabet. So, loosely speaking, we do not have enough instances for all sets.

1

CHAPTER 0. OVERVIEW 2

Table 0.1: Operations and tests for manipulation of sets and relations.

Operation on sets Returns

Complement(X) U \X
Intersection(X, Y) X ∩ Y
Union(X, Y) X ∪ Y
Test on sets Returns

Member(x,X) true if x ∈ X, false otherwise
Empty(X) true if X = ∅, false otherwise
Universal(X) true if X = U , false otherwise
Included(X,Y) true if X ⊆ Y , false otherwise
Equal(X,Y) true if X = Y , false otherwise

Operation on relations Returns

Projection_1(R) π1(R) = {x : ∃y (x, y) ∈ R}
Projection_2(R) π2(R) = {y : ∃x (x, y) ∈ R}
Join(R, S) R ◦ S = {(x, z) : ∃y ∈ X (x, y) ∈ R ∧ (y, z) ∈ S}
Post(X, R) postR(X) = {y ∈ U : ∃x ∈ X (x, y) ∈ R}
Pre(X, R) preR(X) = {y ∈ U : ∃x ∈ X (y, x) ∈ R}

elements are encoded as words (i.e., as sequences of symbols).2
Any kind of object can be represented by a word, at least in principle. Natural

numbers, for instance, are represented as sequences of digits, that is, as words
over the alphabet of digits. Vectors and lists can also be represented as words
by concatenating the word representations of their elements. As a matter of fact,
whenever a computer stores an object in a file, the computer is representing it as a
word over some alphabet, like ASCII or Unicode. So, automata are a very general
data structure. However, while any object can be represented by a word, not every
object can be represented by a finite word, that is, a word of finite length. Typical
examples are real numbers and nonterminating executions of a program. When
objects cannot be represented by finite words, computers usually only represent
some approximation: a float instead of a real number or a finite prefix instead of
a nonterminating computation. In the second part of the book, we show how to
represent sets of infinite objects exactly using automata on infinite words. While
the theory of automata on finite words is often considered a “gold standard” of
theoretical computer science—a powerful and beautiful theory with lots of impor-
tant applications in many fields—automata on infinite words are more demanding,
and their theory does not achieve the same degree of “perfection.” The structure
of part II reflects this: we follow the same steps as in part I, always comparing the
solutions for infinite words with the “gold standard.”

2There are generalizations of word automata in which objects are encoded as trees. The theory of
tree automata is also very well developed but not the subject of this book.

CHAPTER 0. OVERVIEW 3

0.2 Outline and Structure

Part I presents data structures and algorithms for regular languages of finite words.

Chapter 1 introduces the classical data structures for the representation of regular
languages: regular expressions, deterministic finite automata (DFAs), nondeter-
ministic finite automata (NFAs), and nondeterministic automatawith ε-transitions.
We refer to all of them as automata. The chapter presents some examples show-
ing how to use automata to finitely represent sets of words, numbers, or program
states and describes conversion algorithms between the representations. All al-
gorithms are well known (and can also be found in other textbooks) with the
exception of the algorithm for the elimination of ϵ-transitions.

Chapter 2 addresses the issue of finding small representations for a given set. It
shows that there is a unique minimal representation of a language as a DFA and
introduces the classical minimization algorithms. It also presents algorithms to
reduce the size of NFAs.

Chapter 3 describes algorithms that implement boolean operations on sets, like
union, intersection, and complement, using automata as data structure. It then
presents implementations of test operations on sets, like testing inclusion or equal-
ity between sets.

Chapter 4 presents a first, classical application of the techniques and results of
chapter 3: pattern matching. Even this well-known problem gets a new twist
when examined from the automata-as-data-structures point of view. The chapter
presents the Knuth–Morris–Pratt algorithm as the design of a new data structure,
lazy DFAs, for which the membership operation can be performed very efficiently.

Chapter 5 shows how to implement operations on relations, in particular the join
operation using length-preserving transducers (i.e., automata over an alphabet
consisting of pairs of letters), as data structure. It discusses in detail how to encode
relations as words.

Chapter 6 presents specific data structures, that is, automata, for the important
special case in which the universe U of objects is finite. In this case, all objects
can be encoded by words of the same length, and the set and relation operations
can be optimized. In particular, one can then use minimal DFAs as data structure
and directly implement algorithms for all operations, without having to introduce
extra minimization operations after each intermediate step. The second part of
the chapter introduces (ordered) binary decision diagrams as a class of automata
that can represent finite sets even more succinctly than minimal DFAs.

Chapter 7 applies nearly all of the constructions and algorithms of previous chap-
ters to the problem of verifying safety properties of sequential and concurrent
programs with bounded-range variables. In particular, the chapter shows how to
model concurrent programs as networks of automata, how to express safety prop-
erties using automata or regular expressions, and how to automatically verify them
using the algorithmic constructions of previous chapters.

Chapter 8 presents first-order logic (FOL) andmonadic-second order logic (MSOL)
on words as languages for the declarative specification of regular languages. In-
tuitively, logic formulas are used to specify a language by describing a property

CHAPTER 0. OVERVIEW 4

that a word may satisfy or not, and defining the language as the set of words
that satisfy the property. The chapter shows that FOL cannot describe all regular
languages and that MSOL does.

Chapter 9 introduces Presburger arithmetic, a language to define sets of (tuples
of) natural numbers. As in the previous chapter, formulas of Presburger arith-
metic describe properties that a tuple of numbers may satisfy or not. The chapter
presents an algorithm to compute an automaton encoding all the tuples satisfying
a given formula.

Part II presents data structures and algorithms for regular languages of infinite
words, also called ω-regular languages.

Chapter 10 introduces ω-regular expressions and several classes of ω-automata:
deterministic and nondeterministic Büchi, co-Büchi, Rabin, Street, parity, and
Muller automata. It explains the advantages and disadvantages of each class,
in particular whether the automata in the class can be determinized, and presents
conversion algorithms between the classes.

Chapter 11 presents implementations of the set operations (union, intersection,
and complementation) for Büchi and generalized Büchi automata. In particular,
it presents in detail a complementation algorithm for Büchi automata.

Chapter 12 presents different implementations of the emptiness test for Büchi
and generalized Büchi automata (i.e., the problem of deciding whether the au-
tomaton recognizes the empty language). The first part of the chapter presents
two linear-time implementations based on depth-first-search (DFS): the algorithm
known as nested-DFS and a modification of Tarjan’s algorithm for the computation
of strongly connected components. The second part presents further implementa-
tions based on breadth-first-search.

Chapter 13 applies the algorithms of previous chapters to the problem of verify-
ing liveness properties of programs. After an introductory example, the chapter
presents linear temporal logic (LTL) as property specification formalism and shows
how to algorithmically translate a formula into an equivalent generalized Büchi
automaton recognizing the language of all words satisfying the formula. It then
uses the operations implemented in chapter 12 to derive an algorithm for the au-
tomatic verification of LTL properties.

Chapter 14 extends the logic approach to regular languages studied in chapters 8
and 9 to ω-words. The first part of the chapter introduces monadic second-order
logic on ω-words and shows how to construct a Büchi automaton recognizing the
set of ω-words satisfying a given formula. The second part introduces linear arith-
metic, the first-order theory of the real numbers with addition, and shows how
to construct a Büchi automaton recognizing the encodings of all the real numbers
satisfying a given formula.

Dependencies between chapters are depicted graphically in figure 0.1. The
“spine” of the book, containing chapters 1–3, chapter 5, and chapters 10–12,
presents the implementations of the operations on sets and relations. The rest
of the chapters contain applications, which, in the case of chapter 4 and chapter 6,
also introduce some special automata classes.

CHAPTER 0. OVERVIEW 5

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7 Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13 Chapter 14

Part I

Part II

Figure 0.1: Chapter dependencies.

Chapters 1–5 are an introduction to finite automata at bachelor level, similar
in content to the ones found in introductory books to the theory of computation,
but with more examples and greater emphasis on algorithms. (A few sections,
marked with “⋆” in the table of contents, require background that bachelor stu-
dents typically do not yet have, for example, in computational complexity theory;
they can be skipped.) This material can be complemented with any subset of the
applications presented in chapters 6–9.

A master course, like the ones we teach at the Technical University of Munich
and the Université de Sherbrooke, can cover the full spine (presenting chapters 1–
5 at higher speed) and a selection of applications.

0.3 On the Exercises

Each chapter ends with exercises. About a third of the solutions appear only in a
version intended for instructors. The rest (and hence the majority) of the solutions
appear in an appendix at the end of the book. Each exercise is marked by its
difficulty, (dominant) type, and solution availability, with these symbols:

CHAPTER 0. OVERVIEW 6

Difficulty Symbol

Standard
Harder
Challenging ⋆

Type Symbol

Construction
Algorithm design
Algorithm execution
Proofs
Extra material

Solution Symbol

Available in appendix
Not available in appendix

Part I

Automata on Finite Words

7

Chapter 1
Automata Classes and Conversions

In section 1.2, we define basic notions, like words and languages, and introduce
regular expressions, a textual notation for the finite representation of languages.
Section 1.3 introduces increasingly larger classes of finite automata: determinis-
tic, nondeterministic, with ε-transitions, and with transitions labeled by regular
expressions. Section 1.4 presents conversion algorithms that transform a regular
expression into an equivalent automaton, an automaton into an equivalent regular
expression, or an automaton of one kind into an equivalent automaton of another.

1.1 Alphabets, Letters, Words, and Languages

An alphabet is a finite nonempty set. The elements of an alphabet are called let-
ters or symbols. A finite, possibly empty, sequence of letters is a word. A word
a1a2 · · · an has length n. The empty word is the only word of length 0 and it is
written ε. The concatenation of two words u = a1 · · · an and v = b1 . . . bm is
the word uv = a1 · · · anb1 · · · bm, sometimes also denoted by u · v. Observe that
ε ·w = w = w · ε. For every word w, we define w0 = ε and wk+1 = wwk for every
k ≥ 0.

Remark 1.1. The formal definition of a word differs from the one used in daily life,
according to which this sentence has twenty-two words. This is so because in (mod-
ern) natural languages, words are defined as sequences of letters with a special symbol
on each side, the blank, except at the beginning or end of a sentence. On the contrary,
the mathematical definition treats all symbols the same. It sees a whole English text,
say Hamlet, as one single word of length (about) 186,400 over a sixty-seven-symbol
alphabet containing twenty-six lower case letters, twenty-six upper case letters, the
blank, and fourteen punctuation marks. This word is a concatenation of the form

w1 u w2 u · · ·u wn,

where n ≈ 32,000, the word u has length 1 and consists of just a blank, andw1, . . . , wn
are English words, possibly with punctuation marks at the end. In particular, we have

w1 = ACT w2 = I w3 = SCENE w4 = I. w5 = ELSINORE.
w6 = A w7 = platform w8 = before w9 = the w10 = castle.

8

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 9

Given an alphabet Σ, we denote by Σ∗ the set of all words over Σ. A set L ⊆ Σ∗

of words is a language over Σ. We define three operations on languages over a
given alphabet Σ:

• The complement of a language L is the language Σ∗ \ L, which we often
denote L. Notice that the notation L implicitly assumes that the alphabet Σ
is fixed. For example, consider the language L = {an : n ≥ 0}. If Σ = {a},
then L = ∅, but if Σ = {a, b}, then L contains all words over {a, b} with at
least one occurrence of b.

• The concatenation of two languages L1 and L2 is L1 L2 = {w1w2 : w1 ∈
L1, w2 ∈ L2} also denoted by L1 · L2. Observe that ∅ L = L ∅ = ∅, because
no word is the concatenation of a word of ∅ and a word of L, since ∅ contains
no words.

• The iteration of a language L is the language L∗ =
∪
i≥0 L

i, where L0 = {ε}
and Li+1 = Li · L for every i ≥ 0.

Example 1.2. Here is an assorted collection of languages, where Σ = {a, b}.

• {ab, a}{ab, b} = {abab, abb, aab, ab}.

• {a}∗ = {ε, a, aa, aaa, . . .}.

• {a, b}3 = {a, b}{a, b}{a, b} = {aaa, aab, aba, abb, baa, bab, bba, bbb}.

• {a, b, ε}2 = {ε, a, b, aa, ab, ba, bb}.

• ({a, b}{a, b})∗ is the set of all words over Σ of even length.

• {a, b}{a, b} is the set of all words over Σ of length different from 2.

• {ε}∗ = {ε}.

• ∅∗ = {ε}. (Indeed, ∅0 = {ε} by definition, and ∅i = ∅ for every i ≥ 1.)

1.2 Regular Expressions: A Language to Describe Languages

Finite languages can be described by explicit enumeration of the words they con-
tain, but this no longer works for infinite languages. We introduce regular ex-
pressions, a language to describe languages. They are a suitable notation for the
concise description of many infinite languages.

Definition 1.3. Regular expressions r over an alphabet Σ are generated by the fol-
lowing grammar, where a ∈ Σ:

r ::= ∅ | ε | a | r1r2 | r1 + r2 | r∗

The set of all regular expressions over Σ is written RE(Σ).

Remark 1.4. Definition 1.3 assumes that the reader is familiar with the Backus–
Naur form and some standard conventions concerning parentheses. For a definition
from scratch, let Γ = {∅, ε, (,),+, ∗} and let Σ be an alphabet disjoint from Γ. We
denote byRE(Σ) ⊆ (Σ∪Γ)∗ the language over the alphabet Σ∪Γ defined inductively
as follows:

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 10

• ∅, ε ∈ RE(Σ) and Σ ⊆ RE(Σ).

• If r1, r2 ∈ RE(Σ), then (r1r2) ∈ RE(Σ) and (r1 + r2) ∈ RE(Σ).

• If r ∈ RE(Σ) then (r)∗ ∈ RE(Σ).

Intuitively, a regular expression can be seen as a “recipe” for generating words.
For example, the regular expression (ab)∗c corresponds to the recipe “concatenate
as many copies of ab as you wish (including zero copies), and then add c at the
end.” This recipe produces words like abc, ababc, or just c. The expression a∗+ b∗

corresponds to “choose one of these two: concatenate as many copies of a as you
want (including zero); or, concatenate as many copies of b as you want (including
zero).” It produces words like aa or bbbb but not ab. Observe the difference with
the recipe (a + b)∗, “concatenate as many letters as you want (including zero),
where each letter can be an a or a b.” This recipe can produce ab, and in fact, it
can produce any word.

Let us give a precise definition of the language generated by a regular expres-
sion.

Definition 1.5. The language L (r) ⊆ Σ∗ of a regular expression r ∈ RE(Σ) is
defined inductively by

L (∅) = ∅ L (r1r2) = L (r1) · L (r2)
L (ε) = {ε} L (r1 + r2) = L (r1) ∪ L (r2)
L (a) = {a} L (r∗) = L (r)∗

A language L is regular if there is a regular expression r such that L = L (r).

When there is no risk of confusion, we write “the language r” instead of “the
language L (r).” In the same vein, we call r1r2 the concatenation of r1 and r2,
r1+r2 the union of r1 and r2, and r∗ the iteration of r. Sometimes, we write r1 ·r2
instead of r1r2 and rk instead of rr · · · r︸ ︷︷ ︸

k times

.

Example 1.6. Let Σ = {0, 1}. Some languages expressible by regular expressions
are:

• The set of all words: (0+1)∗. We often use Σ as an abbreviation of (0+1) and
so Σ∗ as an abbreviation of (0 + 1)∗.

• The set of all words of length at most 4: (0 + 1 + ε)4.

• The set of all words that begin and end with 0: 0Σ∗0.

• The set of all words containing at least one pair of 0s exactly five letters apart:
Σ∗0Σ40Σ∗.

• The set of all words containing an even number of 0s: 1∗ + (1∗01∗01∗)∗.

• The set of all words containing an even number of 0s and an even number of
1s: (00 + 11 + (01 + 10)(00 + 11)∗(01 + 10))∗.

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 11

Table 1.1: Some equivalence laws for regular expressions.

Laws for union

r + (s+ t) ≡ (r + s) + t (associativity)
r + s ≡ s+ r (commutativity)
∅+ r ≡ r (left neutrality)
r + ∅ ≡ r (right neutrality)
r + r ≡ r (idempotence)

Laws for concatenation

r(st) ≡ (rs)t (associativity)
εr ≡ r (left neutrality)
rε ≡ r (right neutrality)
∅r ≡ ∅ (left annihilation)
r∅ ≡ ∅ (right annihilation)

Laws for iteration

∅∗ ≡ ε∗ ≡ ε
r∗ ≡ ε+ rr∗ (expansion)
(r∗)∗ ≡ r∗ (idempotence)

Other laws

r(s+ t) ≡ rs+ rt (left distributivity)
(r + s)t ≡ rt+ st (right distributivity)
(r + s)∗ ≡ (r∗s∗)∗

Two regular expressions r1 and r2 are equivalent, denoted r1 ≡ r2, if L (r1) =
L (r2). For example, we have a(b+ c) ≡ ab+ ac because L (a(b+ c)) = {ab, ac} =
L (ab+ ac). Table 1.1 presents a list of useful equivalence laws, valid for arbitrary
regular expressions r, s, and t.

1.3 Automata Classes

We introduce deterministic finite automata, abstract machines that receive a word
as input, and either reject or accept it. Then we present several generalizations
of this basic model: nondeterministic finite automata, nondeterministic automata
with ε-transitions, and nondeterministic automata with transitions labeled by reg-
ular expressions.

1.3.1 Deterministic Finite Automata

Intuitively, a deterministic automaton can be seen as the control unit of a machine
that reads an input from a tape divided into cells by means of a reading head (see
figure 1.1). Initially, the automaton is in the initial control state, the tape contains
the word to be read, and the reading head is positioned on the first cell of the tape.

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 12

b a n a n a n o n a

q7

Figure 1.1: Tape with reading head.

At each step, the machine reads the contents of the cell occupied by the reading
head, updates the current control state according to a transition function, and
advances the head one cell to the right. The machine accepts a word if the state
reached after reading it completely belongs to a set of final states.

Definition 1.7. A deterministic automaton (DA) is a tuple A = (Q,Σ, δ, q0, F),
where

• Q is a nonempty set of states,

• Σ is an alphabet,

• δ : Q× Σ→ Q is a transition function,

• q0 ∈ Q is the initial state, and

• F ⊆ Q is the set of final states.

A run ofA on input a0a1 · · · an−1 is a sequence q0
a0−−→ q1

a1−−→· · · an−1−−−−→ qn, such that
qi ∈ Q for all 0 ≤ i ≤ n, and δ(qi, ai) = qi+1 for all 0 ≤ i < n. A run is accepting
if qn ∈ F . The automaton A accepts a word w ∈ Σ∗ if it has an accepting run on
input w. The language recognized by A is the set L (A) = {w ∈ Σ∗ : w is accepted
by A}.

A deterministic finite automaton (DFA) is a DA with a finite set of states.

Notice that a DA has exactly one run on a given word. Given a DA, we often
say “the word w leads from q0 to q,” meaning that the unique run of the DA on the
word w ends at the state q, and write q0

w−−→ q.
Graphically, nonfinal states of a DFA are represented by circles and final states

by double circles (see example 1.8). The transition function is represented by
labeled directed edges: if δ(q, a) = q′, then we draw an edge from q to q′ labeled
by a. We also draw an edge into the initial state to denote that the DFA starts
there.

Example 1.8. Figure 1.2 shows the graphical representation of the DFA A = (Q,Σ,
δ, q0, F), where Q = {q0, q1, q2, q3}, Σ = {a, b}, F = {q0}, and δ is given by

δ(q0, a) = q1 δ(q1, a) = q0 δ(q2, a) = q3 δ(q3, a) = q2,

δ(q0, b) = q3 δ(q1, b) = q2 δ(q2, b) = q1 δ(q3, b) = q0.

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 13

q0 q1

q2q3

a

a

a

a

bb bb

Figure 1.2: A DFA.

a

b

b

a

c

a, c

b, c

a, b, c
a, b, c

Figure 1.3: A DFA with a trap state.

The runs of A on aabb and abbb are

q0
a−→ q1

a−→ q0
b−→ q3

b−→ q0,

q0
a−→ q1

b−→ q2
b−→ q1

b−→ q2.

The first one is accepting, but the second one is not. It is not difficult to see that the
DFA recognizes the language of all words over alphabet {a, b} that contain an even
number of as and an even number of bs. Indeed, the DFA is in the states on the left if
it has read an even number of as, and in the states on the right if it has read an odd
number of as. The same holds for bottom and top states w.r.t. the number of bs.

Trap states. Consider the DFA depicted in figure 1.3 over alphabet {a, b, c}. It
recognizes the language {ε, ab, ba}. The colored state on the right is often called a
trap state or a garbage collector: if a run reaches this state, it gets trapped in it, and
so the run cannot be accepting. DFAs often have a trap state with several ingoing
transitions, and this makes it difficult to find a nice graphical representation. So,
when drawing DFAs, we often omit the trap state. For instance, we only draw the
uncolored part of the automaton depicted in figure 1.3. Note that no information
is lost: if a state q has no outgoing transition labeled by a, then we know that
δ(q, a) = qt, where qt is the unique trap state.

1.3.2 Using DFAs as Data Structures

We think of regular expressions as word generators and of DFAs (and the automata
classes we will introduce soon) as word acceptors. These mental images are useful

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 14

1, . . . , 9

0

−

0

1, . . . , 9

·

·

·

0, . . . , 9 0 1, . . . , 9

1, . . . , 9

0

Figure 1.4: A DFA for decimal numbers.

to guide our intuition, but there is a more general and fruitful view: DFAs are finite
representations of possibly infinite languages. In applications, a suitable encoding
is used to represent objects (like numbers, programs, relations, and tuples) as
words. Via this encoding, a DFA is a finite representation of a possibly infinite set
of objects. Let us see four examples of DFAs representing interesting sets, which
also illustrate the theory and applications described in the coming chapters.

Example 1.9. The DFA of figure 1.4 (drawn without the trap state) recognizes the
strings over alphabet {−, ·, 0, 1, . . . , 9} that encode real numbers with a finite decimal
part. We wish to exclude 002, −0, or 3.10000000 but accept 37, 10.503, or −0.234 as
correct encodings. An English description of the correct encodings is rather long:

• a string encoding a number consists of an integer part, followed by a possibly
empty fractional part;

• the integer part consists of an optional minus sign, followed by a nonempty
sequence of digits;

• if the first digit of the integer part is 0, then it is the only digit of the integer
part;

• if the fractional part is nonempty, then it starts with “.”, followed by a nonempty
sequence of digits that does not end with 0; and

• if the integer part is −0, then the fractional part is nonempty.

In chapters 2 and 3, we will see how to obtain this DFA algorithmically, by apply-
ing constructions to small automata corresponding to each of the items in the above
description. In chapter 4, we will describe how to use a DFA to find occurrences of
decimal numbers in a given text.

Example 1.10. The DFA of figure 1.5 recognizes the binary encodings of the multiples
of 3. For instance, it recognizes 11, 110, 1001, and 1100 (which are, respectively, the
binary encodings of 3, 6, 9, and 12) but not, say, 10 or 111 (which, respectively, encode
2 and 7).

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 15

1

1

0

0

0 1

Figure 1.5: A DFA for the multiples of 3 encoded in binary.

0 1 2

1

1

0

0

0 1

Figure 1.6: Same DFA, after naming the states.

Observe that if the DFA accepts a word, say 110, then it also accepts the words
0110, 00110, . . . which encode the same number. We let ε encode 0, and so in partic-
ular, the DFA accepts ε.

To see why the DFA recognizes this language, let us call the left, middle, and right
state 0, 1, and 2, respectively, as depicted in figure 1.6.
Given a word w, let nw denote the number encoded by w. Further, let rw ∈ {0, 1, 2}
be the remainder of dividing nw by 3, and let rw ∈ {0,1,2} be the corresponding
state of the DFA. For example, if w = 1000, then nw = 8, rw = 2, and rw = 2. A
word w encodes a multiple of 3 iff rw = 0 and is accepted by the DFA iff 0 w−−→0. So,
it suffices to show that 0 w−−→ rw holds for every word w. We claim that this is the case.
Consider first the particular case w = 1000. We have

0 1−→1 0−→2 0−→1 0−→2,

and so, since rw = 2, we indeed get 0 w−−→ rw.
To prove the claim for every word w, we proceed by induction on the length of w.

For w = ε, we have rε = 0 and 0 ε−→0, and we are done. Assume now that |w| > 0
and w = w′0 (the case w = w′1 is similar).

Assume further that 0 w′

−−→2 (again, the cases 0 w′

−−→0 and 0 w′

−−→1 are analo-
gous). We have nw′0 = 2nw′ , because adding a 0 to a binary number amounts to
doubling it. Thus, rw′0 is the remainder of dividing 2 · rw′ by 3. Since rw′ = 2 by in-
duction hypothesis, we have rw′0 = 1. Finally, since 0 w′

−−→2 0−→1, we get 0 w′0−−−→1,
and so 0 w′0−−−→ rw′0.

Finding this DFA seems to require some ingenuity, but actually that is not the case.
By definition, the multiples of 3 are the numbers x satisfying the formula ∃y 3y = x.
In chapter 9, we present an algorithm that takes a formula like this as input and
returns a DFA recognizing the encodings of the numbers that satisfy it.

Example 1.11. The inequality 2x − y ≤ 2 has infinitely many nonnegative integer
solutions, like (x, y) = (0, 0) or (x, y) = (7, 20). Let us encode solutions as words

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 16

[
0
0

]
,

[
0
1

]

[
0
0

]
,

[
1
1

]
[
1
0

]
,

[
1
1

]
[
0
1

]

[
0
1

]

[
0
0

]
,

[
0
1

] [
0
0

]
,

[
1
1

][
1
0

]

[
1
0

]
,

[
1
1

]
[
0
0

]
,

[
0
1

]
[
1
0

]
,

[
1
1

]
[
1
0

]

Figure 1.7: A DFA for the solutions of 2x− y ≤ 2.

over the alphabet {[0, 0], [0, 1], [1, 0], [1, 1]}. We explain the encoding by example.
Consider the word [

1
0

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
0
1

]
where we have written the letters vertically. The top row 101100 encodes the number
1 · 20 + 0 · 21 + 1 · 22 + 1 · 23 + 0 · 24 + 0 · 25 = 13, and the bottom row 010011
the number 21 + 24 + 25 = 50. That is, each row represents a number in binary,
starting with the least significant bit. Using an algorithm presented in Chapter 9, we
can algorithmically construct the DFA of Figure 1.7 (drawn without the trap state),
which recognizes the set of solutions of 2x − y ≤ 2. In other words, the DFA accepts
a word if and only if its corresponding pair of numbers satisfies the inequality.

Example 1.12. Consider the following program foo with two boolean variables x
and y:

1 while x = 1 do
2 if y = 1 then
3 x← 0

4 y ← 1− x
5 end

A configuration of the program is a triple [ℓ, nx, ny], where ℓ ∈ {1, 2, 3, 4, 5} is the
current value of the program counter, and nx, ny ∈ {0, 1} are the current values of x
and y. The initial configurations are

[1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1],

that is, all configurations in which control is at line 1. The DFA of figure 1.8 recognizes
all reachable configurations of the program. For instance, the DFA accepts [5, 0, 1],
indicating that it is possible to reach the last line of the program with values x = 0

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 17

and y = 1. The DFA shows, for example, that after termination, the value of x is
always 0.

Chapter 7 describes different algorithms that, given such a program, automati-
cally construct a DFA for its reachable configurations. As we will see, this allows for
the automatic detection of bugs.

1.3.3 Nondeterministic Finite Automata

In a deterministic automaton, the next state is completely determined by the cur-
rent state and the letter read by the head. In particular, this implies that the au-
tomaton has exactly one run for each word. Nondeterministic automata have the
possibility to choose the next state out of a set of candidates (possibly empty), and
so they may have zero, one, or many runs on the same word. Such an automaton
is said to accept a word if at least one of these runs is accepting.

Definition 1.13. A nondeterministic automaton (NA) is a tuple A = (Q,Σ, δ,Q0,
F), where

• Q, Σ, and F are as for DAs;

• Q0 is a nonempty set of initial states; and

• δ : Q× Σ→ P(Q) is a transition relation.

A run of A on input a0a1 · · · an is a sequence p0
a0−−→ p1

a1−−→· · · an−1−−−−→ pn, such that
pi ∈ Q for every 0 ≤ i ≤ n, p0 ∈ Q0, and pi+1 ∈ δ(pi, ai) for every 0 ≤ i < n. A run
is accepting if pn ∈ F .

A word w ∈ Σ∗ is accepted by A if at least one run of A on w is accepting. The
language recognized by A is the set L (A) = {w ∈ Σ∗ : w is accepted by A}.

A nondeterministic finite automaton (NFA) is an NA with a finite set of states.

We often identify the transition function δ of a DAwith the set of triples (q, a, q′)
such that q′ = δ(q, a) and the transition relation δ of an NFA with the set of triples
(q, a, q′) such that q′ ∈ δ(q, a). Consequently, we often write (q, a, q′) ∈ δ, meaning
q′ = δ(q, a) for a DA or q′ ∈ δ(q, a) for an NA.

4

2

1

5

3

1

01

0, 1

0

1

0

0, 1

1

Figure 1.8: A DFA for the reachable configurations of program foo.

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 18

If an NA has several initial states, then, by definition, its language is the union
of the sets of words accepted by runs starting at each initial state.

Example 1.14. Figure 1.9 depicts an NFA A = (Q,Σ, δ,Q0, F) where Q = {q0, q1,
q2, q3}, Σ = {a, b}, Q0 = {q0}, F = {q3}, and the transition relation δ is given by

δ(q0, a) = {q1} δ(q1, a) = {q1} δ(q2, a) = ∅ δ(q3, a) = {q3},
δ(q0, b) = ∅ δ(q1, b) = {q1, q2} δ(q2, b) = {q3} δ(q3, b) = {q3}.

Automaton A has no run for any word starting with letter b. It has exactly one run
for aa and four runs for abbb, namely,

q0
a−→ q1

b−→ q1
b−→ q1

b−→ q1 q0
a−→ q1

b−→ q1
b−→ q1

b−→ q2,

q0
a−→ q1

b−→ q1
b−→ q2

b−→ q3 q0
a−→ q1

b−→ q2
b−→ q3

b−→ q3.

Two of these runs are accepting; the other two are not. Language L (A) is the set of
words that start with a and contain two consecutive bs.

After a DA reads a word, we know whether it belongs to the language or not.
This is no longer the case for NAs: if a run on the word is not accepting, then we do
not know anything; there might be a different run leading to a final state. Hence,
NAs are not very useful as language acceptors. However, they are very important.
From an operational point of view, it is often easier to find an NFA for a given
language than to find a DFA. Moreover, as we will see later in this chapter, NFAs
can be automatically transformed into DFAs. From a data structure point of view,
there are two further reasons to study NAs. First, many sets can be represented
far more compactly as NFAs than as DFAs. So, using NFAs may save memory.
Second, in chapter 5, we will describe how to implement operations on relations,
and we will see that the implementation of the projection operation (see table 0.1
of section 0.1) may return an NFA, even if its input is a DFA. Therefore, NFAs are
not only convenient but also necessary to obtain a data structure implementing all
operations of table 0.1.

1.3.4 Nondeterministic Finite Automata with ε-Transitions

Recall that the state of an NA can only change by reading a letter. We consider NAs
with ε-transitions that may also change their state “spontaneously” by executing
an “internal” transition without reading any input. To emphasize this, we label
these transitions with the empty word ε (see figure 1.10).

Definition 1.15. A nondeterministic automatonwith ε-transitions (NA-ε) is a tuple
A = (Q,Σ, δ,Q0, F), where

q0 q1 q2 q3
a b b

a, b a, b

Figure 1.9: An NFA.

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 19

0 1 2

ε ε

Figure 1.10: An NFA-ε.

q0 q1

q2

q3 q4
ε ε d

c

a∗ b∗

Figure 1.11: An NFA with transitions labeled by regular expressions.

• Q, Σ, Q0, and F are as for NAs, and

• δ : Q× (Σ ∪ {ε})→ P(Q) is a transition relation.

The runs and accepting runs of an NA-ε are defined as for NAs. We say thatA accepts
a word a1 · · · an ∈ Σ∗ if there exist numbers k0, k1, . . . , kn ≥ 0 such that A has an
accepting run on the word

εk0a1ε
k1 · · · εkn−1anε

kn ∈ (Σ ∪ {ε})∗.

A nondeterministic finite automaton with ε-transitions (NFA-ε) is an NA-ε with
a finite set of states.

Notice that, unlike for NAs, the number of accepting runs of an NA-ε on a
word may be infinite. This is the case when some cycle of the NA-ε only contains
ε-transitions, and some final state is reachable from the cycle.

NA-εs are useful as intermediate representations. In particular, later in this
chapter, we will see how to automatically transform a regular expression into an
NFA in two steps; first we convert the expression into an NFA-ε, and then we
convert the NFA-ε into an NFA.

1.3.5 Nondeterministic Finite Automata with Regular Expressions

We generalize the notion of NA-ε even further. Both letters and the empty word ε
are instances of regular expressions. Now we allow arbitrary regular expressions
as transition labels (see figure 1.11). A run leading to a final state accepts all the
words of the regular expression obtained by concatenating all the labels of the
transitions of the run into a single regular expression. For example,

q0
ε−→ q1

a∗−−→ q2
b∗−−→ q1

a∗−−→ q2
b∗−−→ q1

ε−→ q3
d−→ q4

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 20

is a run of the automaton of figure 1.11 leading to an accepting state, and so the au-
tomaton accepts, among others, all words of the regular expression εa∗b∗a∗b∗εd ≡
a∗b∗a∗b∗d.

We call these automata NA-reg. They are useful to formulate conversion algo-
rithms between automata and regular expressions, because they generalize both.
Indeed, a regular expression can be seen as a NA-reg with only one transition
leading from the initial state to a final state and labeled by the regular expression.

Definition 1.16. A nondeterministic automaton with regular expression transi-
tions (NA-reg) is a tuple A = (Q,Σ, δ,Q0, F), where

• Q, Σ, Q0, and F are as for NAs, and

• δ : Q × RE(Σ) → P(Q) is a relation such that δ(q, r) = ∅ for all but a finite
number of pairs (q, r) ∈ Q×RE(Σ).

Accepting runs are defined as for NAs. Automaton A accepts a word w ∈ Σ∗ if A has
an accepting run on r1 · · · rk such that w ∈ L (r1) · · · L (rk).

A nondeterministic finite automaton with regular expression transitions (NFA-
reg) is an NA-reg with a finite set of states.

1.3.6 A Normal Form for Automata

For any of the automata classes we have introduced, if a state is not reachable from
any initial state, then removing it does not change the language accepted by the
automaton. We say that an automaton is in normal form if each state is reachable
from an initial one.

Definition 1.17. Let A = (Q,Σ, δ,Q0, F) be an automaton. A state q ∈ Q is
reachable from state q′ ∈ Q if either q = q′, or there exists a run q′ a1−−→· · · an−−→ q on
some word a1 · · · an ∈ Σ∗. Automaton A is in normal form if every state is reachable
from some initial state.

Obviously, for every automaton, there is an equivalent automaton of the same kind
in normal form. In this book, we follow this convention:
Unless otherwise stated, we assume that automata are in normal form. In partic-
ular, we assume that if an automaton A is an input to an algorithm, then A is in
normal form. If the output of an algorithm is an automaton, then the algorithm
is expected to produce an automaton in normal form. This condition is a proof
obligation when showing that the algorithm is correct.

1.4 Conversion Algorithms

We show that all our data structures represent exactly the same class of languages—
namely, the regular languages. The solid edges of figure 1.12 show the relations
between the formalisms that follow immediately from the definitions: DFAs are a
special case of NFAs, which are a special case of NFA-εs, which are a special case
of NFA-regs; further, regular expressions can also be seen as a special case of NFA-
regs. Indeed, a regular expression r “is” the NFA-reg Ar having two states, one

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 21

NFA-reg

Regular
expressions NFA-ε

NFA

DFA

Section
1.4.4

Section 1.4.3

Section 1.4.2

Section 1.4.1

Figure 1.12: Our data structures for languages.

initial and the other final, and a single transition labeled r leading from the initial
to the final state.

In the next sections, we present four conversion algorithms corresponding to
the dashed arrows of figure 1.12. A dashed arrow from a source to a target node
indicates that for every instance of the source, there is an equivalent instance of
the target. The algorithms allow us to convert any representation of a language
into any other.

1.4.1 From NFA to DFA

The powerset construction transforms an NFA A into a DFA B recognizing the same
language. We first give an informal idea of the construction. Recall that an NFA
may have many different runs on a word w, possibly leading to different states,
while a DFA has exactly one run on w. Denote by Qw the set of states q such that
some run of A on w leads from some initial state to q. Intuitively, B “keeps track”
of the set Qw: its states are sets of states of A, with Q0 as initial state (A starts at
some initial state), and its transition function is defined to ensure that the run of
B on w leads from Q0 to Qw (see below). It is then easy to ensure that A and B
recognize the same language: it suffices to choose the final states of B as the sets
of states of A containing at least one final state, because for every word w:

B accepts w
iff Qw is a final state of B
iff Qw contains at least a final state of A
iff some run of A on w leads to a final state of A
iff A accepts w.

Let us now define the transition function ∆ of B. “Keeping track of the set
Qw” amounts to satisfying ∆(Qw, a) = Qwa for every word w. Since we have
Qwa =

∪
q∈Qw

δ(q, a), we define

∆(Q′, a) =
∪
q∈Q′

δ(q, a) for every Q′ ⊆ Q.

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 22

Note that we may have Q′ = ∅; in this case, ∅ is a state of B, and since∆(∅, a) = ∅
for every a ∈ ∆, it is a “trap” state.

Summarizing, given A = (Q,Σ, δ,Q0, F), we define the DFA B = (Q,Σ,∆, q0,
F) as follows:

• Q = P(Q),

• ∆(Q′, a) =
∪
q∈Q′ δ(q, a) for every Q′ ⊆ Q and every a ∈ Σ,

• q0 = Q0, and

• F = {Q′ ∈ Q : Q′ ∩ F ̸= ∅}.

Observe, however, that B may not be in normal form: many states may not
be reachable from Q0. For instance, assume A happens to be a DFA with states
{q0, . . . , qn−1}. Then B has 2n states, but only the singletons {q0}, . . . , {qn−1} are
reachable. The conversion procedure of algorithm 1 constructs only the reachable
states.

The algorithm is written in pseudocode, with abstract sets as data structure.
Like nearly all the algorithms presented in the next chapters, it is a workset algo-
rithm. These maintain a set of objects, the workset, waiting to be processed. The
elements of the workset are unordered, and the workset contains at most one copy
of an element (i.e., if an element already in the workset is added to it again, the
workset does not change). For most algorithms in this book, the workset can be
implemented as a hash table.

In NFAtoDFA, the workset is called W, in other algorithms just W (we use a
calligraphic font to emphasize that in this case, the objects of the workset are
sets). Workset algorithms repeatedly pick an object from the workset (instruction
pick Q from W) and process it. Picking an object removes it from the workset.
Processing an object may generate new objects that are added to the workset. The
algorithm terminates when the workset is empty. Since objects removed from the
list may generate new objects, workset algorithms may potentially fail to termi-
nate. Even if the set of all objects is finite, the algorithmmay not terminate because

Algorithm 1 Conversion from NFA to DFA.
NFAtoDFA(A)
Input: NFA A = (Q,Σ, δ,Q0, F)
Output: DFA B = (Q,Σ,∆, q0,F) with L (B) = L (A)
1 Q,∆,F ← ∅; q0 ← Q0

2 W = {Q0}
3 whileW ̸= ∅ do
4 pick Q′ fromW
5 add Q′ to Q
6 if Q′ ∩ F ̸= ∅ then add Q′ to F
7 for all a ∈ Σ do
8 Q′′ ←

∪
q∈Q′ δ(q, a)

9 if Q′′ /∈ Q then add Q′′ toW
10 add (Q′, a,Q′′) to ∆

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 23

1 2 3 4

a, b

b a a, b

1 1, 2

(a)
a b

b
1 1, 2

1, 3

(b)
a b

b

a

1 1, 2

1, 4 1, 3 1, 2, 4

(c)
a b

b

a

a

b

1 1, 2

1, 4 1, 3 1, 2, 4

(d)
a b

b

a

a

a
b

b

1 1, 2

1, 4 1, 3 1, 2, 4

(e)
a b

b

a

a

a
b b

b

a

Figure 1.13: Conversion of an NFA into a DFA.

an object is added to and removed from the workset infinitely many times. Termi-
nation is guaranteed by making sure that no object that has been removed from
the workset once is ever added to it again. For this, objects picked from the work-
set are stored (in NFAtoDFA, they are stored in Q), and objects are added to the
workset only if they have not been stored yet.

Example 1.18. Consider the NFA A at the top of figure 1.13. The rest of the figure
depicts some snapshots of the run of NFAtoDFA on A. The states of the resulting DFA
are labeled with the corresponding sets of states of A. The algorithm picks states
from the workset in order {1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 4}. Snapshots (a)–(d) are
taken right after it picks the states {1, 2}, {1, 3}, {1, 4}, and {1, 2, 4}, respectively.
Snapshot (e) is taken at the end. Notice that out of the 24 = 16 subsets of states of
A, only five are constructed, because the remaining ones are not reachable from {1}.

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 24

Complexity. If A has n states, then the output of NFAtoDFA(A) can have up to
2n states. To show that this bound is essentially reachable, consider the family
{Ln}n≥1 of languages over Σ = {a, b} given by Ln = (a + b)∗a(a+ b)(n−1). That
is, Ln contains the words of length at least n whose nth letter starting from the
end is an a. The language Ln is accepted by the NFA with n + 1 states shown in
figure 1.14a: intuitively, the automaton chooses one of the as in the input word and
checks that it is followed by exactly n − 1 letters before the word ends. Applying
the powerset construction, however, yields a DFA with 2n states. The DFA for
L3 is shown on the left of figure 1.14b. The states of the DFA have a natural
interpretation: they “store” the last n letters read by the automaton. If the DFA is in
the state storing a1a2 · · · an and reads letter an+1, then it moves to the state storing
a2 · · · an+1. States are final if the first letter they store is an a. The interpreted
version is shown on the right of figure 1.14b.

We can also easily prove that any DFA recognizing Ln must have at least 2n
states. For the sake of contradiction, suppose there is a DFA An = (Q,Σ, δ, q0, F)
such that |Q| < 2n and L (An) = Ln. Let us extend δ to words—that is, to the
mapping δ̂ : Q × {a, b}∗ → Q, where δ̂(q, ε) = q and δ̂(q, w σ) = δ(δ̂(q, w), σ) for
all w ∈ Σ∗ and σ ∈ Σ. Since |Q| < 2n, there must exist two words uav1 and ubv2
of length n for which δ̂(q0, uav1) = δ̂(q0, ubv2). This means that δ̂(q0, uav1u) =

1 2 3 n n+ 1

a, b

a a, b a, ba, b

(a) NFA for Ln.

1 1, 4

1, 2 1, 3

1, 2, 3 1, 2, 4

1, 2, 3, 4 1, 3, 4

b

a
a

b

b

a

b

a

a
b

b

a

a
b

a

b

bbb abb

bba bab

baa aba

aaa aab

b

a
a

b

b

a

b

a

a
b

b

a

a
b

a

b

(b) DFA for L3 and its interpretation.

Figure 1.14: Top: An NFA for Ln. Bottom: A DFA for L3.

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 25

ε ε

0 1 2

0, 1 1, 2

0, 1, 2(a) NFA-ε accepting L (0∗1∗2∗).

ε ε

0 1 2

0, 1 1, 2

0, 1, 2

0 1 2

0, 1 1, 2

0, 1, 2

(b) After saturation. (c) After marking the initial state final and
removing all ε-transitions.

Figure 1.15: Conversion of an NFA-ε into an NFA by shortcutting ε-transitions.

δ̂(q0, ubv2u); that is, either both uav1u and ubv2u are accepted by An, or neither
is. Since, however, |av1u| = |bv2u| = n, this contradicts the assumption that An
consists of exactly the words with an a at the nth position from the end.

1.4.2 From NFA-ε to NFA

Let A be an NFA-ε over an alphabet Σ. In this section, we use a to denote an
element of Σ and α, β to denote elements of Σ ∪ {ε}.

Loosely speaking, the conversion first adds toA new transitions that make all ε-
transitions redundant, without changing the language: every word accepted by A
before adding the new transitions is accepted after adding them by a run without
ε-transitions. The conversion then removes all ε-transitions, delivering an NFA that
recognizes the same language as A.

The new transitions are shortcuts: if A has transitions (q, α, q′) and (q′, β, q′′)
such that α = ε or β = ε, then the shortcut (q, αβ, q′′) is added. (Note that either
αβ = a for some a ∈ Σ, or αβ = ε.) Shortcuts may generate further shortcuts: for
example, if αβ = a and A has a further transition (q′′, ε, q′′′), then a new shortcut
(q, a, q′′′) is added. We call the process of adding all possible shortcuts saturation.
Obviously, saturation does not change the language of A. If A has a run accepting
a nonempty word before saturation, for example,

q0
ε−→ q1

ε−→ q2
a−→ q3

ε−→ q4
b−→ q5

ε−→ q6,

then after saturation, it has a run accepting the same word, and visiting no ε-
transitions, namely,

q0
a−→ q4

b−→ q6.

However, removing ε-transitions immediately after saturationmay not preserve
the language. The NFA-ε of figure 1.15a accepts ε. After saturation, we get the

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 26

Algorithm 2 Conversion from NFA-ε to NFA.
NFAεtoNFA(A)
Input: NFA-ε A = (Q,Σ, δ,Q0, F)
Output: NFA B = (Q′,Σ, δ′, Q′0, F

′) with L (B) = L (A)
1 Q′0 ← Q0

2 Q′ ← Q0; δ′ ← ∅; F ′ ← F ∩Q0

3 δ′′ ← ∅;W ← {(q, α, q′) ∈ δ : q ∈ Q0}
4 whileW ̸= ∅ do
5 pick (q1, α, q2) fromW

6 if α ̸= ε then
7 add q2 to Q′; add (q1, α, q2) to δ′; if q2 ∈ F then add q2 to F ′

8 for all q3 ∈ δ(q2, ε) do
9 if (q1, α, q3) ̸∈ δ′ then add (q1, α, q3) toW
10 for all a ∈ Σ, q3 ∈ δ(q2, a) do
11 if (q2, a, q3) ̸∈ δ′ then add (q2, a, q3) toW
12 else / ∗ α = ε ∗ /
13 add (q1, α, q2) to δ′′; if q2 ∈ F then add q1 to F ′

14 for all β ∈ Σ ∪ {ε}, q3 ∈ δ(q2, β) do
15 if (q1, β, q3) ̸∈ δ′ ∪ δ′′ then add (q1, β, q3) toW

NFA-ε of figure 1.15b. Removing all ε-transitions yields an NFA that no longer
accepts ε. To solve this problem, if A accepts ε from some initial state, then we
mark that state as final, which clearly does not change the language. To decide
whether A accepts ε, we check if some state reachable from some initial state by
a sequence of ε-transitions is final. Figure 1.15 shows the result. Observe that, in
general, after removing ε-transitions, the automaton may not be in normal form,
because some states may no longer be reachable. So the naive procedure runs in
four phases: saturation, ε-check, removal of all ε-transitions, and normalization.

We show that it is possible to carry all four steps in a single pass. We present
a workset algorithm NFAεtoNFA, in algorithm 2, that carries the ε-check while
saturating and generates only the reachable states. Furthermore, the algorithm
avoids constructing some redundant shortcuts. For instance, for the NFA-ε of fig-
ure 1.15a, the algorithm does not construct the transition leading from the state
in the middle to the state on the right labeled by 2.

The correctness proof is easy, but the different cases require some care, and so
we devote a proposition to it.

Proposition 1.19. Let A be an NFA-ε, and let B = NFAεtoNFA(A). It is the case
that B is an NFA and L (A) = L (B).

Proof. To show that the algorithm terminates, observe first that every transition
that leaves W is never added to W again. Indeed, when a transition (q1, α, q2)
leaves W , it is added to either δ′ or δ′′, and a transition enters W only if it does
not belong to either δ′ or δ′′. Further, every execution of the while loop removes
a transition from the workset. Thus, the algorithm eventually exits the loop and
terminates.

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 27

To show that B is an NFA, we have to prove that it only has non-ε-transitions
and that it is in normal form (i.e., that every state of Q′ is reachable from some
state of Q′0 = Q0 in B). For the first part, observe that transitions are only added
to δ′ in line 7, and none of them is an ε-transition because of the guard in line 6.
For the second part, we need the following invariant, which can be easily proved
by inspection: for every transition (q1, α, q2) added to W , if α = ε, then q1 ∈ Q0,
and if α ̸= ε, then q2 is reachable in B (after termination). Since new states are
added to Q′ only at line 7, applying the invariant, we get that every state of Q′ is
reachable in B from some state in Q0.

It remains to prove L (A) = L (B). For the inclusion L (A) ⊇ L (B), we have
to show that after the addition of a new transition to δ′ or a new final state to
F ′, the recognized language is the same as before. For transitions, this follows
from the fact that every transition added to δ′ is either a transition of A or a short-
cut, which is shown by inspection. For final states, observe that the algorithm
only adds new final states at line 13. Further, at that line q1 only becomes final
if there is a transition q1

ε−→ q2 for some final state q2. So every word accepted
by a run ending at q1 was already accepted before making q1 final. For the in-
clusion L (A) ⊆ L (B), we first claim that ε ∈ L (A) implies ε ∈ L (B). Let
q0

ε−→ q1
ε−→· · · ε−→ qn be a run of A such that qn ∈ F . If n = 0 (i.e., qn = q0),

then we are done. If n > 0, then we prove by induction on n that a transition
(q0, ε, qn) is eventually added toW (and so eventually picked from it), which im-
plies that q0 is eventually added to F ′ at line 13. If n = 1, then (q0, ε, qn) is
added to W at line 3. If n > 1, then by hypothesis, (q0, ε, qn−1) is eventually
added to W and picked from it at some later point. So (q0, ε, qn) is added to
W at line 15, and the claim is proved. We now show that for every w ∈ Σ+, if
w ∈ L (A), then w ∈ L (B). Let w = a1a2 · · · an with n ≥ 1. Automaton A has
a run

q0
ε−→· · · ε−→ qm1

a1−−→ qm1+1
ε−→· · · ε−→ qmn

an−−→ qmn+1
ε−→· · · ε−→ qm

such that qm ∈ F . We have just proved that a transition (q0, ε, qm1
) is eventu-

ally added toW . So, (q0, a1, qm1+1) is eventually added at line 15, (q0, a1, qm+2),
. . . , (q0, a1, qm2

) are eventually added at line 9, and (qm2
, a2, qm2+1) is eventually

added at line 11. Iterating this argument, the following is a run of B:

q0
a1−−→ qm2

a2−−→· · · an−1−−−−→ qmn

an−−→ qm.

Moreover, state qm is added to F ′ at line 7, and so w ∈ L (B).

Complexity. The algorithm processes pairs of transitions (q1, α, q2) and (q2, β, q3),
where (q1, α, q2) comes fromW and (q2, β, q3) from δ (lines 8, 10, and 14). As ev-
ery transition is removed from W at most once, the algorithm processes at most
|Q| · |Σ| · |δ| pairs. Indeed, for a fixed transition (q2, β, q3) ∈ δ, there are |Q| pos-
sibilities for q1 and |Σ| possibilities for α. Thus, the runtime is dominated by the
processing of the pairs, and so it belongs to O(|Q| · |Σ| · |δ|).

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 28

Concatenation: ⇝r1r2 r1 r2

Choice: ⇝r1 + r2
r1

r2

Kleene star: ⇝r∗ ε

r

ε

Figure 1.16: Three rules for converting an NFA-reg into an NFA-ε.

1.4.3 From NFA-reg to NFA-ε

We present an algorithm that, given an NFA-reg, constructs an equivalent NFA-ε.
In a first step, we preprocess the regular expressions labeling the transitions of the
NFA-reg by exhaustively applying the following rewrite rules:

r · ∅⇝ ∅ r + ∅⇝ r ∅∗ ⇝ ε

∅ · r ⇝ ∅ ∅+ r ⇝ r

Since the left- and right-hand sides of each rule denote the same language, the
regular expressions before and after preprocessing denote the same language.
Moreover, if r is a regular expression obtained after preprocessing, then either
r = ∅, or r does not contain any occurrence of the ∅ symbol, since otherwise, one
of the above rules can be applied. A transition of an NFA-reg labeled by ∅ can
be removed without changing its language. Indeed, any regular expression ac-
cepted by means of a run containing such a transition is of the form r1 ∅ r2, whose
language is empty. After removing such transitions, we are left with an NFA-reg
whose labels contain no occurrence of the ∅ symbol. This concludes the first step.

In the second step, we exhaustively apply the transformation rules of figure 1.16.
It is readily seen that each rule preserves the recognized language (i.e., the

NFA-regs before and after the application of the rule recognize the same language).
The two ε-transitions of the rule for Kleene iteration guarantee that the automata
before and after applying the rule are equivalent, even if the source and target
states of the transition labeled by r∗ have other incoming or outgoing transitions.
If the source state has no other outgoing transitions, then we can omit the first ε-
transition. If the target state has no other incoming transitions, then we can omit
the second.

Since each rule splits a regular expression into its constituents, we eventually
reach an NFA-reg to which no rule can be applied. Since, due to the preprocessing,
the initial regular expressions do not contain any occurrence of ∅, the transitions of
this NFA-reg can only be labeled with letters from Σ, or with ε, and so the NFA-reg
is an NFA-ε.

Observe that if we start with an NFA-reg consisting of an initial state q0, a final
state qf , different from q0, and one transition q0

r−→ qf , then the final NFA-ε also

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 29

(a∗b∗ + c)∗d

(a∗b∗ + c)∗ d

ε ε d

a∗b∗ + c

ε ε d
a∗ b∗

c

ε ε dε

ε ε

ε

c

a b

Figure 1.17: The result of converting (a∗b∗ + c)∗d into an NFA-ε.

has q0 and qf as unique initial and final states. Moreover, no transition leads to q0,
and no transition leaves qf .

Example 1.20. Consider the regular expression (a∗b∗ + c)∗d. Figure 1.17 depicts
the result of applying the transformation rules.

Complexity. Given a regular expression r, define ℓ(r) inductively as follows:
ℓ(∅) = ℓ(ε) = ℓ(a) = 0, ℓ(r1·r2) = ℓ(r1+r2) = ℓ(r1)+ℓ(r2)+1, and ℓ(r∗) = ℓ(r)+1.
Further, given an NFA-reg A = (Q,Σ, δ,Q0, F), define ℓ(A) =

∑
(q,r,q′)∈δ ℓ(r). The

application of a rule transformsA into an automatonA′ such that ℓ(A′) = ℓ(A)−1;
moreover, if ℓ(A′) = 0, then A′ is an NFA-ε. So we obtain an NFA-ε after ℓ(A) ap-
plications, with at most |Q| + ℓ(A) states. Further, the conversion runs in linear
time.

1.4.4 From NFA-ε to Regular Expressions

Given an NFA-ε A, we transform it into an equivalent regular expression. For this,
we convertA into an equivalent NFA-regAr with two states and a single transition
labeled by a regular expression r.

As in the previous section, it is convenient to apply some preprocessing to guar-
antee that the NFA-ε has a single initial state with no incoming transitions and a
single final state with no outgoing transitions. We proceed as follows (see fig-
ure 1.18):

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 30

... ⇝ q0 ...
... ⇝ ... qf

ε

ε

ε

ε

Figure 1.18: Rule 1: Preprocessing.

q q′ ⇝ q q′
r1 + r2

r1

r2

Figure 1.19: Rule 2: at most one transition between two states.

...
... ⇝ ...

...

r1

rn

t1

tm

s
r1s
∗t1

r1s
∗tm

rns
∗t1

rns
∗tm

Figure 1.20: Rule 3: removing a state.

• If A has several initial states, or if an initial state has an incoming transition,
then add a new initial state q0, add ε-transitions leading from q0 to each
initial state, and replace the set of initial states by {q0}.

• IfA has several final states, or if a final state has an outgoing transition, then
add a new state qf , add ε-transitions leading from each final state to qf , and
replace the set of final states by {qf}.

After preprocessing, the algorithm runs in phases. Each phase has two steps. The
first step yields an automaton with at most one transition between any two given
states:

• Repeat exhaustively: replace a pair of transitions (q, r1, q′) and (q, r2, q
′) by

a single transition (q, r1 + r2, q
′). (See figure 1.19.)

The second step, depicted in figure 1.20, reduces the number of states by 1, until
the only states left are the initial and final ones:

• Pick a nonfinal and noninitial state q, and shortcut it: if q has a self-loop
(q, s, q), then replace each pair of transitions (q′, r, q), (q, t, q′′), where q′ ̸=
q ̸= q′′, but possibly q′ = q′′, by a shortcut (q′, rs∗t, q′′). Otherwise, replace it
by (q′, rt, q′′). After shortcutting all pairs, remove q. (Notice that there is at
most one self-loop on q, as otherwise we would have two or more transitions
leading from q to q, contradicting that rule 2 was applied exhaustively.)

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 31

Algorithm 3 Conversion from NFA-ε to regular expression.
NFA-εtoRE(A)
Input: NFA-ε A = (Q,Σ, δ,Q0, F)
Output: regular expression r with L (r) = L (A)
1 apply Rule 1
2 let q0 and qf be the initial and final states of A
3 while Q \ {q0, qf} ̸= ∅ do
4 apply exhaustively Rule 2
5 pick q from Q \ {q0, qf}
6 apply Rule 3 to q
7 apply exhaustively Rule 2
8 return the label of the (unique) transition

At the end of the last phase, we are left with an NFA-reg having exactly two
states, the unique initial state q0 and the unique final state qf . Moreover, q0 has no
incoming transitions and qf has no outgoing transitions, because it was initially so,
and the application of the rules cannot change it. After applying rule 2 exhaustively
one last time, the NFA-reg has exactly one transition from q0 to qf , and we are
done. The complete procedure is described in algorithm 3.

Example 1.21. An example of the execution of NFA-εtoRE will be given shortly at
the beginning of the forthcoming “Tour of Conversions” in the next section.

Complexity. The running time of the algorithm depends on the data structure
used to store regular expressions. If they are stored as strings or trees (following
the syntax tree of the expression), then the complexity can be exponential. To see
this, consider, for n ≥ 1, the NFA An = (Q,Σ, δ,Q0, F), where

Q = {q0, . . . , qn−1},
Σ = {aij : 0 ≤ i, j < n},
Q0 = Q,

δ = {(qi, aij , qj) : 0 ≤ i, j < n},
F = Q.

That is, all states are initial and final, there is one transition between each pair of
states, and each transition is labeled by a different letter. By symmetry, the running
time of the algorithm is independent of the order in which states are eliminated.
Consider the order q0, q2, . . . , qn−1. It is easy to see that after eliminating state
qi, the NFA-reg contains some transitions labeled by regular expressions with 3i

occurrences of letters. This exponential blowup cannot be avoided: it can be shown
that every regular expression recognizing the same language as An contains at
least 2n−1 occurrences of letters.

Regular expressions can also be stored as acyclic directed graphs by sharing
common subexpressions in the syntax tree. For example, the regular expression
((a+ b)(a+ b))((a+ b)(a+ b)) can be represented by the syntax tree with fifteen

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 32

·

·

+

a b

+

a b

·

+

a b

+

a b

·

·

+

a b

Figure 1.21: Compact representation of regular expressions.

nodes on the left of figure 1.21 or, more compactly, by the acyclic directed graph
with five nodes on the right.
If the algorithm is implemented using acyclic directed graphs, then it works in
polynomial time, because the label of a new transition is obtained by concatenating
or starring already computed labels.

1.5 A Tour of Conversions

We present an example chaining the conversions of this chapter.

(1) We begin with a DFA A that recognizes the language of words over {a, b}
with an even number of as and an even number of bs. We convert it into a
regular expression via NFA-εtoRE. In the following drawing, parts (b) to (f)
depict snapshots of the run of NFA-εtoRE(A). Snapshot (b) is taken right
after applying rule 1. Snapshots (c) to (e) are taken after each execution of
the body of the while loop. Snapshot (f) shows the final expression r.

(a)
a

a

a

a

bb bb

(b)
a

a

a

a

bb bb

ε
ε

(c)

bb

a

a

ab

ba

aa

bb

ε
ε (d)

ab+ ba

ba+ ab

aa+ bb

aa+ bb

ε
ε

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 33

(e)

aa+ bb+
(ab+ ba)(aa+ bb)∗(ba+ ab)

ε
ε

(f)

(aa+ bb+
(ab+ ba)(aa+ bb)∗(ba+ ab))∗

(2) We convert r into an NFA-ε by repeatedly applying the three rules of figure
1.16. The following drawing gives four snapshots (a)–(d) of these applica-
tions.

(a) (aa+ bb+
(ab+ ba)(aa+ bb)∗(ab+ ba))∗

(b)
ε ε

(ab+ ba)(aa+ bb)∗(ab+ ba)

aa bb

(c)
ε ε

a

a b

b

ab+ ba

ε ε

ab+ ba

aa+ bb

(d)
ε ε

a

a b

b

a
b

b

a
ε

a
b

b

a
ε

a

a b

b

(3) We convert the resulting NFA-ε into an NFA via NFA-εtoNFA.

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 34

1 4 5

2 3

6

7

9

8

10

11 12

a

a b

b

a

a b

b

a

b

a

b

a

b

b

a

a

b

a

b

b ba a

(4) Finally, we transform the resulting NFA back into a DFA by means of the
powerset construction.

1

2, 6

3, 7

4, 5

8, 11

9, 12

10

a

b

a

a

b

b b

b

a

a

a

b

a

b

Note that we do not end up with the initial four-state DFA but rather with a “more
complicated one” recognizing the same language. A last step, allowing us to close
the circle, is presented in the next chapter.

1.6 Exercises

 Exercise 1. Give a regular expression for the language of all words over
Σ = {a, b}

(a) beginning and ending with the same letter.

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 35

(b) having two occurrences of a at distance 3.

(c) with no occurrence of the subword aa.

 Exercise 2. Give a regular expression for the language of all words over
Σ = {a, b}

1. containing exactly two occurrences of aa (that may “overlap,” e.g., aaa be-
longs to the language).

2. that can be obtained from abaab by deleting letters.

 Exercise 3. Show that the language of the regular expression r = (a +
ε)(b∗ + ba)

∗ is the language A of all words over {a, b} that do not contain any
occurrence of aa.

 Exercise 4. Prove or disprove the following claim: the regular expressions
(1 + 10)∗ and 1∗(101∗)∗ represent the same language (namely, the language of
words where each occurrence of 0 is preceded by a 1).

 Exercise 5.

1. Prove that for all languagesA andB, the following holds: A ⊆ B =⇒ A∗ ⊆
B∗.

2. Prove that the regular expressions ((a + ab)∗ + b∗)∗ and Σ∗ represent the
same language, where Σ = {a, b} and where Σ∗ stands for (a+ b)∗.

 Exercise 6. Prove that every regular expression r is equivalent to a regular
expression s of the form s = s1 + . . .+ sn for some n ≥ 1, where s1, . . . , sn do not
contain any occurrence of “+.”

 Exercise 7. For each of the following properties, provide a syntax that
describes the regular expressions r satisfying the property.

(a) L (r) = ∅,

(b) L (r) = {ε},

(c) ε ∈ L (r),

(d) (L (r) = L (rr)) =⇒ (L (r) = L (r∗)).

 Exercise 8. Use the solution to exercise 7 to define inductively the predicates
IsEmpty(r), IsEpsilon(r), and HasEpsilon(r) over regular expressions given by

• IsEmpty(r)⇔ (L (r) = ∅),

• IsEpsilon(r)⇔ (L (r) = {ε}),

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 36

• HasEpsilon(r)⇔ (ε ∈ L (r)).

 Exercise 9. Let us extend the syntax and semantics of regular expressions
as follows. If r and s are regular expressions over Σ, then r and r ∩ s are also
valid expressions, where L (r) = L (r) and L (r ∩ s) = L (r) ∩ L (s). We say that
an extended regular expression is star-free if it does not contain any occurrence of
the Kleene star operation (e.g., expressions ab and (∅ab∅) ∩ (∅ba∅) are star-free,
but expression ab∗ is not).

A language L ⊆ Σ∗ is called star-free if there exists a star-free extended regular
expression r such that L = L (r); for example, Σ∗ is star-free, becauseΣ∗ = L

(
∅
)
.

Show that the languages of the regular expressions (a) (01)∗ and (b) (01+10)∗

are star-free.

 Exercise 10. Let L ⊆ {a, b}∗ be the language described by the regular
expression a∗b∗a∗a.

(a) Give an NFA-ε that accepts L.

(b) Give an NFA that accepts L.

(c) Give a DFA that accepts L.

 Exercise 11. Let |w|σ denote the number of occurrences of letter σ in word
w. For every k ≥ 2, let Lk,σ = {w ∈ {a, b}∗ : |w|σ mod k = 0}.

(a) Give a DFA with k states that accepts Lk,σ.

(b) Show that any NFA accepting Lm,a ∩ Ln,b has at least m · n states.

Hint: Consider using the pigeonhole principle.

 Exercise 12. For every language L, let Lpref and Lsuff be respectively the
languages of all prefixes and suffixes of words in L. For example, if L = {abc, d},
then Lpref = {abc, ab, a, ε, d} and Lsuff = {abc, bc, c, ε, d}.

(a) Given an NFA A, construct NFAs Apref and Asuff that recognize L (A)pref and
L (A)suff.

(b) Let r = (ab + b)∗cd. Give a regular expression rpref such that L
(
rpref

)
=

L (r)pref.

(c) More generally, give an algorithm that takes an arbitrary regular expression r
as input and returns a regular expression rpref such that L

(
rpref

)
= L (r)pref.

 Exercise 13. Consider the regular expression r = (a+ ab)
∗.

(a) Convert r into an equivalent NFA-ε A.

(b) Convert A into an equivalent NFA B.

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 37

(c) Convert B into an equivalent DFA C.

(d) By inspection of C, give an equivalent minimal DFA D.

(e) Convert D into an equivalent regular expression r′.

(f) Prove formally that L (r) = L (r′).

 Exercise 14. The reverse of a word w, denoted by wR, is defined as fol-
lows: εR = ε and (a1a2 · · · an)R = an · · · a2a1. The reverse of a language L is the
language LR = {wR : w ∈ L}.

(a) Give a regular expression for the reverse of the language of ((a+ ba)∗ba(a+
b))∗ba.

(b) Give an algorithm that takes as input a regular expression r and returns a
regular expression rR such that L

(
rR
)
= L (r)R.

(c) Give an algorithm that takes an NFA A and returns an NFA AR such that
L
(
AR
)
= L (A)R.

(d) Does your construction in (c) work for DFAs? More precisely, does it preserve
determinism?

 Exercise 15. Prove or disprove: every regular language is recognized by an
NFA

(a) having one single initial state,

(b) having one single final state,

(c) whose initial states have no incoming transitions,

(d) whose final states have no outgoing transitions,

(e) all of the above,

(f) whose states are all initial,

(g) whose states are all final.

Which of the above hold for DFAs? Which ones for NFA-ε?

 Exercise 16. Given a regular expression r, construct an NFA A that satisfies
L (A) = L (r) and the following properties:

• initial states have no incoming transitions,

• accepting states have no outgoing transitions,

• all input transitions of a state (if any) carry the same label,

• all output transitions of a state (if any) carry the same label.

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 38

Apply your construction on r = (a(b+ c))∗.

 Exercise 17. Convert this NFA-ε to an NFA using the algorithm NFAεtoNFA:

p

q

r

s

ε

ε

b

a

ε

 Exercise 18. Show that every finite language L (i.e., every language con-
taining finitely many words) is regular. Do so by defining a DFA that recognizes L.

 Exercise 19. Let Σn = {1, 2, . . . , n}, and let Ln be the set of all words
w ∈ Σn such that at least one letter of Σn does not appear in w. So, for instance,
1221, 32, 1111 ∈ L3 and 123, 2231 /∈ L3.

(a) Give an NFA for Ln with O(n) states and transitions.

(b) Give a DFA for Ln with 2n states.

(c) Show that any DFA for Ln has at least 2n states.

(d) Do the bounds of (a), (b), and (c) also hold for Ln?

 Exercise 20. LetMn be the language of the following regular expression:

(0 + 1)∗0(0 + 1)n−10(0 + 1)∗.

These are the words containing at least one pair of 0s at distance n. For example,
101101, 001001, 000000 ∈M3 and 101010, 000111, 011110 /∈M3.

(a) Give an NFA forMn with O(n) states and transitions.

(b) Give a DFA forMn with Ω(2n) states.

(c) Show that any DFA forMn has at least 2n states.

 Exercise 21. Recall that an NFA A accepts a word w if at least one of the
runs of A on w is accepting. This is sometimes called the existential accepting
condition. Consider the variant where A accepts word w if all runs of A on w
are accepting (in particular, if A has no run on w, then it trivially accepts w).
This is called the universal accepting condition. Note that a DFA accepts the same
language with both the existential and the universal accepting conditions.

Intuitively, we can imagine an automaton with universal accepting condition
as executing all runs in parallel. After reading a word w, the automaton is simulta-
neously in all states reached by all runs labeled by w and accepts if all those states
are accepting.

Consider the language by Ln = {ww : w ∈ {0, 1}n}.

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 39

(a) Give an automaton of size O(n) with universal accepting condition that rec-
ognizes Ln.

(b) Prove that every NFA (and so in particular every DFA) recognizing Ln has at
least 2n states.

(c) Give an algorithm that transforms an automaton with universal accepting
condition into a DFA recognizing the same language. This shows that au-
tomata with universal accepting condition recognize the regular languages.

⋆ Exercise 22. The existential and universal accepting conditions can be
combined, yielding alternating automata. The states of an alternating automaton
are partitioned into existential and universal states. An existential state q accepts a
word w, denoted w ∈ L (q), if either w = ε and q ∈ F , or w = aw′ and there exists
a transition (q, a, q′) such that w′ ∈ L (q′). A universal state q accepts a word w if
either w = ε and q ∈ F , or w = aw′ and w′ ∈ L (q′) for every transition (q, a, q′).
The language recognized by an alternating automaton is the set of words accepted
by its initial state.

Give an algorithm that transforms an alternating automaton into a DFA recog-
nizing the same language.

 Exercise 23. In algorithm NFAεtoNFA, no transition that has been added
to the workset, processed, and removed from the workset is ever added to the
workset again. However, transitions may be added to the workset more than once.
Give an NFA-ε and a run of NFAεtoNFA where this happens.

 Exercise 24. Execute algorithm NFAεtoNFA on the following NFA-ε over
Σ = {a1, . . . , an} to show that the algorithm may increase the number of transi-
tions quadratically:

q0 q1 q2 qn−1 qn

a1

ε

a2

ε

an

ε

 Exercise 25. We say that u = a1 · · · an is a scattered subword of w ∈ Σ∗, de-
noted u ⪯ w, if there are wordsw0, . . . , wn ∈ Σ∗ such thatw = w0a1w1a2 · · · anwn.
The upward closure and downward closure of a language L are the following lan-
guages:

↑L = {u ∈ Σ∗ : w ⪯ u for some w ∈ L},
↓L = {u ∈ Σ∗ : u ⪯ w for some w ∈ L}.

(a) Give regular expressions for the upward and downward closures of {anbn :
n ≥ 0}.

(b) Give algorithms that take a regular expression r as input and return regular
expressions for ↑L (r) and ↓L (r).

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 40

(c) Give algorithms that take an NFA A as input and return NFAs for ↑L (A) and
↓L (A).

 Exercise 26. An atomic expression over alphabet Σ∗ is an expression of the
form ∅, ε, (a + ε), or (a1 + . . . + an)

∗, where a, a1, . . . , an ∈ Σ. A product is a
concatenation e1e2 · · · en of atomic expressions. A simple regular expression is a
sum p1 + . . .+ pn of products.

(a) Prove that the language of a simple regular expression is downward-closed
(i.e., it is equal to its downward closure) (see exercise 25).

(b) Prove that any downward-closed language can be represented by a simple
regular expression.

Hint: Since every downward-closed language is regular, it can be represented
by a regular expression. Prove that this expression is equivalent to a simple
regular expression.

 Exercise 27. Let L be a regular language over Σ. Show that the following
languages are also regular by constructing automata:

(a)
√
L = {w ∈ Σ∗ : ww ∈ L},

(b) Cyc(L) = {vu ∈ Σ∗ : uv ∈ L}.

 Exercise 28. For every n ∈ N, let msbf(n) be the set of most-significant-
bit-first encodings of n, that is, the words that start with an arbitrary number of
leading zeros, followed by n written in binary. For example, msbf(3) = L (0∗11),
msbf(9) = L (0∗1001), and msbf(0) = L (0∗). Similarly, let LSBF(n) denote the set
of least-significant-bit-first encodings of n, that is, the set containing for each word
w ∈ msbf(n) its reverse. For example, LSBF(6) = L (0110∗) and LSBF(0) = L (0∗).

(a) Construct and compare DFAs recognizing the set of even numbers w.r.t. the
unary encoding (where n is encoded by the word 1n), the msbf-encoding,
and the LSBF-encoding.

(b) Do the same for the set of numbers divisible by 3.

(c) Give regular expressions corresponding to the languages of (b).

⋆ Exercise 29. Consider this DFA over alphabet {[0, 0], [0, 1], [1, 0], [1, 1]}:

0 1 2

[
0
0

] [
1
1

][
1
0

] [
0
0

]

[
0
1

][
1
1

]

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 41

A word w encodes a pair of natural numbers (X(w), Y (w)), where X(w) and
Y (w) are obtained by reading the top and bottom rows in MSBF encoding. For
instance, the following word encodes (44, 19):

w =

[
1
0

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
0
1

]
Show that the above DFA recognizes the set of words w such thatX(w) = 3 ·Y (w),
that is, the solutions of the equation x− 3y = 0.

⋆ Exercise 30. Algorithm NFAtoRE transforms a finite automaton into a reg-
ular expression representing the same language by iteratively eliminating states
of the automaton. In this exercise, we present an algebraic reformulation of the
algorithm. We represent an NFA as a system of language equations with as many
variables as states and solve the system by eliminating variables. A language equa-
tion over an alphabet Σ and a set V of variables is an equation of the form r1 = r2,
where r1 and r2 are regular expressions over Σ∪V . For instance, X = aX+ b is a
language equation. A solution of a system of equations is a mapping that assigns
to each variableX a regular expression over Σ, such that the languages of the left-
and right-hand sides of each equation are equal. For instance, a∗b is a solution of
X = aX + b because L (a∗b) = L (aa∗b+ b).

(a) Arden’s lemma states that, given two languages A,B ⊆ Σ∗, the smallest
language X ⊆ Σ∗ satisfying X = AX + B is the language A∗B. Moreover,
if ε ̸∈ A, then the solution is unique. Prove Arden’s lemma.

(b) Consider the following system of equations, where variablesX and Y repre-
sent languages (regular expressions) over the alphabet Σ = {a, b, c, d, e, f}:

X = aX + bY + c

Y = dX + eY + f.

Find the unique solution with the help of Arden’s lemma.

Hint: As a first step, consider X not as a variable but as a constant language,
and solve the equation for Y using Arden’s lemma.

(c) We can associate to any NFA A = (Q,Σ, δ, {q0}, F) a system of linear equa-
tions as follows. We takeQ as variables, which we call hereX,Y, Z, . . . ,with
X as initial state. The system has the following equation for each state Y :

Y =

∑
(Y,a,Z)∈δ

aZ if Y /∈ F,

 ∑
(Y,a,Z)∈δ

aZ

+ ε if Y ∈ F.

Consider the DFA (1)(a) from the Tour of Conversions on page 32.

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 42

Let X,Y, Z,W be the states of the automaton, and read from top to bottom
and from left to right. The associated system of linear equations is

X = aY + bZ + ε Y = aX + bW

Z = bX + aW W = bY + aZ.

Compute the solution of this system by iteratively eliminating variables. Start
with Y , then eliminate Z, and finallyW . Compare with the elimination pro-
cedure depicted in step (1) of the Tour of Conversions on page 32.

 Exercise 31. Consider a deck of cards (with arbitrary many cards) in which
black and colored cards alternate, the top card is black, and the bottom card is
colored. The set of possible decks is given by the regular expression (BR)∗. Cut
the deck at any point into two piles, and then perform a perfect riffle shuffle to
yield a new deck (where cards strictly alternate). For example, we can cut a deck
with six cards 123456 (with 1 as the top card) into two piles 12 and 3456, and
the riffle yields 345162 (we start the riffle with the first pile). Give a regular
expression over the alphabet {B,R} describing the possible configurations of the
decks after the riffle.

Hint: After the cut, the last card of the first pile can be black or colored. In the first
case, the two piles belong to (BR)∗B and R(BR)∗ and in the second case to (BR)∗

and (BR)∗. Let Rif(r1, r2) be the language of all decks obtained by performing a riffle
on decks taken from L (r1) and L (r2). We are looking for a regular expression for

Rif ((BR)∗B,R(BR)∗) + Rif ((BR)∗, (BR)∗) .

Use exercise 30 to set up a system of equations over the variables X = Rif((BR)∗B,
R(BR)∗) and Y = Rif((BR)∗, (BR)∗), and solve it.

⋆ Exercise 32. Let L be an arbitrary language over a one-letter alphabet.
Prove that L∗ is regular.

⋆ Exercise 33. In contrast to exercise 32, show that there exists a language L
over a two-letter alphabet such that L∗ is not necessarily regular.

⋆ Exercise 34. LetKn = (Vn, En) be the complete directed graph of n nodes—
that is, with nodes Vn = {1, . . . , n} and edges En = {(i, j) : 1 ≤ i, j ≤ n}. A
path of Kn is a sequence of nodes, and a circuit is a path that begins and ends
in the same node. Let An = (Qn,Σn, δn, q0n, Fn) be the DFA defined by Qn =
{1, . . . , n} ∪ {⊥}, Σn = {ai,j : 1 ≤ i, j ≤ n}, q0n = 1, Fn = {1}, and

δn(q, ai,j) =

{
⊥ if q = ⊥ or q ̸= i,

j otherwise (if q = i).

The language accepted by An consists of all words encoding circuits of Kn from
node 1 to itself. For example, the following DFA A3 accepts a1,3a3,2a2,1, which
encodes the circuit 1321 of K3.

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 43

1

3

2

a1,2

a2,1

a1,3

a3,1 a2,3

a3,2
a1,1 a2,2

a3,3

The size of a regular expression r, denoted |r|, is defined recursively as 1 if r ∈
{ε, ∅} ∪ Σn; |r1| + |r2| if r = r1 + r2 or r = r1r2; and |s| if r = s∗. Similarly, we
define the length of r, denoted len(r), as 1 if r ∈ {ε, ∅}∪Σn; max(len(r1), len(r2))
if r = r1 + r2; len(r1) + len(r2) if r = r1r2; and len(s) if r = s∗. Note that
|r| ≥ len(r).

A path expression r is a regular expression over Σn that encodes paths of Kn.
We seek to show that any path expression for L (An), and hence any regular ex-
pression, must have length Ω(2n). As a consequence, this means that DFAs can be
exponentially more succinct than regular expressions.

(a) Let π be a circuit of Kn and let r be a path expression. We say that r covers
π if L (r) contains a word uwv such that w encodes π. Furthermore, we say
that r covers π∗ if L (r) covers πk for every k ≥ 0. It can be shown that if r
covers π2·len(r), then it covers π∗.
From this, show that if r covers π∗ and no proper subexpression of r does,
then r = s∗ for some expression s, and every word of L (s) encodes a circuit
starting at a node of π.

(b) For every 1 ≤ k ≤ n + 1, let [k] denote the permutation of {1, 2, . . . , n + 1}
that cyclically shifts every index k position to the right. More formally, node
i is renamed to i + k if i + k ≤ n + 1 and to i + k − (n + 1) otherwise. Let
π[k] be the result of applying the permutation to π. For example, if n = 4
and π = 24142, we obtain

π[1] = 35253, π[2] = 41314, π[3] = 52425, π[4] = 13531, π[5] = 24142 = π.

Let π be a circuit of Kn. Show that π[k] is a circuit of Kn+1 that does not
pass through node k.

(c) Let us define a circuit gn of Kn inductively:

g1 = 11,

gn+1 = 1 (gn[1])
2n (gn[2])

2n · · · (gn[n+ 1])2
n

for every n ≥ 1.

In particular, we have

g1 = 11,

g2 = 1 (22)2 (11)2,

g3 = 1 (2 (33)2 (22)2)4 (3 (11)2 (33)2 3)4 (1 (22)2 (11)2)4.

Prove, using (a)–(b), that every path expression r covering gn is such that
|r| ≥ 2n−1.

CHAPTER 1. AUTOMATA CLASSES AND CONVERSIONS 44

(d) Show that any regular expression rn such that L (rn) = L (An) is such that
|rn| ≥ 2n−1.

⋆ Exercise 35. Let us introduce weakly acyclic DFAs, NFAs, and regular
expressions:

• A DFA A = (Q,Σ, δ, q0, F) is weakly acyclic if δ(q, w) = q implies δ(q, a) = q
for every letter a occurring in w.

• An NFA A = (Q,Σ, δ,Q0, F) is weakly acyclic if q ∈ δ(q, w) implies δ(q, a) =
{q} for every letter a occurring in w.

• Weakly acyclic regular expressions over an alphabetΣ are regular expressions
generated by

r ::= ∅ | Γ∗ | Λ∗ar | r + r where Γ,Λ ⊆ Σ and a ∈ Σ \ Λ.

Finally, a regular language is weakly acyclic if it is recognized by some weakly
acyclic DFA. Show the following statements:

(a) An NFA A = (Q,Σ, δ, q0, F) is weakly acyclic iff it satisfies any of the follow-
ing three conditions:

(i) the binary relation ⪯ ⊆ Q × Q, given by q ⪯ q′ iff δ(q, w) = {q′} for
some word w, is a partial order;

(ii) each strongly connected component of the underlying directed graph
of A contains a single state; and

(iii) the underlying directed graph of A does not contain any simple cycle
beyond self-loops.

(b) If A is a weakly acyclic NFA, then B = NFAtoDFA(A) is a weakly acyclic DFA.

(c) For every weakly acyclic regular expression r, there is a weakly acyclic DFA
that accepts L (r).

(d) For every weakly acyclic NFA A, there is a weakly acyclic regular expression
for L (A).

Since every weakly acyclic DFA is also a weakly acyclic NFA by definition, we con-
clude that a language is weakly acyclic iff it is recognized by a weakly acyclic DFA
iff it is recognized by a weakly acyclic NFA iff it is the language of a weakly acyclic
regular expression.

Chapter 2
Minimization and Reduction

In the previous chapter, we showed through a chain of conversions that the two
DFAs of figure 2.1 recognize the same language. Obviously, the automaton on the
left is better as a data structure for this language, since it has smaller size.

A DFA (respectively, NFA) is minimal if no other DFA (respectively, NFA) recog-
nizing the same language has fewer states. We show that every regular language
has a unique minimal DFA up to isomorphism (i.e., up to renaming of the states).
Moreover, we present an efficient algorithm that “minimizes” a given DFA (i.e.,
converts it into the unique minimal DFA). In particular, the algorithm converts the
DFA on the right of figure 2.1 into the one on the left.

From a data structure point of view, the existence of a unique minimal DFA
has two important consequences. First, as mentioned earlier, the minimal DFA
is the one that can be stored with a minimal amount of memory. Second, the
uniqueness of the minimal DFA makes it a canonical representation of a regular
language. Canonicity leads to a fast equality check: in order to decide if two
regular languages are equal, we can construct their minimal DFAs and check if
they are isomorphic.

In the second part of the chapter, we observe that, unfortunately, computing a
minimal NFA is a computationally hard problem, for which no efficient algorithm
is likely to exist. Moreover, the minimal NFA is not necessarily unique. However,
we show that a generalization of the minimization algorithm for DFAs can be used

a

a

a

a

bb bb

a

b

a

a

b

b b

b

a

a

a

b

a

b

Figure 2.1: Two DFAs for the same language.

45

CHAPTER 2. MINIMIZATION AND REDUCTION 46

to at least reduce the size of an NFA while preserving its language.

2.1 Minimal DFAs

We start with a simple but very useful definition.

Definition 2.1. Given a language L ⊆ Σ∗ and a word w ∈ Σ∗, the residual of L
with respect to w is the language Lw = {u ∈ Σ∗ : wu ∈ L}. A language L′ ⊆ Σ∗ is
a residual of L if L′ = Lw for at least one w ∈ Σ∗.

The language Lw satisfies the following property:

wu ∈ L ⇐⇒ u ∈ Lw. (2.1)

Moreover, Lw is the only language satisfying this property. In other words, if a
language L′ satisfies wu ∈ L ⇐⇒ u ∈ L′ for every word u, then L′ = Lw.

Example 2.2. Let Σ = {a, b} and L = {a, ab, ba, aab}. We compute Lw for all words
w by increasing length of w.

• |w| = 0: Lε = {a, ab, ba, aab}.

• |w| = 1: La = {ε, b, ab} and Lb = {a}.

• |w| = 2: Laa = {b}, Lab = {ε}, Lba = {ε} and Lbb = ∅.

• |w| ≥ 3: Lw =

{
{ε} if w = aab,

∅ otherwise.

Observe that residuals with respect to different words can be equal. In fact, even
though Σ∗ contains infinitely many words, L has only six residuals, namely, the
languages ∅, {ε}, {a}, {b}, {ε, b, ab}, and {a, ab, ba, aab}.

Example 2.3. Languages containing infinitely many words can have finitely many
residuals. For example, (a + b)∗ contains infinitely many words, but it has a single
residual: indeed, we have Lw = (a + b)∗ for every w ∈ {a, b}∗. Another example is
the language of the two DFAs depicted in figure 2.1. Recall that it is the language of
all words over {a, b} with an even number of as and an even number of bs. Let us
call this language EE in the following.1 The language has four residuals, namely,
the languages EE, EO, OE, and OO, where E stands for “even” and O for “odd.”
For example, EO contains the words with an even number of as and an odd number
of bs. In particular, we have (EE)ε = EE, (EE)a = OE, (EE)b = EO, and
(EE)ab = OO.

Example 2.4. The languages of examples 2.2 and 2.3 have finitely many residuals,
but this is not the case for every language. In general, proving that the number
of residuals of a language is finite or infinite can be complicated. To show that a
language L has an infinite number of residuals, one can use the following general
proof strategy:

1Here, EE is a two-letter name for a language, not a concatenation of two languages!

CHAPTER 2. MINIMIZATION AND REDUCTION 47

• Define an infinite setW = {w0, w1, w2, . . .} ⊆ Σ∗.

• Prove that Lwi ̸= Lwj holds for every i ̸= j. For this, show that for every i ̸= j,
there exists a word wi,j that belongs to exactly one of the sets Lwi and Lwj .

As an example, we apply this strategy to two languages:

• Let L = {anbn : n ≥ 0}. Let W = {ak : k ≥ 0}. For every two distinct words
ai, aj ∈ W , we have bi ∈ La

i

since aibi ∈ L, and bi /∈ La
j

since ajbi /∈ L.
Thus, L has infinitely many residuals.

• Let L = {ww : w ∈ {0, 1}∗}. Let W = {0n1 : n ≥ 0}. For every two distinct
words u = 0i1, v = 0j1 ∈W , where without loss of generality (w.l.o.g.) i < j,
we have u ∈ Lu since uu ∈ L, and u /∈ Lv since vu /∈ L. Thus, L has infinitely
many residuals.

There is a close connection between the states of a (not necessarily finite) DA
and the residuals of the language it recognizes. In order to formulate it, we intro-
duce the following definition:

Definition 2.5. Let A = (Q,Σ, δ, q0, F) be a DA and let q ∈ Q. The language
recognized by q, denoted by LA(q) (or just L (q) if there is no risk of confusion), is
the language recognized by A with q as initial state, that is, the language recognized
by the DA Aq = (Q,Σ, δ, q, F).

For every transition q a−→ q′ of an automaton, deterministic or not, if a word
w is accepted from q′, then the word aw is accepted from q. For deterministic
automata, the converse also holds: since q a−→ q′ is the unique transition leaving
q labeled by a, if aw is accepted from q, then w is accepted from q′. So, we have
aw ∈ L (q) iff w ∈ L (q′) and, comparing with (2.1), we obtain

For every transition q a−→ q′ of a DA: L (q′) = L (q)a. (2.2)

More generally, we can establish the following:

Lemma 2.6. Let A = (Q,Σ, δ, q0, F) be a DA and let L = L (A).

(a) Every residual of L is recognized by some state of A. More formally, for every
w ∈ Σ∗, there is at least one state q ∈ Q such that LA(q) = Lw.

(b) Every state of A recognizes a residual of L. More formally, for every q ∈ Q,
there is at least one word w ∈ Σ∗ such that LA(q) = Lw.

Proof.

(a) Let w ∈ Σ∗, and let q be the state reached by the unique run of A on w, that
is, q0

w−−→ q. We prove LA(q) = Lw. By (2.1), it suffices to show that every
word u satisfies

wu ∈ L ⇐⇒ u ∈ LA(q).

Since A is a DFA, for every word wu ∈ Σ∗, the unique run of A on wu is of
the form q0

w−−→ q
u−→ q′. Hence, A accepts wu iff q′ is a final state, which is

the case iff u ∈ LA(q). Thus, LA(q) = Lw.

CHAPTER 2. MINIMIZATION AND REDUCTION 48

(b) Since A is in normal form, q can be reached from q0 by at least a word w.
The proof that LA(q) = Lw holds is exactly as above.

Example 2.7. Figure 2.2 shows the result of labeling the states of the DFAs of fig-
ure 2.1 with the languages they recognize. These languages are residuals of EE.

We use the notion of a residual to define the canonical deterministic automaton
of a given language L. The states of the canonical DA are themselves languages.
Furthermore, “each state recognizes itself” (i.e., the language recognized from the
state L is the language L itself). This single property completely determines the
initial state, transitions, and final states of the canonical DA:

• The canonical DA for a language L must recognize L. So, the initial state
of the canonical DA recognizes L. Since each state “recognizes itself,” the
initial state is necessarily the language L itself.

• Since each state K recognizes the language K, by (2.2), all transitions of
the canonical DA are of the form K

a−→Ka.

• A state q of a DA is final iff it recognizes the empty word. Thus, a state K of
the canonical DA is final iff ε ∈ K.

We formalize this construction and prove its correctness.

Definition 2.8. The canonical DA for language L ⊆ Σ∗ is the DA CL = (QL,Σ, δL,
q0L, FL), where

• QL is the set of residuals of L, that is, QL = {Lw : w ∈ Σ∗};

• δL(K, a) = Ka for every K ∈ QL and a ∈ Σ;

• q0L = L; and

• FL = {K ∈ QL : ε ∈ K}.

Example 2.9. Figure 2.3 illustrates the canonical DAA for the language {a, ab, ba, aab}.
As the language has six residuals, A has six states. Note that every state “recognizes
itself.” For example, the language recognized from the state {ε, b, ab} is {ε, b, ab}.
The final states are the residuals containing ε, that is, the two residuals {ε, b, ab}
and {ε}.

EE OE

OOEO

a

a

a

a

bb bb EE

OE

EO

EE

EO

OE

OO

a

b

a

a

b

b b

b

a

a

a

b

a

b

Figure 2.2: Languages of the states from the DFAs of figure 2.1.

CHAPTER 2. MINIMIZATION AND REDUCTION 49

Example 2.10. Let us reconsider the language EE recognized by the two automata
depicted in figure 2.2. Its canonical DA is the one shown on the left of the figure.
It has four states, corresponding to the four residuals of EE. Since, for instance,
EEa = OE, the canonical DA has a transition EE a−→OE. The initial state is EE.
Since the empty word has an even number of a and b (namely, zero in both cases),
we have ε ∈ EE, and ε /∈ EO ∪OE ∪OO. Thus, the only final state is EE.

Proposition 2.11. The canonical DA for language L ⊆ Σ∗ recognizes L.

Proof. Let CL be the canonical DA for L. We show that L (CL) = L. Let w ∈ Σ∗.
We prove, by induction on |w|, that w ∈ L iff w ∈ L (CL). If |w| = 0, then w = ε,
and we have

ε ∈ L ⇐⇒ L ∈ FL (by definition of FL)
⇐⇒ q0L ∈ FL (by q0L = L)
⇐⇒ ε ∈ L (CL) (as q0L is the initial state of CL).

If |w| > 0, then w = aw′ for some a ∈ Σ and w′ ∈ Σ∗, and we have

aw′ ∈ L ⇐⇒ w′ ∈ La (by definition of La)
⇐⇒ w′ ∈ L (CLa) (by induction hypothesis)
⇐⇒ aw′ ∈ L (CL) (by δL(L, a) = La).

We now prove that if L is a regular language, then CL is the unique minimal
DFA recognizing L (up to isomorphism). The informal argument goes as follows.
Since every DFA for L has at least one state for each residual, and CL has exactly
one state for each residual, CL has a minimal number of states. Further, every
other minimal DFA for L also has exactly one state for each residual. It remains
to show that all these minimal DFAs are isomorphic. For this, we observe that, if
we know which state recognizes which residual, we can infer the initial state, the
transitions, and the final states. In other words, the transitions, initial states, and
final states of a minimal DFA are completely determined by the residual recognized
by each state. Indeed, if state q recognizes residual R, then the a-transition from
q necessarily leads to the state recognizing Ra; further, q is initial iff R = L, and
q is final iff ε ∈ R. A more formal proof looks as follows:

Theorem 2.12. If language L is regular, then the canonical DFA CL is the unique
minimal DFA up to isomorphism that recognizes L.

{a, ab, ba, aab}

{ε, b, ab}

{a}

{ε}

{b}

∅

a

b

a

b

a

b

a

b

a, b

a, b

Figure 2.3: Canonical DA for the language {a, ab, ba, aab} ⊆ {a, b}∗.

CHAPTER 2. MINIMIZATION AND REDUCTION 50

Proof. Let L be a regular language, and letA = (Q,Σ, δ, q0, F) be an arbitrary DFA
recognizing L. By lemma 2.6, the number of states of A is greater than or equal
to the number of states of CL, and so CL is a minimal automaton for L. It remains
to prove uniqueness of the minimal automaton up to isomorphism. Assume A is
minimal. Let LA be the mapping that assigns to each state q of A the language
L (q) recognized from q. By lemma 2.6(b), LA assigns to each state of A a residual
of L, and so LA : Q → QL. We prove that LA is an isomorphism between A and
CL. First, LA is bijective because it is surjective by lemma 2.6(a), and |Q| =
|QL| since A is minimal by assumption. Moreover, if δ(q, a) = q′, then LA(q′) =
(LA(q))a, and so δL(LA(q), a) = LA(q′). Moreover, LA maps the initial state of A
to the initial state of CL: LA(q0) = L = q0L. Finally, LA maps final to final states
and nonfinal to nonfinal states: q ∈ F iff ε ∈ LA(q) iff LA(q) ∈ FL.

The following simple corollary is useful to establish that a DFA is minimal:

Corollary 2.13. A DFA is minimal if and only if different states recognize different
languages, that is, L (q) ̸= L (q′) holds for every two states q ̸= q′.

Proof. ⇒) By theorem 2.12, the number of states of a minimal DFA is equal to the
number of residuals of its language. Since every state recognizes some residual,
each state must recognize a different residual.
⇐) If all states of a DFA A recognize different languages, then, since every

state recognizes some residual, the number of states of A is less than or equal to
the number of residuals. Thus, A has at most as many states as CL(A), and so it is
minimal.

2.1.1 The Master Automaton

The master automaton over an alphabet Σ is a deterministic automaton with an
infinite number of states but no initial state. As in the case of canonical DAs, the
states are languages—in this case, all regular languages.

Definition 2.14. The master automaton over the alphabet Σ is the tuple M =
(QM ,Σ, δM , FM), where

• QM is the set of all regular languages over Σ,

• δ : QM × Σ→ QM is given by δ(L, a) = La for every q ∈ QM and a ∈ Σ, and

• L ∈ FM iff ε ∈ L.

Figure 2.4 depicts a small fragment of the master automaton for the alphabet
Σ = {a, b}.

Given two states L and L′ of the master automaton, we say that L′ is reach-
able from L if there is a word a1 · · · an ∈ Σ∗ and languages L1, . . . , Ln−1 such
that L a1−−→L1

a2−−→L2 · · ·Ln−2
an−1−−−−→Ln−1

an−−→L′. By definition of the canonical
automaton definition (2.8) and theorem 2.12, for every regular language L, the
fragment of the master automaton containing the states reachable from L and the
transitions between them is the canonical DFA for L. So, in a sense, the mas-
ter automaton “contains” all minimal DFAs for all regular languages: in order to
find the canonical DFA for L, just search for state L of the master automaton, and

CHAPTER 2. MINIMIZATION AND REDUCTION 51

∅

Σ∗

ΣΣ∗ϵ+ b+Σ2Σ∗ ϵ+ a+Σ2Σ∗

ϵ+Σ2Σ∗

Σ∗bΣ∗ Σ∗aΣ∗

ε+ a(ε+Σ2Σ∗) + bΣ

aΣ+ b(ε+Σ2Σ∗)

Σ

εa ba∗ b∗
a

b

a, b

a

b

a, b

a, b

a

b

b

a

a

b

b

a

a, b

a, b

a

b a

b

a, b

a

b

b

a

Figure 2.4: A fragment of the master automaton over Σ = {a, b}. We use Σ as an
abbreviation of (a+ b).

“copy” the fragment reachable from there. For example, the reader can check that
the minimal DFA for the language aΣ + b(ε + Σ2Σ∗) is indeed the seven-state
DFA obtained by taking all the states reachable from this regular expression in
figure 6.1—namely, the language itself; the languages ε + Σ2Σ∗, ΣΣ∗, and Σ∗

(moving upward); and the languages Σ, ε, and ∅ (moving downward).
The master automaton is a beautiful mathematical object, a sort of God’s view

of the universe of regular languages. It enjoys many interesting properties (see
exercises 55 and 56), and in chapter 6 we use it to define decision diagrams, a
data structure with many applications.

CHAPTER 2. MINIMIZATION AND REDUCTION 52

2.2 Minimizing DFAs

We present an algorithm that converts a given DFA into the unique minimal DFA
recognizing the same language. The algorithm first partitions the states of the DFA
into blocks, where a block contains all states recognizing the same residual. We
call this partition the language partition. Then, the algorithm “merges” the states
of each block into a single state, an operation usually called quotienting with re-
spect to the partition. Intuitively, this yields a DFA where distinct states recognize
different residuals. These two steps are described in sections 2.2.1 and 2.2.2.

For the rest of this section, we fix a DFA A = (Q,Σ, δ, q0, F) recognizing a
regular language L.

2.2.1 Computing the Language Partition

We need some basic notions on partitions. A partition of Q is a finite set P =
{B1, . . . , Bn} of nonempty subsets ofQ, called blocks, such thatQ = B1∪ . . .∪Bn,
and Bi∩Bj = ∅ for every 1 ≤ i < j ≤ n. The block containing a state q is denoted
by [q]P . A partition P ′ refines or is a refinement of another partition P if every
block of P ′ is contained in some block of P . If P ′ refines P and P ′ ̸= P , then P is
coarser than P ′.

The language partition, denoted by Pℓ, puts two states in the same block iff
they recognize the same language (i.e, the same residual). To compute Pℓ, we
iteratively refine an initial partition P0 while maintaining the following

Invariant: States in different blocks recognize different languages.

Partition P0 consists of two blocks containing the final and the nonfinal states,
respectively (or just one of the two if all states are final or all states are nonfinal).
That is, P0 = {F,Q \F} if F and Q \F are nonempty, P0 = {F} if Q \F is empty,
and P0 = {Q \ F} = {Q} if F is empty. Notice that P0 satisfies the invariant,
because every state of F accepts the empty word, but no state of Q \ F does.

A partition is refined by splitting a block into two blocks. To find a block to
split, we first observe the following:

Fact 2.15. If L (q1) = L (q2), then L (δ(q1, a)) = L (δ(q2, a)) for every a ∈ Σ.

By contraposition, if L (δ(q1, a)) ̸= L (δ(q2, a)), then L (q1) ̸= L (q2), or, rephrasing
in terms of blocks: if δ(q1, a) and δ(q2, a) belong to different blocks, but q1 and q2
belong to the same block B, then B can be split, because q1 and q2 can be put in
different blocks while respecting the invariant.

Definition 2.16. Let B,B′ be (not necessarily distinct) blocks of a partition P , and
let a ∈ Σ. The pair (a,B′) splits B if there are q1, q2 ∈ B such that δ(q1, a) ∈ B′
and δ(q2, a) /∈ B′. The result of the split is the partition RefP [B, a,B′] = (P \{B})∪
{B0, B1}, where

B0 = {q ∈ B : δ(q, a) /∈ B′} and B1 = {q ∈ B : δ(q, a) ∈ B′}.

A partition is unstable if it contains blocks B,B′ such that (a,B′) splits B for some
a ∈ Σ and is stable otherwise.

CHAPTER 2. MINIMIZATION AND REDUCTION 53

The partition refinement algorithm LanPar(A), described in algorithm 4, it-
eratively refines the initial partition of A until it becomes stable. The algorithm
terminates as each iteration increases the number of blocks by 1, and a partition
has at most |Q| blocks.

Algorithm 4 Partition refinement algorithm.
LanPar(A)
Input: DFA A = (Q,Σ, δ, q0, F)
Output: The language partition Pℓ
1 if F = ∅ or Q \ F = ∅ then return {Q}
2 else P ← {F,Q \ F}
3 while P is unstable do
4 pick B,B′ ∈ P and a ∈ Σ such that (a,B′) splits B
5 P ← RefP [B, a,B′]
6 return P

Observe that if all states of a DFA are nonfinal, then every state recognizes
∅, and if all are final, then every state recognizes Σ∗. In both cases, all states
recognize the same language, and the language partition is {Q}.

Example 2.17. Figure 2.5 illustrates a run of LanPar on the DFA depicted on the
right of figure 2.1. States that belong to the same block have the same color and
pattern. The initial partition, shown in (a), consists of the solid and hatched states.
In (b), the solid block and the letter a split the hatched block into the crosshatched
block (hatched states with an a-transition to the solid block) and the rest (hatched
states with an a-transition to other blocks), which stay hatched. In the final step (c),
the crosshatched block and the letter b split the hatched block into the dotted block
(hatched states with a b-transition into the crosshatched block) and the rest, which
stay hatched.

We prove the correctness of LanPar in two steps. First, we show that it com-
putes the coarsest stable refinement of P0, denoted by CSR; in other words, we
show that, after termination, the partition P is coarser than every other stable
refinement of P0. Then, we prove that CSR is equal to Pℓ.

Lemma 2.18. LanPar(A) computes CSR.

Proof. LanPar(A) clearly computes a stable refinement of P0. We prove that, after
termination, P is coarser than any other stable refinement of P0 or, equivalently,
that every stable refinement of P0 refines P . Actually, we prove that this holds not
only after termination but at any time.

Let P ′ be an arbitrary stable refinement of P0. Initially, P = P0, and so P ′
refines P . Now, we show that if P ′ refines P , then P ′ also refines RefP [B, a,B′].
For this, let q1 and q2 be two states belonging to the same block of P ′. We show
that they belong to the same block of RefP [B, a,B′]. Assume the contrary. Since
the only difference between P and RefP [B, a,B′] is the splitting of B into B0 and
B1, exactly one of q1 and q2, say q1, belongs to B0, and the other belongs to B1.

CHAPTER 2. MINIMIZATION AND REDUCTION 54

(a)
a

b

a

a

b

b b

b

a

a

a

b

a

b

(b)
a

b

a

a

b

b b

b

a

a

a

b

a

b

(c)
a

b

a

a

b

b b

b

a

a

a

b

a

b

Figure 2.5: Computing the language partition of a DFA in steps (a), (b), and (c).

Therefore, there exists a transition (q2, a, q
′
2) ∈ δ such that q′2 ∈ B′. Since P ′ is sta-

ble and q1, q2 belong to the same block of P ′, there is also a transition (q1, a, q
′
1) ∈ δ

such that q′1 ∈ B′. This contradicts q1 ∈ B0.

Theorem 2.19. CSR is equal to Pℓ.

Proof. We show that (a) Pℓ refines P0, (b) Pℓ is stable, and (c) every stable refine-
ment P of P0 refines Pℓ.

(a) Trivial.

(b) By fact 2.15, if two states q1 and q2 belong to the same block of Pℓ, then
δ(q1, a) and δ(q2, a) also belong to the same block, for every letter a. Hence,
no block can be split.

(c) Let q1, q2 be states belonging to the same block B of P . We prove that they
belong to the same block of Pℓ—that is, that L (q1) = L (q2). By symmetry,
it suffices to prove that, for every word w, if w ∈ L (q1), then w ∈ L (q2). We
proceed by induction on the length of w. If w = ε, then q1 ∈ F , and since
P refines P0, we have q2 ∈ F , and so w ∈ L (q2). If w = aw′, then there
exists (q1, a, q′1) ∈ δ such that w′ ∈ L (q′1). Let B′ be the block containing
q′1. Since P is stable, B′ does not split B, and so there is (q2, a, q′2) ∈ δ such
that q′2 ∈ B′. By induction hypothesis, w′ ∈ L (q′1) iff w′ ∈ L (q′2). Therefore,
w′ ∈ L (q′2), which implies w ∈ L (q2).

2.2.2 Quotienting

It remains to define the quotient ofAwith respect to a partition. It is convenient to
define it not only for DFAs but more generally for NFAs. The states of the quotient

CHAPTER 2. MINIMIZATION AND REDUCTION 55

are the blocks of the partition. The quotient has a transition (B, a,B′) from blockB
to blockB′ ifA contains some transition (q, a, q′) for some states q and q′ belonging
to B and B′, respectively. Formally:

Definition 2.20. The quotient of an NFA A with respect to a partition P is the NFA
A/P = (QP ,Σ, δP , Q0P , FP) where

• QP is the set of blocks of P ;

• (B, a,B′) ∈ δP if (q, a, q′) ∈ δ for some q ∈ B, q′ ∈ B′;

• Q0P is the set of blocks of P that contain at least one state from Q0; and

• FP is the set of blocks of P that contain at least one state of F .

Example 2.21. The right-hand side of figure 2.6 depicts the result of quotienting the
DFA on the left-hand side with respect to its language partition. The quotient has as
many states as colored patterns, and it has a transition between two colored patterns
(say, an a-transition from solid to crosshatched) if the DFA on the left has such a
transition.

We show that A/Pℓ, the quotient of a DFA A with respect to the language
partition, is the minimal DFA for L. The main part of the argument is contained
in the forthcoming lemma. Loosely speaking, it says that any refinement of the
language partition (i.e., any partition in which states of the same block recognize
the same language) “is good” for quotienting, because the quotient recognizes
the same language as the original automaton. Moreover, if the partition not only
refines but is equal to the language partition, then the quotient is a DFA.

Lemma 2.22. Let A be an NFA, and let P be a partition of the states of A. If P
refines Pℓ, then LA(q) = LA/P (B) for every state q of A, where B is the block of P
containing q. In particular, L (A/P) = L (A). Moreover, if A is a DFA and P = Pℓ,
then A/P is a DFA.

Proof. Let P be a refinement of Pℓ. We prove that for every w ∈ Σ∗, it is the case
that w ∈ LA(q) iff w ∈ LA/P (B). We proceed by induction on |w|.

a

b

a

a

b

b b

b

a

a

a

b

a

b

a

a

a

a

bb bb

Figure 2.6: Quotient of a DFA with respect to its language partition.

CHAPTER 2. MINIMIZATION AND REDUCTION 56

If |w| = 0, then w = ε and we have

ε ∈ LA(q) ⇐⇒ q ∈ F
⇐⇒ B ⊆ F (since P refines Pℓ and so also P0)
⇐⇒ B ∈ FP
⇐⇒ ε ∈ LA/P (B).

If |w| > 0, then w = aw′ for some a ∈ Σ. Therefore, w ∈ LA(q) iff there is a
transition (q, a, q′) ∈ δ such that w′ ∈ LA(q′). Let B′ be the block containing q′.
By definition of A/P , we have (B, a,B′) ∈ δP , and hence

aw′ ∈ LA(q)
⇐⇒ w′ ∈ LA(q′) (by definition of q′)
⇐⇒ w′ ∈ LA/P (B

′) (by induction hypothesis)
⇐⇒ aw′ ∈ LA/P (B) (by (B, a,B′) ∈ δP).

For the second part, we show that (B, a,B1), (B, a,B2) ∈ δPℓ
implies B1 = B2.

By definition, there exist (q, a, q1), (q′, a, q2) ∈ δ for some q, q′ ∈ B, q1 ∈ B1, and
q2 ∈ B2. Since q and q′ belong to the same block of the language partition, we
have LA(q) = LA(q′). Since A is a DFA, we get LA(q1) = LA(q2). Since P = Pℓ,
the states q1 and q2 belong to the same block, and so B1 = B2.

Proposition 2.23. The quotient A/Pℓ is the minimal DFA for L.

Proof. By lemma 2.22,A/Pℓ is a DFA, and its states recognize residuals ofL. More-
over, two states of A/Pℓ recognize different residuals by definition of the language
partition. Thus, A/Pℓ has as many states as residuals.

2.2.3 Hopcroft’s Algorithm

Algorithm LanPar leaves open the choice of an adequate refinement triple [B, a,
B′]. While every exhaustive sequence of refinements leads to the same result,
and so the choice does not affect the correctness of the algorithm, it affects its
runtime. Hopcroft’s algorithm is a modification of LanPar, which carefully selects
the next triple. When properly implemented, Hopcroft’s algorithm runs in time
O(mn logn) for a DFA with n states over am-letter alphabet. A full analysis of the
algorithm is beyond the scope of this book, and so we limit ourselves to presenting
its main ideas.

It is convenient to start by describing an intermediate algorithm, not as effi-
cient as the final one. The intermediate algorithm maintains a workset of pairs
(a,B′), called splitters. Initially, the workset contains all pairs (a,B′) where a is
an arbitrary letter and B′ is a block of the original partition (i.e., either B′ = F
or B′ = Q \ F). At every step, the algorithm chooses a splitter from the workset
and uses it to split every block of the current partition (if possible). Whenever a
block B is split by (a,B′) into two new blocks B0 and B1, the algorithm adds to
the workset all pairs (b,B0) and (b,B1) for every letter b ∈ Σ.

It is not difficult to see that the intermediate algorithm is correct. The only
point requiring a moment of thought is that it suffices to use each splitter at most
once. A priori, a splitter (a,B′) could be required at some point of the execution

CHAPTER 2. MINIMIZATION AND REDUCTION 57

and then later again. To discard this, observe that, by the definition of split, if
(a,B′) splits a block B into B0 and B1, then it does not split any subset of B0 or
B1. So, after (a,B′) is used to split all blocks of a partition, since all future blocks
are strict subsets of the current blocks, (a,B′) is not useful anymore.

Hopcroft’s algorithm improves on the intermediate algorithm by observing that
when a blockB is split intoB0 andB1, it is not always necessary to add both (b,B0)
and (b,B1) to the workset. The fundamental for this is the following:

Proposition 2.24. Let A = (Q,Σ, δ, q0, F), let P be a partition of Q, and let B be a
block of P . Suppose we refine B into B0 and B1. Then, for every a ∈ Σ, refining all
blocks of P with respect to any two of the splitters (a,B), (a,B0), and (a,B1) gives
the same result as refining them with respect to all three of them.

Proof. Let C be a block of P . Every refinement sequence with respect to two of
the splitters (there are six possible cases) yields the same partition of C—namely,
{C0, C1, C2}, where C0, C1, and C2 contain the states q ∈ Q that respectively
satisfy δ(q, a) ∈ B0, δ(q, a) ∈ B1, and δ(q, a) /∈ B.

Now, assume that (a,B′) splits a block B into B0 and B1. For every b ∈ Σ, if
(b,B) is in the workset, then adding both (b,B0) and (b,B1) is redundant, because
we only need two of the three. In this case, Hopcroft’s algorithm chooses to replace
(b,B) in the workset by (b,B0) and (b,B1) (i.e., to remove (b,B) and to add (b,B0)
and (b,B1)). If (b,B) is not in the workset, then in principle, we could have two
possible cases.

• If (b,B) was already removed from the workset and used to refine, then we
only need to add one of (b,B0) and (b,B1). Hopcroft’s algorithm adds the
smaller of the two (i.e., (b,B0) if |B0| ≤ |B1| and (b,B1) otherwise).

• If (b,B) has not been added to the workset yet, then it looks as if we would
still have to add both (b,B0) and (b,B1). However, a more detailed analysis
shows that this is not the case, it suffices to add only one of (b,B0) and
(b,B1). Hopcroft’s algorithm adds again the smaller of the two.

These considerations lead to algorithm 5, where (b,min{B0, B1}) denotes the
smaller of (b,B0) and (b,B1).

We sketch an argument showing that the main while loop is executed at most
O(mn logn) times, where m = |Σ| and n = |Q|. Fix a state q ∈ Q and a letter
a ∈ Σ. It is easy to see that at every moment during the execution of Hopcroft,
the workset contains at most one splitter (a,B) such that q ∈ B (in particular, if
(a,B) is in the workset and B is split at line 9, then q goes to either B0 or to B1).
We call this splitter (if present) the a-q-splitter and define its size as the size of the
block B. So, during the execution of the algorithm, there are alternating phases in
which the workset contains one or zero a-q-splitters, respectively. Let us call them
one-phases and zero-phases. It is easy to see that during a one-phase, the size of
the a-q-splitter (defined as the number of states in the block) can only decrease
(at line 9). Moreover, if at the end of a one-phase, the a-q-splitter has size k, then,
because of line 10, at the beginning of the next one-phase, it has size at most k/2.
Thus, the number of a-q-splitters added to the workset throughout the execution
of the algorithm is O(logn), and therefore the total number of splitters added to

CHAPTER 2. MINIMIZATION AND REDUCTION 58

Algorithm 5 Hopcroft’s algorithm.
Hopcroft(A)
Input: DFA A = (Q,Σ, δ, q0, F)
Output: The language partition Pℓ
1 if F = ∅ or Q \ F = ∅ then return {Q}
2 else P ← {F,Q \ F}
3 W ← {(a,min{F,Q \ F}) : a ∈ Σ}
4 whileW ̸= ∅ do
5 pick (a,B′) fromW
6 for all B ∈ P split by (a,B′) do
7 replace B by B0 and B1 in P
8 for all b ∈ Σ do
9 if (b,B) ∈ W then replace (b,B) by (b,B0) and (b,B1) inW
10 else add (b,min{B0, B1}) toW
11 return P

a

a a

a

Figure 2.7: Two minimal NFAs for aa∗.

the workset is O(mn logn). Hence, the while loop is executed O(mn logn) times.
If the algorithm is carefully implemented (which is nontrivial), then it also runs
in time O(mn logn).

2.3 Reducing NFAs

There is no canonical minimal NFA for a given regular language. The simplest
witness of this fact is the language aa∗, which is recognized by the two noniso-
morphic, minimal NFAs of figure 2.7. Moreover, computing any of the minimal
NFAs equivalent to a given NFA is computationally hard. Indeed, the problem
can be shown to be PSPACE-complete. For readers not familiar with complexity
theory, “PSPACE-complete” informally means that there is most likely no mini-
mization algorithm that uses less than exponential time and a polynomial amount
of memory. The proof is deferred to a forthcoming optional subsection.

Despite this intractability, we can reuse part of the theory for the DFA case to
obtain an efficient procedure to possibly reduce the size of a given NFA.

2.3.1 The Reduction Algorithm

For the rest of the section, we fix an NFA A = (Q,Σ, δ,Q0, F) recognizing a lan-
guage L. Recall that definition 2.20 and the first part of lemma 2.22 were defined
for NFAs. Thus, L (A) = L (A/P) holds for every refinement P of Pℓ, and so any
refinement of Pℓ can be used to reduce A. The largest reduction is obtained for

CHAPTER 2. MINIMIZATION AND REDUCTION 59

P = Pℓ, but Pℓ is hard to compute for NFAs. On the other extreme, the partition
that puts each state in a separate block is always a refinement of Pℓ, but it does
not provide any reduction.

To find a reasonable trade-off, we examine again lemma 2.18, which proves
that LanPar(A) computes CSR for deterministic automata. Its proof only uses the
following property of stable partitions: if q1 and q2 belong to the same block of a
stable partition and there is a transition (q2, a, q

′
2) ∈ δ such that q′2 ∈ B′ for some

block B′, then there is also a transition (q1, a, q
′
1) ∈ δ such that q′1 ∈ B′. We extend

the definition of stability to NFAs so that stable partitions still satisfy this property:
we just replace condition

δ(q1, a) ∈ B′ and δ(q2, a) /∈ B′

of definition 2.16 by

δ(q1, a) ∩B′ ̸= ∅ and δ(q2, a) ∩B′ = ∅.

Definition 2.25. [Refinement and stability for NFAs] Let B,B′ be (not necessarily
distinct) blocks of a partition P , and let a ∈ Σ. The pair (a,B′) splits B if there are
q1, q2 ∈ B such that δ(q1, a) ∩ B′ ̸= ∅ and δ(q2, a) ∩ B′ = ∅. The result of the split
is the partition RefNFAP [B, a,B′] = (P \ {B}) ∪ {B0, B1}, where

B0 = {q ∈ B : δ(q, a) ∩B′ = ∅} and B1 = {q ∈ B : δ(q, a) ∩B′ ̸= ∅}.

A partition is unstable if it contains blocks B and B′ such that B′ splits B and is
stable otherwise.

Using this definition, we generalize LanPar(A) to NFAs in the obvious way:
allow NFAs as inputs, and replace RefP by RefNFAP as new notion of refinement.
Lemma 2.18 still holds: the algorithm still computes CSR, but with respect to
the new notion of refinement. The procedure is described in algorithm 6. Notice
that in the special case of DFAs, it reduces to LanPar(A), because RefP and RefNFAP

coincide for DFAs.

Algorithm 6 Coarsest stable refinement for NFAs.
CSR(A)
Input: NFA A = (Q,Σ, δ,Q0, F)
Output: The partition CSR of A
1 if F = ∅ or Q \ F = ∅ then P ← {Q}
2 else P ← {F,Q \ F}
3 while P is unstable do
4 pick B,B′ ∈ P and a ∈ Σ such that (a,B′) splits B
5 P ← RefNFAP [B, a,B′]

6 return P

Observe that line 1 of CSR(A) is different from line 1 of algorithm LanPar. If all
states of an NFA are nonfinal, then every state recognizes ∅, but if all are final, we
can no longer conclude that every state recognizes Σ∗, as was the case for DFAs.
In fact, all states might recognize different languages.

CHAPTER 2. MINIMIZATION AND REDUCTION 60

In the case of DFAs, we had theorem 2.19, which states that CSR is equal to
Pℓ. The theorem does not hold anymore for NFAs, as we will see later. However,
part (c) of the proof, which showed that CSR refines Pℓ, still holds, with exactly
the same proof. Hence:

Theorem 2.26. The partition CSR refines Pℓ.

Now, lemma 2.22 and theorem 2.26 lead to the final result:

Corollary 2.27. Let A be an NFA. It is the case that L (A/CSR) = L (A).

Example 2.28. Consider the NFA as depicted on the left of figure 2.8.

CSR is the partition indicated by colored patterns. A possible run of CSR(A) is graph-
ically represented on the right as a tree. Initially, we have the partition with two
blocks shown at the top of the figure: the block {1, . . . , 14} of nonfinal states and
the block {15} of final states. The first refinement uses (a, {15}) to split the block
of nonfinal states, yielding the blocks {1, . . . , 8, 11, 12, 13} (no a-transition to {15})
and {9, 10, 14} (an a-transition to {15}). The leaves of the tree are the blocks of CSR.

In this example, we have CSR ̸= Pℓ. For instance, states 3 and 5 recognize the
same language, that is, (a+ b)∗aa(a+ b)∗, but they belong to different blocks of CSR.
The quotient automaton is shown in figure 2.9.

Remark 2.29. IfA is an NFA, thenA/Pℓ might not be a minimal NFA for L. The NFA
of figure 2.10 is an example: all states accept different languages, and so A/Pℓ = A,
but the NFA is not minimal, since, for instance, the state at the bottom can be removed
without changing the language.

It is not difficult to show that if two states q1 and q2 belong to the same block of
CSR, then they not only recognize the same language but also satisfy the following
far stronger property: for every a ∈ Σ and q′1 ∈ δ(q1, a), there exists q′2 ∈ δ(q2, a)
such that L (q′1) = L (q′2). This can be used to show that two states belong to different
blocks of CSR. For instance, consider states 2 and 3 of the NFA on the left of figure 2.11.
They recognize the same language, but state 2 has a c-successor—namely, state 4—
that recognizes {d}, while state 3 has no such successor. So, states 2 and 3 belong to
different blocks of CSR. A possible run of the CSR algorithm is shown on the right of
the figure. Here, CSR has as many blocks as states.

2.3.2 ⋆ Minimality Is PSPACE-Complete

We show that NFA minimality is PSPACE-complete and hence computationally
hard. Readers not familiar with complexity theory can directly move to the next
section.

In chapter 3, we will show that the universality problem for NFAs is PSPACE-
complete: given an NFA A over an alphabet Σ, decide whether L (A) = Σ∗. Using
this result, we can easily prove that deciding the existence of a small NFA equiva-
lent to a given one is PSPACE-complete.

Theorem 2.30. The following problem is PSPACE-complete: given an NFA A and
k ≥ 1, decide if there exists an NFA equivalent to A with at most k states.

CHAPTER 2. MINIMIZATION AND REDUCTION 61

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

a a a a

a a a a
a a a

a a a a

a a a a
a a a

a a a a

a, b a, b a, b

a, b a, b a, b

{1, . . . , 14}

(a, {15})

{1, . . . , 8, 11, 12, 13}

(a, {9, 10, 14})

{1, 2, 6, 7, 11, 12}

(a, {3, 4, 5, 8, 13})

{1, 6, 11}

(a, {1, 6, 11})

{1} {6, 11}

(b, {6, 11})

{6} {11}

{2, 7, 12}

(a, {4, 8})

{7, 12} {2}

{3, 4, 5, 8, 13}

(b, {3, 4, 5, 8, 13})

{4, 8} {3, 5, 13}

(a, {4, 8})

{3} {5, 13}

{9, 10, 14}

{15}

Figure 2.8: An NFA A and a run of CSR(A).

a a

a a

a

a, b

a, b

a, b

a, b

a, b
a

a
a

a a

a
a

a

a a
a

Figure 2.9: The quotient of the NFA of Figure 2.8.

Proof. To prove membership in PSPACE, observe first that ifA has at most k states,
then we can answer “yes.” So, assume that A has more than k states. Since
PSPACE = co-PSPACE, it suffices to give a procedure to decide if no NFA with at
most k states is equivalent to A. For this, we construct all NFAs with at most k
states (over the same alphabet as A), reusing the same space for each of them,
and check that none of them is equivalent to A. Since NPSPACE = PSPACE, it
suffices to exhibit a nondeterministic algorithm that, given an NFA B with at most
k states, checks that B is not equivalent to A (and runs in polynomial space). The
algorithm nondeterministically guesses a word, one letter at a time, while main-
taining the sets of states in both A and B reached from the initial states by the
word guessed so far. The algorithm stops when it observes that the current word

CHAPTER 2. MINIMIZATION AND REDUCTION 62

a

a

a, b

b

Figure 2.10: An NFA A such that A/Pℓ is not minimal.

1

2

3

5

4

6

7a

b

c

c

c

d

e

d, e

{1, . . . , 6}

(d, {7})

{1, 2, 3, 5}

(e, {7})

{1, 2, 3}

(c, {5})

{1, 3}

(b, {1, 3})

{1} {3}

{2}

{5}

{4, 6}

(e, {7})

{4} {6}

{7}

Figure 2.11: An NFA such that CSR ̸= Pℓ.

is accepted by exactly one of A and B.
PSPACE-hardness is easily proved by a reduction from the universality problem.

If an NFA is universal, then it is equivalent to an NFA with one state, and so, to de-
cide if a given NFAA is universal, we can proceed as follows: check first ifA accepts
all words of length 1. If not, then A is not universal. Otherwise, check if some NFA
with one state is equivalent to A. If not, then A is not universal. Otherwise, if such
an NFA, sayB, exists, then, sinceA accepts all words of length 1,B is the NFA with
one final state and a loop for each alphabet letter. Therefore, A is universal.

2.4 A Characterization of Regular Languages

In this last section, we present a useful by-product of the results of section 2.1.

Theorem 2.31. A language L is regular iff it has finitely many residuals.

Proof. If L is not regular, then no DFA recognizes it. Since, by proposition 2.11,
the canonical automaton CL recognizes L, then CL necessarily has infinitely many
states, and so L has infinitely many residuals. If L is regular, then some DFA A
recognizes it. By lemma 2.6, the number of states of A is greater than or equal to
the number of residuals of L, and so L has finitely many residuals.

This theorem provides a technique for proving that a given language L ⊆ Σ∗ is
not regular: exhibit an infinite set of wordsW ⊆ Σ∗ such that Lw ̸= Lv for every

CHAPTER 2. MINIMIZATION AND REDUCTION 63

distinct words w, v ∈W . In example 2.4, we showed using this technique that the
languages {anbn : n ≥ 0} and {ww : w ∈ Σ∗} have infinitely many residuals, and
so they are not regular. We provide a third example.

Example 2.32. Let L = {an2

: n ≥ 0}. Let W = L. For every two distinct words
ai

2

, aj
2 ∈W , word a2i+1 belongs to the ai

2

-residual of L, because ai
2+2i+1 = a(i+1)2 ,

but not to the aj
2

-residual, since aj
2+2i+1 is only a square number for i = j.

2.5 Exercises

 Exercise 36. For each language L ⊆ {a, b, c}∗ below, say whether L has
finitely many residuals, and, if so, describe the residuals.

(a) (ab+ ba)∗,

(b) (aa)∗,

(c) {anbncn : n ≥ 0}.

 Exercise 37. Consider the most-significant-bit-first (MSBF) encoding of
natural numbers over alphabet Σ = {0, 1}. Recall that every number has infinitely
many encodings, because all the words of 0∗w encode the same number as w.
Construct the minimal DFAs accepting the following languages, where Σ4 denotes
all words of length 4:

(a) {w : MSBF−1(w) mod 3 = 0} ∩ Σ4.

(b) {w : MSBF−1(w) is a prime} ∩ Σ4.

 Exercise 38. Prove or disprove the following statements:

(a) A subset of a regular language is regular.

(b) A superset of a regular language is regular.

(c) If L1 and L1L2 are regular languages, then L2 is regular.

(d) If L2 and L1L2 are regular languages, then L1 is regular.

 Exercise 39. Consider the following DFA A:

CHAPTER 2. MINIMIZATION AND REDUCTION 64

q0

q1

q2

q3

q4

q5

q6

a

b

a

b

a

b

b

a

a

b

a

b

a

b

(a) Compute the language partition of A.

(b) Construct the quotient of A with respect to its language partition.

(c) Give a regular expression for L (A).

 Exercise 40. Consider the following DFA A:

q0 q1

q2 q3

q4

b

a a b b

a

b

a

a, b

(a) Compute the language partition of A.

(b) Construct the quotient of A with respect to its language partition.

(c) Give a regular expression for L (A).

 Exercise 41. Consider the language partition algorithm LanPar. Since every
execution of its while loop increases the number of blocks by 1, the loop can be

CHAPTER 2. MINIMIZATION AND REDUCTION 65

executed at most |Q|−1 times. Show that this bound is tight, that is, give a family
of DFAs for which the loop is executed |Q| − 1 times.

Hint: There exists a family with a one-letter alphabet.

 Exercise 42. For each of the two following NFAs:

(a) Compute the coarsest stable refinement (CSR).

(b) Construct the quotient with respect to the CSR.

(c) Say whether the obtained automaton is minimal.

q0

q1 q2

q3 q4

q5

a

a

b

a

a

a

a

b

a, b

a, b

a

a

q1 q2 q3

q4

a a

a

a b

a b

a

 Exercise 43. LetA1 andA2 be DFAs with n1 and n2 states such thatL (A1) ̸=
L (A2). Show that there exists a word w of length at most n1 + n2 − 2 such that
w ∈ (L (A1) \ L (A2)) ∪ (L (A2) \ L (A1)).

Hint: Consider the NFA obtained by putting A1 and A2 “side by side” and
CSR(A).

⋆ Exercise 44. Let Σ = {a, b}. Let Ak be the minimal DFA such that L (Ak) =
{ww : w ∈ Σk}.

(a) Construct A2.

(b) Construct a DFA that accepts L (Ak).

(c) How many states does Ak contain for k > 2?

 Exercise 45. For every language L ⊆ Σ∗ and word w ∈ Σ∗, let wL = {u ∈
Σ∗ : uw ∈ L}. A language L′ ⊆ Σ∗ is an inverse residual of L if L′ = wL for some
w ∈ Σ∗.

(a) Determine the inverse residuals of the first two languages of exercise 36:
(ab+ ba)∗ and (aa)∗.

(b) Show that a language is regular iff it has finitely many inverse residuals.

CHAPTER 2. MINIMIZATION AND REDUCTION 66

(c) Does a language always have as many residuals as inverse residuals?

 Exercise 46. Design an efficient algorithm Res(r, a), where r is a regular
expression over an alphabet Σ and a ∈ Σ, which returns a regular expression
satisfying L (Res(r, a)) = L (r)a.

 Exercise 47. A DFAA = (Q,Σ, δ, q0, F) is said reversible if no letter can enter
a nontrap state from two distinct states, that is, for every p, q ∈ Q and σ ∈ Σ, if
δ(p, σ) = δ(q, σ), then p = q.

(a) Give a reversible DFA that accepts L = {ab, ba, bb}.

(b) Show that the minimal DFA that accepts L is not reversible.

(c) Is there a unique minimal reversible DFA that accepts L? Justify.

 Exercise 48. A DFA with negative transitions (DFA-n) is a DFA whose tran-
sitions are partitioned into positive and negative transitions. A run of a DFA-n is
accepting if

• it ends in a final state and the number of occurrences of negative transitions
is even, or

• it ends in a nonfinal state and the number of occurrences of negative transi-
tions is odd.

The intuition is that taking a negative transition “inverts the polarity” of the ac-
ceptance condition.

(a) Show that the language accepted by a DFA-n is regular.

(b) Give a DFA-n for a regular language L that has fewer states than the minimal
DFA for L.

(c) Show that the minimal DFA-n for a language is not necessarily unique.

⋆ Exercise 49. We say that a residual of a regular language L is composite if it
is the union of other residuals of L and that it is prime otherwise. Show that every
regular language L is recognized by an NFA whose number of states is equal to
the number of prime residuals of L.

 Exercise 50. Let Lu,v be the language of words over {0, 1} that contain
the same number of occurrences of u and v. Say whether Lu,v is regular for the
following choices of u and v.

(a) u = 0 and v = 1.

(b) u = 01 and v = 10.

(c) u = 00 and v = 11.

(d) u = 001 and v = 110.

(e) u = 001 and v = 100.

CHAPTER 2. MINIMIZATION AND REDUCTION 67

 Exercise 51. Consider the alphabet Σ = {up, down, left, right}. A word over
Σ corresponds to a line in a grid consisting of concatenated segments drawn in
the direction specified by the letters. In the same way, a language corresponds to
a set of lines. For example, the set of all staircases can be specified as the set of
lines given by the regular language (up right)∗.

(a) Specify the set of all skylines as a regular language (i.e., formalize the intu-
itive notion of skyline). The left drawing is a skyline, while the two others
are not.

(b) Show that the set of all rectangles is not regular.

 Exercise 52. AnNFAA = (Q,Σ, δ,Q0, F) is reverse-deterministic if (q1, a, q) ∈
δ and (q2, a, q) ∈ δ implies q1 = q2, that is, no state has two input transitions la-
beled by the same letter. Furthermore, we say that A is trimmed if every state
accepts at least one word, that is, if LA(q) ̸= ∅ for every q ∈ Q. Let A be a reverse-
deterministic trimmed NFA with a single final state qf . Show that NFAtoDFA(A) is
minimal.

Hint: States of NFAtoDFA(A) accept different languages; use corollary 2.13.

 Exercise 53. Let Rev(A) be the algorithm of exercise 14 that, given an NFA
A as input, returns a trimmed NFA AR such that L

(
AR
)
= L (A)R, where LR

denotes the reverse of L. Recall that an NFA is trimmed if every state accepts at
least one word (see exercise 52). Prove that, for every NFA A, the following DFA
is the unique minimal DFA that accepts L (A):

NFAtoDFA(Rev(NFAtoDFA(Rev(A)))).

 Exercise 54.

(a) Let Σ = {a, b}. Find a language L ⊆ Σ∗ that has infinitely many residuals
and that satisfies |Lw| > 0 for all w ∈ Σ∗.

(b) Let Σ = {a}. Find a language L ⊆ Σ∗, such that Lw = Lw
′
=⇒ w = w′ for

all words w,w′ ∈ Σ∗.

 Exercise 55. Recall the master automatonM defined in section 2.1.1. Does
M have

(a) other states than ∅ and Σ∗ that can only reach themselves?

(b) states that cannot be reached from any other state?

CHAPTER 2. MINIMIZATION AND REDUCTION 68

(c) states that can reach all other states?

(d) states with infinitely many immediate predecessors?
(i.e., states L such that L′ a−→L for infinitely many states L′?)

(e) two states having the same successor for every letter of Σ?

(f) bottom strongly connected components with infinitely many states?
(A bottom strongly connected component is a maximal set of states S such
that for every state s ∈ S, the set of states reachable from S is exactly S.)

(g) bottom strongly connected components with arbitrarily many states?

 Exercise 56. Recall the master automaton M defined in section 2.1.1. A
symmetry is a bijection f on the states of the master automaton such that L a−→L′

iff f(L)
a−→ f(L′). Loosely speaking, after applying f , we still obtain the same

graph. Show that the bijection given by f(L) = L is a symmetry.

⋆ Exercise 57. Recall that weakly acyclic DFAs were introduced in exercise 35.
Show that weakly acyclic DFAs are closed under minimization, that is, prove that
the unique minimal DFA equivalent to a given weakly acyclic DFA is also weakly
acyclic.

Chapter 3
Operations on Sets:

Implementations

Recall that, in this book, we see automata as data structures over some universe
of objects U . In this chapter, we explain how to implement important operations
on such data structures.

As a motivating example, let us consider the case where U is the set of nat-
ural numbers. Let A be the automaton, over alphabet Σ = {0, 1}, depicted on
the left of figure 3.1. The words read by A are seen as numbers encoded in bi-
nary with their most significant bit appearing first, for example, the word 1100
corresponds to number 12. Observe that A accepts infinitely many numbers. In
particular, it accepts words {11, 111, 1111, . . .}, which respectively correspond to
numbers {3, 7, 15, . . .}. Nonetheless, automaton A does not accept all numbers.
For example, it rejects word 100, which corresponds to number 4.

Suppose we ask ourselves whether all multiples of 3 are accepted by A. For
example, we see that numbers 0, 3, 6, 9, and 12 are accepted by A, as they are
respectively represented by words ε, 11, 110, 1001, and 1100 (with possibly leading
zeros). Such a brute-force approach quickly gets tedious when carried manually.
Further, it is not clear how many numbers must be checked (even if done with a
computer). In fact, if A accepts all multiples of 3, then there are infinitely many
numbers to check! Thus, we need a better approach.

Let B be the automaton depicted on the right of figure 3.1. This automaton
accepts the set of all multiples of 3 (see example 1.10 if you want to know why).
Hence, our question can be rephrased as does L (B) ⊆ L (B) hold?” or ”does

p0 p1 p2 p3

A:
1 1 1

0 0 0 1

0

q0 q1 q2

B:
0

1 0

1 0

1

Figure 3.1: Two automata representing sets of numbers, represented in binary
with their most significant bit first.

69

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 70

L (A) ∩ L (B) = L (B)?. So, in order to answer our question, it suffices to imple-
ment inclusion, or both intersection and equality. As we shall see in section 3.1.6,
A does not accept all multiples of 3. Moreover, a counterexample can be obtained
automatically, that is, an algorithm can produce a word fromB that is not accepted
by A.

Such algorithms have important applications. For example, in chapter 7 wewill
use automata to represent the behavior of concurrent programs. In that setting,
counterexamples are bugs, and it is certainly desirable to detect bugs automati-
cally.

In the remainder of this chapter, we provide implementations of inclusion,
intersection, and other operations. More precisely, we show that automata as a
data structure support the following operations, where U is the universe of objects,
X,Y ⊆ U and x ∈ U :

Operation Returns

Member(x,X) true if x ∈ X, false otherwise
Complement(X) U \X
Intersection(X, Y) X ∩ Y
Union(X, Y) X ∪ Y

Empty(X) true if X = ∅, false otherwise
Universal(X) true if X = U , false otherwise
Included(X,Y) true if X ⊆ Y , false otherwise
Equal(X,Y) true if X = Y , false otherwise

Let us fix an alphabet Σ. We assume that there exists a bijection between
U and Σ∗—that is, we assume that each object of the universe is encoded by a
word and that each word is the encoding of some object. Under this assumption,
the operations on sets and elements become operations on languages and words,
as in our motivating example. For instance, the first two operations become the
following:

Operation Returns

Member(w,L) true if w ∈ L, false otherwise
Complement(L) L

The assumption that each word encodes some object may seem too strong. In-
deed, the language E of encodings is usually only a subset of Σ∗. For example,
not every word over the alphabet {0, . . . , 9, .,−} encodes a decimal number. How-
ever, once we have implemented the operations under this strong assumption, we
can easily modify them so that they work under a much weaker assumption that
almost always holds: the assumption that the language E of encodings is regular.
For instance, assume that E is a regular subset of Σ∗ and that L is the language
of encodings of a set X. We implement Complement(X) so that it returns not L
but rather Intersection(L,E).

For each operation, we present an implementation that, given automata rep-
resentations of the operands, returns an automaton representing the result (or a
boolean value, when that is the return type). Sections 3.1 and 3.2 respectively
consider the cases in which the representation is a DFA and an NFA.

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 71

3.1 Implementation on DFAs

In order to evaluate the complexity of the operations, we must first provide our
assumptions on the complexity of basic operations on a DFA A = (Q,Σ, δ, q0, F).
We assume that dictionary operations (lookup, add, remove) on Q and δ can be
performed in constant time using hashing. We further assume that, given a state
q, we can decide in constant time if q = q0, and if q ∈ F , and that given a state q
and a letter a ∈ Σ, we can find the unique state δ(q, a) in constant time.

3.1.1 Membership

To check membership for a word w, we just execute the run of the DFA on w. It
is convenient for future use to have an algorithm MemDFA[A](w, q) that checks
whether word w is accepted from state q in A, that is, whether w ∈ LA(q). Oper-
ation Member(w,L) can then be implemented by MemDFA[A](w, q0), where A is
the automaton representing L. Writing head(aw) = a and tail(aw) = w for a ∈ Σ
and w ∈ Σ∗, the procedure is described in algorithm 7.

Algorithm 7 Membership for DFAs.
MemDFA[A](w, q)
Input: DFA A = (Q,Σ, δ, q0, F), state q ∈ Q, word w ∈ Σ∗

Output: true if w ∈ L(q), false otherwise
1 if w = ε then return q ∈ F
2 else return MemDFA[A](tail(w),δ(q, head(w)))

The complexity of the algorithm is O(|w|).

3.1.2 Complementation

Implementing the complement operations on DFAs is easy. Recall that a DFA has
exactly one run for each word, and the run is accepting iff it reaches a final state.
Thus, if we swap final and nonfinal states, the run on a word becomes accepting iff
it was nonaccepting, and so the new DFA accepts the word iff the old one did not
accept it. So, we get the linear-time procedure CompDFA described in algorithm 8.

Algorithm 8 DFA complementation.
CompDFA(A)
Input: DFA A = (Q,Σ, δ, q0, F)
Output: DFA B = (Q′,Σ, δ′, q′0, F

′) with L (B) = L (A)
1 Q′ ← Q; δ′ ← δ; q′0 ← q0; F ′ = ∅
2 for all q ∈ Q do
3 if q /∈ F then add q to F ′

Observe that complementation of DFAs preserves minimality. By construction,
each state of CompDFA(A) recognizes the complement of the language recognized
by the same state in A. Thus, if the states of A recognize pairwise different lan-

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 72

guages, so do the states of CompDFA(A). Apply now corollary 2.13, stating that a
DFA is minimal iff their states recognize different languages.

3.1.3 Binary Boolean Operations

Instead of specific implementations for union and intersection, we give a generic
implementation for all binary boolean operations. Given two DFAs A1 and A2 and
a binary boolean operation like union, intersection, or difference, the implementa-
tion returns a DFA recognizing the result of applying the operation to L (A1) and
L (A2). The DFAs for different boolean operations always have the same states
and transitions; they differ only in the set of final states. We call this DFA with a
yet unspecified set of final states the pairing of A1 and A2, denoted by [A1, A2].
Formally:

Definition 3.1. Let A1 = (Q1,Σ, δ1, q01, F1) and A2 = (Q2,Σ, δ2, q02, F2) be DFAs.
The pairing [A1, A2] of A1 and A2 is the tuple (Q,Σ, δ, q0) where

• Q = {[q1, q2] : q1 ∈ Q1, q2 ∈ Q2},

• δ = {([q1, q2], a, [q′1, q′2]) : (q1, a, q′1) ∈ δ1, (q2, a, q′2) ∈ δ2},

• q0 = [q01, q02].

The run of [A1, A2] on a word of Σ∗ is defined as for DFAs.

It follows immediately from this definition that the run of [A1, A2] over a word
w = a1a2 · · · an is also a “pairing” of the runs of A1 and A2 over w. Formally,

q01
a1−−→ q11

a2−−→· · · an−−→ qn1

q02
a1−−→ q12

a2−−→· · · an−−→ qn2

are the runs of A1 and A2 on w if and only if[
q01
q02

]
a1−−→
[
q11
q12

]
a2−−→· · · an−−→

[
qn1
qn2

]
is the run of [A1, A2] on w.

DFAs for different boolean operations are obtained by adding an adequate set
of final states to [A1, A2]. For intersection, [A1, A2] must accept w iff A1 accepts
w and A2 accepts w. This is achieved by declaring a state [q1, q2] final iff q1 ∈ F1

and q2 ∈ F2. For union, we replace and by or. For difference, [A1, A2] must accept
w iff A1 accepts w and A2 does not accept w, and so we declare [q1, q2] final iff
q1 ∈ F1 and not q2 ∈ F2.

Example 3.2. The top of figure 3.2 depicts two DFAs over alphabet Σ = {a}. They
recognize the words whose length is a multiple of 2 and 3, respectively. We denote
these languages by Mult(2) and Mult(3). The remainder of the figure illustrates the
pairing of the two DFAs (for clarity, the states carry labels x, y instead of [x, y]) and
three DFAs recognizing Mult(2)∩Mult(3), Mult(2)∪Mult(3), and Mult(2)\Mult(3),
respectively.

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 73

Example 3.3. The tour of conversions of chapter 1 started with a DFA for the lan-
guage of all words over {a, b} containing an even number of as and an even number
of bs. This language is the intersection of the language of all words containing an
even number of as, and the language of all words containing an even number of bs.
Figure 3.3 shows DFAs for these two languages and the DFA for their intersection.

We can now formulate a generic algorithm that, given two DFAs recogniz-
ing languages L1, L2 and a binary boolean operation, returns a DFA recogniz-
ing the result of “applying” the boolean operation to L1, L2. First, let us for-
mally define what this means. Given an alphabet Σ and a binary boolean op-
erator ⊙ : {true, false} × {true, false} → {true, false}, we lift ⊙ to a function
⊙̂ : 2Σ

∗ × 2Σ
∗ → 2Σ

∗
on languages as follows:

L1⊙̂L2 = {w ∈ Σ∗ : (w ∈ L1)⊙ (w ∈ L2)}.

That is, to decide whether w belongs to L1⊙̂L2, we evaluate (w ∈ L1) and (w ∈
L2) to true or false and then apply ⊙̂ to the results. For instance, L1∩L2 = L1∧̂L2.
The generic algorithm, parameterized by ⊙, is described in algorithm 9.

Popular choices of boolean language operations are summarized in the left
column of the following table, while the right column shows the corresponding
boolean operation needed to instantiate BinOp[⊙].

1 2

a

a

3 4 5
a a

a

1, 3 2, 4 1, 5 2, 3 1, 4 2, 5
a a a a a

a

1, 3 2, 4 1, 5 2, 3 1, 4 2, 5
a a a a a

a

1, 3 2, 4 1, 5 2, 3 1, 4 2, 5
a a a a a

a

1, 3 2, 4 1, 5 2, 3 1, 4 2, 5
a a a a a

a

Figure 3.2: Two DFAs, their pairing, and DFAs for the intersection, union, and
difference of their languages.

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 74

1 2

b b

a

a

3 4

a a

b

b

1, 3 2, 3

2, 41, 4

a

a

a

a

bb bb

Figure 3.3: Two DFAs and a DFA for their intersection.

Algorithm 9 Boolean combination of two DFAs.
BinOp[⊙](A1, A2)
Input: DFAs A1 = (Q1,Σ, δ1, q01, F1), A2 = (Q2,Σ, δ2, q02, F2)
Output: DFA A = (Q,Σ, δ, q0, F) with L (A) = L (A1) ⊙̂ L (A2)

1 Q, δ, F ← ∅
2 q0 ← [q01, q02]

3 W ← {q0}
4 whileW ̸= ∅ do
5 pick [q1, q2] fromW

6 add [q1, q2] to Q
7 if (q1 ∈ F1)⊙ (q2 ∈ F2) then add [q1, q2] to F
8 for all a ∈ Σ do
9 q′1 ← δ1(q1, a); q′2 ← δ2(q2, a)

10 if [q′1, q′2] /∈ Q then add [q′1, q
′
2] toW

11 add ([q1, q2], a, [q
′
1, q
′
2]) to δ

Language operation b1 ⊙ b2

Union b1 ∨ b2
Intersection b1 ∧ b2
Set difference (L1 \ L2) b1 ∧ ¬b2
Symmetric difference (L1 \ L2 ∪ L2 \ L1) b1 ↔ ¬b2

The output of BinOp is a DFAwithO(|Q1|·|Q2|) states, regardless of the boolean
operation being implemented. To show that the bound is reachable, let Σ = {a},
and, for every n ≥ 1, let Mult(n) denote the language of words whose length is a
multiple of n. As in figure 3.3, the minimal DFA recognizingMult(n) is a cycle of n
states, with the initial state being also the only final state. For any two relatively
prime numbers n1 and n2 (i.e., two numbers without a common divisor), we have
Mult(n1) ∩Mult(n2) = Mult(n1 · n2). Therefore, any DFA for Mult(n1 · n2) has at
least n1 · n2 states. In fact, if we denote the minimal DFA for Mult(k) by Ak, then

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 75

BinOp[∧](An1 , An2) = An1 ·n2 .
Note, however, that in general, minimality is not preserved: the product of two

minimal DFAs may not be minimal. In particular, given any regular language L,
the minimal DFA for L∩L has one state, but the result of the product construction
is a DFA with the same number of states as the minimal DFA for L.

3.1.4 Emptiness

A DFA recognizes the empty language iff it has no final states (recall our normal
form, where all states must be reachable). This leads to algorithm 10.

Algorithm 10 DFA emptiness check.
Empty(A)
Input: DFA A = (Q,Σ, δ, q0, F)
Output: true if L (A) = ∅, false otherwise
1 return F = ∅

The runtime depends on the implementation. If we keep a boolean indicating
whether the DFA has some final state, then the complexity is O(1). If checking
F = ∅ requires a linear scan over Q, then the complexity is O(|Q|).

3.1.5 Universality

A DFA in normal form recognizes Σ∗ iff all its states are final. This leads to algo-
rithm 11, which again has complexity O(1) or O(|Q|), depending on the imple-
mentation.

Algorithm 11 DFA universality check.
UnivDFA(A)
Input: DFA A = (Q,Σ, δ, q0, F)
Output: true if L (A) = Σ∗, false otherwise
1 return F = Q

3.1.6 Inclusion

The following lemma characterizes the inclusion of regular languages.

Lemma 3.4. Let A1 = (Q1,Σ, δ1, Q01, F1) and A2 = (Q2,Σ, δ2, Q02, F2) be DFAs.
It is the case that L (A1) ⊆ L (A2) iff every state [q1, q2] of the pairing [A1, A2]
satisfying q1 ∈ F1 also satisfies q2 ∈ F2.

Proof. Let L1 = L (A1) and L2 = L (A2). We have

L1 ̸⊆ L2 ⇐⇒ L1 \ L2 ̸= ∅
⇐⇒ at least one state [q1, q2] of the DFA for L1 \ L2 is final
⇐⇒ there exist q1 ∈ Q1, q2 ∈ Q2 s.t. q1 ∈ F1 and q2 /∈ F2.

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 76

Algorithm 12 DFA inclusion check.
InclDFA(A1, A2)
Input: DFAs A1 = (Q1,Σ, δ1, q01, F1), A2 = (Q2,Σ, δ2, q02, F2)
Output: true if L (A1) ⊆ L (A2), false otherwise
1 Q← ∅;W ← {[q01, q02]}
2 whileW ̸= ∅ do
3 pick [q1, q2] fromW

4 add [q1, q2] to Q
5 if (q1 ∈ F1) and (q2 /∈ F2) then return false
6 for all a ∈ Σ do
7 q′1 ← δ1(q1, a); q′2 ← δ2(q2, a)

8 if [q′1, q′2] /∈ Q then add [q′1, q
′
2] toW

9 return true

q0, p0 q1, p1

q2, p1

q0, p2

q1, p2

q1, p3 q0, p3

q0, p1

q2, p2q2, p3

0

1

0

1

0

1

0

1

0

1

0

1
0

1

0
1

0

1

0

1

Figure 3.4: Underlying automaton of IncDFA(B,A), where colors and patterns
correspond to those of the final states of figure 3.1.

The condition of the lemma can be checked by slightly modifying BinOp. The
resulting algorithm checks inclusion on the fly, as described in algorithm 12.

Recall the example from the beginning of the chapter. We were interested in
determining whether all multiples of 3 are accepted by automaton A of figure 3.1.
Let us show that this is not the case by algorithmically testing whether L (B) ⊆
L (A). We execute InclDFA(B,A). The algorithm internally constructs a fragment
of the automaton C depicted in figure 3.4. Note that the state [q0, p1] of C is such
that q0 is final in B and p1 is nonfinal in A. Therefore, the algorithm returns
false, which means that A does not accept all multiples of 3. A counterexample
can be obtained from C by taking any word w that leads to [q0, p1]. For example,
w = 11110 corresponds to number 30, which is rejected by A. In fact, this is the
shortest counterexample since A accepts 0, 3, 6, 9, 12, 15, 18, 21, 24, 27 (and more
multiples of 3 such as 33, 36, and 39 but not 42).

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 77

3.1.7 Equality

For equality, just observe that L (A1) = L (A2) holds iff the symmetric difference
of L (A1) and L (A2) is empty. The algorithm is obtained by replacing line 6 of
IncDFA(A1, A2) by

if ((q1 ∈ F1) and q2 /∈ F2)) or ((q1 /∈ F1) and (q2 ∈ F2)), then return false.

Let us call this algorithm EqDFA. An alternative procedure consists of minimiz-
ing A1 and A2 and checking whether the results are isomorphic DFAs. In fact, the
isomorphism check is not even necessary: one can just apply algorithm CSR (Algo-
rithm 6 of chapter 2) to the NFAA1∪A2 := (Q1∪Q2,Σ, δ1∪δ2, {q01, q02}, F1∪F2).
It is easy to see that, in this particular case, CSR still computes the language parti-
tion, and so we have L (A1) = L (A2) iff after termination, the initial states of A1

and A2 belong to the same block.
If Hopcroft’s algorithm is used for computing CSR, then the equality check can

be performed in time O(n logn), where n is the sum of the number of states of
A1 and A2. This complexity is lower than that of EqDFA. However, EqDFA has two
important advantages:

• It works on-the-fly. That is, L (A1) = L (A2) can be tested while construct-
ing A1 and A2. This allows to stop early if a difference in the languages is
detected. On the contrary, minimization algorithms cannot minimize a DFA
while constructing it. All states and transitions must be known before the
algorithm can start.

• It is easy to modify EqDFA so that it returns a witness whenever L (A1) ̸=
L (A2), that is, a word in the symmetric difference of L (A1) and L (A2). This
is more difficult to achieve with the minimization algorithm. Moreover, to
the best of our knowledge, it cancels the complexity advantage. This may
seem surprising, since, as shown in exercise 43, the shortest word in the
symmetric difference of L (A1) and L (A2) has length n1 + n2 − 2, where n1
and n2 are the numbers of states of A1 and A2, respectively. However, this
word is computed by tracking for each pair of states the shortest word in the
symmetric difference of their languages. Since there are O(n1 · n2) pairs,
this takes time O(n1 · n2). There could be a more efficient way to compute
the witness, but we do not know any.

3.2 Implementation on NFAs

For NFAs, we make the same assumptions on the complexity of basic operations
as for DFAs. For DFAs, however, we had the assumption that, given a state q and a
letter a ∈ Σ, we can find in constant time the unique state δ(q, a). This assumption
no longer makes sense for NFA, since δ(q, a) is a set.

3.2.1 Membership

Membership testing is slightly more involved for NFAs than for DFAs. An NFA may
have many runs on the same word, and examining all of them one after the other
in order to see if at least one is accepting is a bad idea: the number of runs may

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 78

be exponential in the length of the word. The algorithm described in algorithm 13
does better. For each prefix of the word, it computes the set of states in which the
automaton may be after having read the prefix.

Algorithm 13 Membership for NFAs.
MemNFA[A](w)
Input: NFA A = (Q,Σ, δ,Q0, F), word w ∈ Σ∗

Output: true if w ∈ L(A), false otherwise
1 W ← Q0

2 while w ̸= ε do
3 U ← ∅
4 for all q ∈W do
5 add δ(q, head(w)) to U
6 W ← U

7 w ← tail(w)
8 return (W ∩ F ̸= ∅)

Example 3.5. Consider the NFA depicted on the left of figure 3.5. Let w = aaabba.
The successive values of W—that is, the sets of states A can reach after reading the
prefixes of w—are shown on the right of the figure. Since the final set contains final
states, the algorithm returns true.

For the complexity, observe first that the while loop is executed |w| times. The
for loop is executed at most |Q| times. Each execution takes at most time O(|Q|),
because δ(q, head(w)) contains at most |Q| states. So the overall running time is
O(|w| · |Q|2).

3.2.2 Complementation

Recall that an NFA A may have multiple runs on a word w. Moreover, it accepts
w if at least one is accepting. In particular, an NFA can accept w because of an
accepting run ρ1 but have another nonaccepting run ρ2 on w. It follows that the

1 2

3 4

a, b

b

a

a

a

ba

a, b

b

Prefix read W

ε {1}
a {2}
aa {2, 3}
aaa {1, 2, 3}
aaab {2, 3, 4}
aaabb {2, 3, 4}
aaabba {1, 2, 3, 4}

Figure 3.5: An NFA A and the run of MemNFA[A](aaabba).

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 79

complement operation for DFAs cannot be extended to NFAs: after exchanging
final and nonfinal states, the run ρ1 becomes nonaccepting, but ρ2 becomes ac-
cepting. So, the resulting NFA still accepts w (because ρ2 accepts), and so it does
not recognize the complement of L (A).

For this reason, complementation for NFAs is carried out by converting to a
DFA and complementing the result, as described in algorithm 14.

Algorithm 14 NFA complementation.
CompNFA(A)
Input: NFA A
Output: DFA A with L

(
A
)
= L (A)

1 A← CompDFA (NFAtoDFA(A))

Since determinizing an NFA may cause an exponential blowup in the number
of states, the number of states of A is O(2|Q|).

3.2.3 Union and Intersection

Let us see that, on NFAs, it is no longer possible to uniformly implement all binary
boolean operations. The pairing operation can be defined exactly as in defini-
tion 3.1. Observe that if for some letter a states q1 and q2 have n1 and n2 succes-
sors, then the state [q1, q2] of the pairing has n1 × n2 successors. The runs of a
pairing [A1, A2] of NFAs on a given word are defined as for DFAs. The difference
with respect to the DFA case is that the pairing may have multiple runs or no run
at all on a word. But we still have that

q01
a1−−→ q11

a2−−→· · · an−−→ qn1

q02
a1−−→ q12

a2−−→· · · an−−→ qn2

are runs of A1 and A2 on w if and only if[
q01
q02

]
a1−−→
[
q11
q12

]
a2−−→· · · an−−→

[
qn1
qn2

]
is a run of [A1, A2] on w.

Let us now discuss the cases of intersection, union, and set difference.

Intersection. Let [q1, q2] be a final state of [A1, A2] if q1 is a final state of A1 and
q2 is a final state of A2. It is still the case that [A1, A2] has an accepting run on w
iff A1 has an accepting run on w and A2 has an accepting run on w. Thus, with
this choice of final states, automaton [A1, A2] recognizes L (A1) ∩ L (A2). So, we
obtain algorithm 15.

Notice that we overload the symbol and denote the output by A1 ∩ A2. Au-
tomaton A1 ∩ A2 is often called the product of A1 and A2. It is readily seen that,
as operation on NFAs, ∩ is associative and commutative in the following sense:

L ((A1 ∩A2) ∩A3) = L (A1) ∩ L (A2) ∩ L (A3) = L (A1 ∩ (A2 ∩A3))

L (A1 ∩A2) = L (A1) ∩ L (A2) = L (A2 ∩A1) .

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 80

Algorithm 15 NFA intersection.
IntersNFA(A1, A2)
Input: NFA A1 = (Q1,Σ, δ1, Q01, F1), A2 = (Q2,Σ, δ2, Q02, F2)
Output: NFA A1 ∩A2 = (Q,Σ, δ,Q0, F) with L (A1 ∩A2) = L (A1) ∩ L (A2)

1 Q, δ, F ← ∅; Q0 ← Q01 ×Q02

2 W ← Q0

3 whileW ̸= ∅ do
4 pick [q1, q2] fromW

5 add [q1, q2] to Q
6 if (q1 ∈ F1) and (q2 ∈ F2) then add [q1, q2] to F
7 for all a ∈ Σ do
8 for all q′1 ∈ δ1(q1, a), q′2 ∈ δ2(q2, a) do
9 if [q′1, q′2] /∈ Q then add [q′1, q

′
2] toW

10 add ([q1, q2], a, [q
′
1, q
′
2]) to δ

a a a a

a, b a, b a, b

a a

a, b a, b

Figure 3.6: Two NFAs.

For the complexity, observe that in the worst case, the algorithm must examine
all pairs (q1, a, q′1) ∈ δ1, (q2, a, q′2) ∈ δ2 of transitions, but every pair is examined at
most once. So, the running time is O(|δ1||δ2|).

Example 3.6. Consider the two NFAs of figure 3.6 over alphabet {a, b}. The top one
recognizes the words containing at least two non-overlapping occurrences of aa. The
bottom one recognizes the words containing at least one occurrence of aa. The result
of applying IntersNFA is the NFA of figure 2.8. Observe that the NFA has fifteen states
(i.e., all pairs of states are reachable).

Note that in this example, the intersection of the two languages is equal to the
language of the first NFA. So, there is an NFA with five states that recognizes the
intersection, which means that the output of IntersNFA is far from optimal in this
case. Even after applying the reduction algorithm for NFAs, we only obtain the ten-
state automaton of figure 2.9.

Union. It could seem that the argumentation for intersection still holds if we
replace and by or, and so that the algorithm obtained from IntersNFA by substitut-
ing and for or correctly computes an NFA for L (A1) ∪ L (A2). It could seem that
the algorithm obtained by substituting or for and in line 6 of IntersNFA correctly
computes an NFA for L (A1) ∪ L (A2). However, this is not true! Assume that A1

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 81

accepts a word but A2 has no run on it at all. In this case, the pairing [A1, A2] also
has no run on the word, and so the NFA returned by the algorithm does not accept
it. If both A1 and A2 have at least one run for each word, then the algorithm is
indeed correct. However, there is a much simpler algorithm. It suffices to put A1

and A2 “side by side”: take the union of its states, transitions, initial states, and
final states (where we assume these to be disjoint). The resulting procedure is
described in algorithm 16.

Algorithm 16 NFA union.
UnionNFA(A1, A2)
Input: NFA A1 = (Q1,Σ, δ1, Q01, F1), A2 = (Q2,Σ, δ2, Q02, F2)
Output: NFA A1 ∪A2 = (Q,Σ, δ,Q0, F) with L (A1 ∪A2) = L (A1) ∪ L (A2)

1 Q← Q1 ∪Q2

2 δ ← δ1 ∪ δ2
3 Q0 ← Q01 ∪Q02

4 F ← F1 ∪ F2

Set difference. The generalization of the procedure for DFAs fails. Let [q1, q2]
be a final state of [A1, A2] if q1 is a final state of A1 and q2 is not a final state of
A2. Then, [A1, A2] has an accepting run on w if and only if A1 has an accepting
run on w and A2 has a nonaccepting run on w. But “A2 has a nonaccepting run
on w” is not equivalent to “A2 has no accepting run on w”: this only holds in the
DFA case. An algorithm producing an NFA A1 \ A2 recognizing L (A1) \ L (A2)
can be obtained from the algorithms for complement and intersection through the
equality L (A1) \ L (A2) = L (A1) ∩ L (A2).

3.2.4 Emptiness and Universality

Emptiness for NFAs is decided using the same algorithm as for DFAs: just check if
the NFA has at least one final state.

Universality requires a new algorithm. An NFA whose states are all final is
not universal if it has no run at all on some word. Moreover, an NFA may be
universal even if some states are nonfinal: for every word having a run that leads
to a nonfinal state, there may be another run leading to a final state. An example
is the NFA of figure 3.5, which, as we shall show in this section, is universal.

A language L is universal if and only if L is empty, and so universality of an NFA
A can be checked by applying the emptiness test to A. However, complementation
requires to compute an equivalent DFA by means of the powerset construction,
which involves a worst-case exponential blow-up in the number of states. So the
algorithm runs in exponential time and space in the worst case.

Since the universality problem is PSPACE-complete, it is unlikely that a su-
perpolynomial blowup can be avoided. The forthcoming optional section 3.2.6
provides a proof for readers familiar with complexity theory. But one can still
improve on the powerset construction. Let us see how.

A subsumption test. We show that it is not necessary to completely construct
the automaton A. First, the universality check of a DFA only examines the states

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 82

1 2

3 4

a, b

b

a

a

a

ba
a, b

b

1 2

2, 3

3, 4

2, 3, 1

2, 3, 4 2, 3, 4, 1

1, 3, 4
a

b
a

b

b

a

a

b

a

b

b

a

a

b

b

a

Figure 3.7: An NFA (left) and the result of converting it into a DFA (right). The
minimal states of the latter are colored.

of the DFA, not the transitions. So, instead of NFAtoDFA(A), we can use a modified
version that only stores the states of the DFA but not its transitions. Second, let us
see that it is not necessary to store all states.

Definition 3.7. Let A be an NFA, and let B = NFAtoDFA(A). A state Q′ of B is
minimal if no state Q′′ satisfies Q′′ ⊂ Q′.

Proposition 3.8. Let A be an NFA and let B = NFAtoDFA(A). Automaton A is
universal iff every minimal state of B is final.

Proof. SinceA andB recognize the same language,A is universal iffB is universal.
So, A is universal iff every state of B is final. But a state of B is final iff it contains
some final state of A, and so every state of B is final iff every minimal state of B
is final.

Example 3.9. Figure 3.7 depicts an NFA on the left and the equivalent DFA obtained
through the application of NFAtoDFA on the right. Since all states of the DFA are
final, the NFA is universal. Only the colored states {1}, {2}, and {3, 4} are minimal.

Proposition 3.8 establishes that it suffices to construct and store the minimal
states of B. Procedure UnivNFA(A), described in algorithm 17, constructs the
states ofB as in NFAtoDFA(A) but introduces at line 8 a subsumption test: it checks
if some state Q′′ ⊆ δ(Q′, a) has already been constructed. If so, either δ(Q′, a)
has already been constructed (case Q′′ = δ(Q′, a)) or is nonminimal (case Q′′ ⊂
δ(Q′, a)). In both cases, the state is not added to the workset.

The next proposition shows that UnivNFA(A) constructs all minimal states of
B. If UnivNFA(A) would first generate all states of A and then would remove all
nonminimal states, the proof would be trivial. But the algorithm removes nonmin-
imal states whenever they appear, and we must show that this does not prevent
the future generation of other minimal states.

Proposition 3.10. Let A = (Q,Σ, δ,Q0, F) be an NFA, and let B = NFAtoDFA(A).
After termination of UnivNFA(A), the set Q contains all minimal states of B.

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 83

Algorithm 17 NFA universality check.
UnivNFA(A)
Input: NFA A = (Q,Σ, δ,Q0, F)
Output: true if L (A) = Σ∗, false otherwise
1 Q ← ∅;
2 W ← {Q0}
3 whileW ̸= ∅ do
4 pick Q′ fromW
5 if Q′ ∩ F = ∅ then return false
6 add Q′ to Q
7 for all a ∈ Σ do
8 Q′′ ←

∪
q∈Q′ δ(q, a)

9 ifW ∪Q contains no Q′′′ ⊆ Q′′ then add Q′′ toW
10 return true

Proof. Let Qt be the value of Q after termination of UnivNFA(A). We show that
no path of B leads from a state of Qt to a minimal state of B not in Qt. Since
{q0} ∈ Qt and all states of B are reachable from {q0}, it follows that each minimal
state of B belongs to Qt.

Suppose there is a path π = Q1
a1−−→Q2

a2−−→· · · an−−→Qn ofB such thatQ1 ∈ Qt,
Qn /∈ Qt, and Qn are minimal. Assume further that π is as short as possible. This
implies Q2 /∈ Qt (otherwise Q2

a2−−→· · · an−−→Qn is a shorter path satisfying the
same properties), and so Q2 is never added to the workset. On the other hand,
since Q1 ∈ Qt, the state Q1 is eventually added to and picked from the workset.
When Q1 is processed at line 7, the algorithm considers Q2 = δ(Q1, a1) but does
not add it to the workset in line 8. Thus, at that moment, either the workset or Q
contains a state Q′2 ⊂ Q2. This state is eventually added to Q (if it is not already
there), and so Q′2 ∈ Qt. So, B has a path π′ = Q′2

a2−−→· · ·Q′n−1
an−−→Q′n for some

states Q′3, . . . , Q′n. Since Q′2 ⊂ Q2, we have Q′2 ⊂ Q2, Q
′
3 ⊆ Q3, . . . , Q

′
n ⊆ Qn

(note that we may have Q′3 = Q3). By minimality of Qn, we get Q′n = Qn, and
so π′ leads from Q′2, which belongs to Qt, to Qn, which is minimal and not in Qt.
This contradicts the assumption that π is as short as possible.

Observe that the complexity of the subsumption test may be considerable, be-
cause the new set δ(Q′, a) must be compared with every set inW ∪Q. Good use
of data structures (hash tables or radix trees) is advisable.

3.2.5 Inclusion and Equality

Recall lemma 3.4: given two DFAs A1, A2, the inclusion L (A1) ⊆ L (A2) holds if
and only if every state [q1, q2] of [A1, A2] having q1 ∈ F1 also has q2 ∈ F2. This
lemma no longer holds for NFAs. To see why, let A be any NFA having two runs
for some word w, one of them leading to a final state q1, the other to a nonfinal
state q2. We have L (A) ⊆ L (A), but the pairing [A,A] has a run on w leading to
[q1, q2].

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 84

To obtain an algorithm for checking inclusion, we observe that L1 ⊆ L2 holds if
and only if L1 ∩L2 = ∅. This condition can be checked using the constructions for
intersection and for the emptiness check. However, as in the case of universality,
we can apply a subsumption check.

Definition 3.11. Let A1, A2 be NFAs, and let B2 = NFAtoDFA(A2). A state [q1, Q2]
of [A1, B2] is minimal if no other state [q′1, Q′2] satisfies q′1 = q1 and Q′2 ⊆ Q2.

Proposition 3.12. Let A1 = (Q1,Σ, δ1, Q01, F1) and A2 = (Q2,Σ, δ2, Q02, F2) be
NFAs, and let B2 = NFAtoDFA(A2). It is the case that L (A1) ⊆ L (A2) iff every
minimal state [q1, Q2] of [A1, B2] having q1 ∈ F1 also has Q2 ∩ F2 ̸= ∅.

Proof. Since A2 and B2 recognize the same language, we have

L (A1) ⊆ L (A2)

⇐⇒ L (A1) ∩ L (A2) = ∅

⇐⇒ L (A1) ∩ L (B2) = ∅
⇐⇒ [A1, B2] has no state [q1, Q2] s.t. q1 ∈ F1 and Q2 ∩ F2 = ∅
⇐⇒ [A1, B2] has no minimal state [q1, Q2] s.t. q1 ∈ F1 and Q2 ∩ F2 = ∅.

This leads to algorithm 18 for checking inlcusion.

Algorithm 18 NFA inclusion check.
InclNFA(A1, A2)
Input: NFAs A1 = (Q1,Σ, δ1, Q01, F1), A2 = (Q2,Σ, δ2, Q02, F2)
Output: true if L (A1) ⊆ L (A2), false otherwise
1 Q← ∅;
2 W ← {[q01, Q02] : q01 ∈ Q01}
3 whileW ̸= ∅ do
4 pick [q1, Q

′
2] fromW

5 if (q1 ∈ F1) and (Q′2 ∩ F2 = ∅) then return false
6 add [q1, Q

′
2] to Q

7 for all a ∈ Σ do
8 Q′′2 ←

∪
q2∈Q′

2
δ2(q2, a)

9 for all q′1 ∈ δ1(q1, a) do
10 ifW ∪Q contains no [q′′1 , Q

′′′
2] s.t. q′′1 = q′1 and Q′′′2 ⊆ Q′′2 then

11 add [q′1, Q
′′
2] toW

12 return true

Observe that, in unfavorable cases, the overhead of the subsumption test may
not be compensated by a reduction in the number of states. Without the test, the
number of pairs that can be added to the workset is at most |Q1| · 2|Q2|. For each
of them, we have to execute the for loop O(|Q1|) times, each of them taking time
O(|Q2|2). So, the algorithm runs in time and space |Q1|2 · 2O(|Q2|).

As was the case for universality, the inclusion problem is PSPACE-complete,
and so it is unlikely that the exponential factor can be avoided (see the optional
section 3.2.6). There is, however, an important case with polynomial complexity.

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 85

When A2 is a DFA, the number of pairs that can be added to the workset is at most
|Q1| · |Q2|. The for loop is still executed O(|Q1|) times, but each iteration takes
constant time. Thus, the algorithm runs in time and space O(|Q1|2 · |Q2|).

Equality. Equality of two languages is decided by checking that each of them is
included in the other. The equality problem is also PSPACE-complete. The only
point worth observing is that, unlike the inclusion case, we do not get a polynomial
algorithm when A2 is a DFA.

3.2.6 ⋆ Universality and Inclusion Are PSPACE-Complete

In this subsection, we show that the universality and inclusion problems for NFAs
are PSPACE-complete.

Theorem 3.13. The universality problem for NFAs is PSPACE-complete.

Proof. We only sketch the proof. To prove that the problem is in PSPACE, we
show that it belongs to NPSPACE and apply Savitch’s theorem. The polynomial-
space nondeterministic algorithm for universality looks as follows. Given an NFA
A = (Q,Σ, δ,Q0, F), it guesses a run of B = NFAtoDFA(A) leading from {q0} to a
nonfinal set of states—that is, to a set of states of A containing no final state (if
such a run exists). The algorithm does not store the whole run, only the current
state of B, and so it only needs linear space in the size of A.

We prove PSPACE-hardness with a reduction from the acceptance problem for
linearly bounded automata. A linearly bounded automaton is a deterministic Tur-
ing machine that always halts and only uses the part of the tape containing the
input. A configuration of the Turing machine on an input of length k is encoded
as a word of length k. The run of the machine on an input can be encoded as a
word c0#c1 · · ·#cn, where the cis are the encodings of the configurations.

Let Σ be the alphabet used to encode the run of the machine. Given an input
x, the machine accepts if there exists a word w of (Σ ∪ {#})∗ (we assume # /∈ Σ)
satisfying the following properties:

(a) w has the form c0#c1 . . .#cn, where the cis are configurations;

(b) c0 is the initial configuration;

(c) cn is an accepting configuration; and

(d) for every 0 ≤ i < n: configuration ci+1 is the successor of ci according to
the transition relation of the machine.

The reduction shows how to construct in polynomial time, given a linearly
bounded automaton M and an input x, an NFA AM,x accepting all the words of
Σ∗ that do not satisfy at least one of the conditions (a)–(d) above. Thus:

• IfM accepts x, then there is a word wM,x encoding the accepting run ofM
on x, and so L (AM,x) = Σ∗ \ {wM,x}.

• If M rejects x, then no word encodes an accepting run of M on x, and so
L (AM,x) = Σ∗.

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 86

Therefore,M rejects x iff L (AM,x) = Σ∗, and we are done.

Proposition 3.14. The inclusion problem for NFAs is PSPACE-complete.

Proof. We first prove membership in PSPACE. Since PSPACE = co-PSPACE =
NPSPACE, it suffices to give a polynomial space nondeterministic algorithm that
decides noninclusion. Given NFAs A1 and A2, the algorithm guesses w ∈ L (A1) \
L (A2) letter by letter, maintaining the sets Q′1 and Q′2 of states that A1 and A2

reached by the word guessed so far. When the guessing ends, the algorithm checks
that Q′1 contains some final state of A1, but Q′2 does not.

Hardness follows from the fact that A is universal iff Σ∗ ⊆ L (A), and so the
universality problem, which is PSPACE-complete by Theorem 3.13, is a subproblem
of the inclusion problem.

3.3 Exercises

 Exercise 58. Consider the following languages over alphabet Σ = {a, b}:

• L1 is the set of all words where between any two occurrences of bs, there is at
least one a;

• L2 is the set of all words where every maximal sequence of consecutive as
has odd length;

• L3 is the set of all words where a occurs only at even positions;

• L4 is the set of all words where a occurs only at odd positions;

• L5 is the set of all words of odd length; and

• L6 is the set of all words with an even number of as.

Construct an NFA for the language

(L1 \ L2) ∪ (L3△L4) ∩ L5 ∩ L6,

where L△L′ denotes the symmetric difference of L and L′, while sticking to the
following rules:

• Start from NFAs for L1, . . . , L6.

• Any further automaton must be constructed from already existing automata
via an algorithm introduced in the chapter (e.g., Comp, BinOp, UnionNFA,
NFAtoDFA, etc.).

 Exercise 59. Prove or disprove: the minimal DFAs recognizing a language
L and its complement L have the same number of states.

 Exercise 60. Give a regular expression for the words over {0, 1} that do not

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 87

contain 010 as a subword.

 Exercise 61. In example 1.9, we presented an automaton that recognizes
words over alphabet Σ = {−, ·, 0, 1, . . . , 9} that encode real numbers with a finite
decimal part, for example, 37, 10.503, and −0.234 are accepted, but 002, −0, and
3.10000000 are not. This language is described by these four properties:

(a) a word encoding a number consists of an integer part, followed by a possibly
empty fractional part; the integer part consists of an optional minus sign,
followed by a nonempty sequence of digits;

(b) if the first digit of the integer part is 0, then it is the only digit of the integer
part;

(c) if the fractional part is nonempty, then it starts with “.,” followed by a nonempty
sequence of digits that does not end with 0; and

(d) if the integer part is −0, then the fractional part is nonempty.

We seek to obtain the automaton presented in example 1.9 in a more modular
and algorithmic way. More precisely, give an automaton for each of the above
properties, construct the pairing of these automata, and minimize the resulting
automaton.

 Exercise 62. The following automaton A accepts a set of numbers encoded
in binary with their most significant bit appearing first (as in the example from the
beginning of the chapter). Say whether A accepts all odd numbers. This can be
answered by inspection. Instead, answer the question algorithmically.

p0 p1

p2

0

1

1

1

0
0

⋆ Exercise 63. Find a family of NFAs {An}n≥1 with O(n) states such that
every NFA recognizing the complement of L (An) has at least 2n states.

Hint: See exercise 21.

 Exercise 64. Consider again the regular expressions (1+10)∗ and 1∗(101∗)∗
of exercise 4.

• Construct NFAs for these expressions and use InclNFA to check if their lan-
guages are equal.

• Construct DFAs for the expressions and use InclDFA to check if their lan-
guages are equal.

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 88

• Construct minimal DFAs for the expressions and check whether they are iso-
morphic.

 Exercise 65. Consider the variant of IntersNFA in which line 7

if (q1 ∈ F1) and (q2 ∈ F2) then add [q1, q2] to F

is replaced by

if (q1 ∈ F1) or (q2 ∈ F2) then add [q1, q2] to F

Let A1⊗A2 be the result of applying this variant to two NFAs A1 and A2. An NFA
A = (Q,Σ, δ,Q0, F) is complete if δ(q, a) ̸= ∅ for all q ∈ Q and all a ∈ Σ.

• Prove the following: if A1 and A2 are complete NFAs, then L (A1 ⊗A2) =
L (A1) ∪ L (L2).

• Give NFAs A1 and A2 that are not complete and such that L (A1 ⊗A2) =
L (A1) ∪ L (L2).

 Exercise 66. The even part of a word w = a1a2 · · · an over alphabet Σ is
the word a2a4 · · · a2·⌊n/2⌋. Given an NFA A, construct an NFA A′ such that L (A′)
is the even parts of the words of L (A).

 Exercise 67. Let Li = {w ∈ {a}∗ : the length of w is divisible by i}.

(a) Construct an NFA for L := L4 ∪ L6 with a single initial state and at most
eleven states.

(b) Construct the minimal DFA for L.

 Exercise 68. Modify algorithm Empty so it returns a witness when the au-
tomaton is nonempty, that is, a word accepted by the automaton. Explain how
could you further return a shortest witness. What is the complexity of your proce-
dure?

 Exercise 69. Use the algorithm UnivNFA to test whether the following NFA
is universal.

q0

q1 q2

q3 q4

b

b

a, b

a

a, b

a

a

a, b

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 89

 Exercise 70. Let Σ be an alphabet. We define the shuffle operator ||| : Σ∗ ×
Σ∗ → P(Σ∗) inductively as follows, where a, b ∈ Σ and w, v ∈ Σ∗:

w ||| ε = {w},
ε ||| w = {w},

aw ||| bv = {au : u ∈ w ||| bv} ∪ {bu : u ∈ aw ||| v}.

For example, we have

b ||| d = {bd, db},
ab ||| d = {abd, adb, dab},
ab ||| cd = {cabd, acbd, abcd, cadb, acdb, cdab}.

Given DFAs recognizing languages L1, L2 ⊆ Σ∗, construct an NFA recognizing
their shuffle

L1 ||| L2 =
∪

u∈L1,v∈L2

u ||| v.

 Exercise 71. The perfect shuffle of two languages L,L′ ∈ Σ∗ is a variant of
the shuffle introduced in exercise 70, defined as

L |̃|| L′ = {w ∈ Σ∗ : ∃a1, . . . , an, b1, . . . , bn ∈ Σ s.t. a1 · · · an ∈ L and
b1 · · · bn ∈ L′ and
w = a1b1 · · · anbn}.

Give an algorithm that returns a DFA acceptingL (A) |̃|| L (B) from two given DFAs
A and B.

⋆ Exercise 72. Let Σ1,Σ2 be two alphabets. A homomorphism is a map
h : Σ∗1 → Σ∗2 such that h(ε) = ε and h(uv) = h(u)h(v) for every u, v ∈ Σ∗1. Ob-
serve that if Σ1 = {a1, . . . , an}, then h is completely determined by the values
h(a1), . . . , h(an). Let h : Σ∗1 → Σ∗2 be a homomorphism.

(a) Construct an NFA for the language h(L (A)) = {h(w) : w ∈ L (A)} where A
is an NFA over Σ1.

(b) Construct an NFA for h−1(L (A)) = {w ∈ Σ∗1 : h(w) ∈ L (A)} where A is an
NFA over Σ2.

(c) Recall that the language {0n1n : n ∈ N} is not regular. Use the preceding
results to show that {(01k2)n3n : k, n ∈ N} is also not regular.

⋆ Exercise 73. Let L1 and L2 be regular languages over alphabet Σ. The
left quotient of L1 by L2 is the language

L2⧹L1 = {v ∈ Σ∗ : ∃u ∈ L2 s.t. uv ∈ L1}.

Note that L2⧹L1 is different from the set difference L2 \ L1.

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 90

(a) Given NFAs A1 and A2, construct an NFA A s.t. L (A) = L (A1)⧹L (A2).

(b) Do the same for the right quotient, defined as L1⧸L2 = {u ∈ Σ∗ : ∃v ∈
L2 s.t. uv ∈ L1}.

(c) Determine the inclusions between L1, (L1⧸L2)L2, and (L1L2)⧸L2.

 Exercise 74. Given alphabets Σ and ∆, a substitution is a map f : Σ →
2∆

∗
assigning to each letter a ∈ Σ a language La ⊆ ∆∗. A substitution f can be

canonically extended to amap 2Σ
∗ → 2∆

∗
by defining f(ε) = ε, f(wa) = f(w)f(a),

and f(L) =
∪
w∈L f(w). Note that a homomorphism can be seen as the special case

of a substitution in which all Las are singletons.
Let Σ = {Name, Tel, :, #}, let ∆ = {A, . . . , Z, 0, 1, . . . , 9, :,#}, and let f be the

substitution:

f(Name) = (A+ · · ·+ Z)∗

f(:) = {:}
f(Tel) = 0049(1 + . . .+ 9)(0 + 1 + . . .+ 9)10 +

00420(1 + . . .+ 9)(0 + 1 + . . .+ 9)8

f(#) = {#}

(a) Draw a DFA recognizing L = Name:Tel(#Tel)∗.

(b) Sketch an NFA recognizing f(L).

(c) Give an algorithm that takes as input an NFA A, a substitution f , and for ev-
ery a ∈ Σ an NFA recognizing f(a) and returns an NFA recognizing f(L (A)).

 Exercise 75. Let A1 and A2 be two NFAs with n1 and n2 states. Let

B = NFAtoDFA(IntersNFA(A1, A2)),

C = IntersDFA(NFAtoDFA(A1),NFAtoDFA(A2)).

A superficial analysis shows that B and C have O(2n1·n2) and O(2n1+n2) states,
respectively, wrongly suggesting that C might be more compact than B. Show
that, in fact, B and C are isomorphic and hence have the same number of states.

⋆ Exercise 76. Let A = (Q,Σ, δ, q0, F) be a DFA. A word w ∈ Σ∗ is a synchro-
nizing word of A if reading w from any state of A leads to a common state, that is,
if there exists q ∈ Q such that for every p ∈ Q, p w−→ q. A DFA is synchronizing if it
has a synchronizing word.

(a) Show that the following DFA is synchronizing:

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 91

p q

r s

a

b

a

b
a

b

a

b

(b) Give a DFA that is not synchronizing.

(c) Give an exponential time algorithm to decide whether a DFA is synchroniz-
ing.

Hint: Use the powerset construction.

(d) Show that a DFA A = (Q,Σ, δ, q0, F) is synchronizing iff for every p, q ∈ Q,
there exist w ∈ Σ∗ and r ∈ Q such that p w−−→ r and q w−−→ r.

(e) Give a polynomial time algorithm to test whether a DFA is synchronizing.
Hint: Use ((d)).

(f) Show that ((d)) implies that every synchronizing DFA with n states has a
synchronizing word of length at most (n2 − 1)(n− 1).

Hint: You might need to reason in terms of pairing.

(g) Show that the upper bound obtained in ((f)) is not tight by finding a syn-
chronizing word of length (4− 1)2 for the following DFA:

q0 q1

q3 q2

a

b

a

b

a, b

a

b

⋆ Exercise 77.

(a) Prove that the following problem is PSPACE-complete:

CHAPTER 3. OPERATIONS ON SETS: IMPLEMENTATIONS 92

Given: DFAs A1, . . . , An over the same alphabet Σ;
Decide: whether

∩n
i=1 L (Ai) = ∅.

Hint: Reduce from the acceptance problem for deterministic linearly bounded
automata.

(b) Prove that if the DFAs are acyclic, but the alphabet is arbitrary, then the
problem is coNP-complete. Here, acyclic means that the graph induced by
transitions has no cycle, apart from a self-loop on a trap state. Hint: Reduce
from 3-SAT.

(c) Prove that if Σ is a one-letter alphabet, then the problem is coNP-complete.

 Exercise 78. Let A = (Q,Σ, δ,Q0, F) be an NFA. Show that, with the
universal accepting condition of exercise 21, automaton A′ = (Q,Σ, δ, q0, Q \ F)
recognizes the complement of L (A).

 Exercise 79. Recall the model of alternating automata introduced in exer-
cise 22.

(a) Show that alternating automata can be complemented by exchanging exis-
tential and universal states, as well as final and nonfinal states. More pre-
cisely, let A = (Q1, Q2,Σ, δ, q0, F) be an alternating automaton, where Q1

andQ2 are respectively the sets of existential and universal states and where
δ : (Q1 ∪ Q2) × Σ → P(Q1 ∪ Q2). Show that the alternating automaton
A = (Q2, Q1,Σ, δ, q0, Q \ F) recognizes the complement of the language
recognized by A.

(b) Give linear time algorithms that take two alternating automata recognizing
languages L1 and L2 and that deliver a third alternating automaton recog-
nizing L1 ∪ L2 and L1 ∩ L2.

Hint: The algorithms are very similar to UnionNFA.

(c) Show that testing emptiness for alternating automata is PSPACE-complete.
Hint: Use exercise 77.

 Exercise 80. Recall that weakly acyclic DFAs were introduced in exercise 35.
Show that if A is a weakly acyclic DFA, then CompDFA(A) is also weakly acyclic,
and, that for every binary boolean operator ⊙, if A1 and A2 are weakly acyclic
DFAs, then BinOp[⊙](A1, A2) is also weakly acyclic.

Chapter 4
Application I: Pattern Matching

As a first example of a practical application of automata, we consider the pattern
matching problem. Given w,w′ ∈ Σ∗, we say that w′ is a factor of w if there are
words w1, w2 ∈ Σ∗ such that w = w1w

′w2. If w1 and w1w
′ have lengths i and j,

respectively, we say that w′ is the [i, j]-factor of w. The pattern matching problem
is as follows: given a word t ∈ Σ+ (called the text) and a regular expression p over
Σ (called the pattern), determine the smallest j ≥ 0 such that a [i, j]-factor of t
belongs to L (p). We call j the first occurrence of p in t.

Example 4.1. Let t = aabab and p = a(aba)∗b. The [1, 3]-, [3, 5]-, and [0, 5]-factors
of t are ab, ab, and aabab, respectively. All of these factors belong to L (p). The first
occurrence of p in t is 3.

Usually, one is interested in finding not only the ending position j of the [i, j]-
factor but also the starting position i. Adapting the algorithms to also provide this
information is left as an exercise.

4.1 The General Case

We present two different solutions to the pattern matching problem, using nonde-
terministic and deterministic automata, respectively.

Solution 1. Some word of L (p) occurs in t iff some prefix of t belongs to L (Σ∗p).
Thus, we construct an NFAAp for the regular expressionΣ∗p by first using the rules
of figure 1.16 and then removing all ε-transitions by means of NFAεtoNFA. Let us
call the resulting algorithm RegtoNFA. Once Ap is constructed, we simulate it on t
as in MemNFA[A](q0,t). Recall that the simulation algorithm reads the text letter
by letter, maintaining the set of states reachable from the initial state by the prefix
read so far. So the simulation reaches a set of states containing a final state iff the
prefix read so far belongs toL (Σ∗p). The pseudocode is described in algorithm 19.

Let us estimate the complexity of PatternMatchingNFA for a text of length
n over a k-letter alphabet Σ, where k ≤ n, and a pattern of length m. RegtoNFA
is the concatenation of RegtoNFAε and NFAεtoNFA. Since Σ∗p has size O(k +m),
RegtoNFAε takes time O(k +m) and outputs an NFA-ε with O(k +m) states and
O(k+m) transitions. When applied to this output, NFAεtoNFA takes timeO(k(k+

93

CHAPTER 4. APPLICATION I: PATTERN MATCHING 94

Algorithm 19 NFA-based pattern matching.
PatternMatchingNFA(t, p)
Input: text t = a1 · · · an ∈ Σ+, pattern p
Output: the first occurrence of p in t, or ⊥ if no such occurrence exists
1 A← RegtoNFA(Σ∗p)
2 S ← Q0

3 for all k = 0 to n− 1 do
4 if S ∩ F ̸= ∅ then return k
5 S ← δ(S, ak+1)

6 return ⊥

m)2) and outputs an NFA with O(m) states and O(km2) transitions. The for all
loop is executed at most n times, and for an automaton with O(m) states, each
line of the loop’s body takes a time of at most O(m2). So the loop runs in time
O(k(k +m)2 + nm2).

If k can be considered a constant—for example, when searching in standard
English books, where the alphabet always consists of twenty-six letters, fourteen
punctuation marks, and the blank symbol—then this reduces to O(nm2) time. If
the alphabet is implicitly defined by the text and can be of similar size, then, since
k ≤ n, we obtain O(n(n + m)2 + nm2) time, which for the typical case n > m
reduces to O(n3).

Solution 2. We proceed as in the previous case, but constructing a DFA for Σ∗p
instead of an NFA, as described in algorithm 20.

Algorithm 20 DFA-based pattern matching.
PatternMatchingDFA(t, p)
Input: text t = a1 · · · an ∈ Σ+, pattern p,
Output: the first occurrence of p in t, or ⊥ if no such occurrence exists.
1 A← NFAtoDFA(RegtoNFA(Σ∗p))
2 q ← q0
3 for all k = 0 to n− 1 do
4 if q ∈ F then return k
5 q ← δ(q, ak+1)

6 return ⊥

Note that there is a trade-off: while the conversion to a DFA can take (much)
longer than the conversion to an NFA, the membership check for a DFA is faster.
The complexity of PatternMatchingDFA for a word of length n and a pattern of
lengthm can be easily estimated: RegtoNFA(p) runs in time O(k(k+m)2 + nm2),
but it outputs an NFA with only O(m) states. The equivalent DFA produced by
NFAtoDFA has 2O(m) states and k·2O(m) transitions. However, transitions for letters
that do not appear in p necessarily go to a trap state and do not need to be explicitly
constructed. Since p has at most m different letters, the DFA can be constructed
in time m · 2O(m) = 2O(m). Since the loop is executed at most n times, and each

CHAPTER 4. APPLICATION I: PATTERN MATCHING 95

line of the body takes constant time, the overall runtime is O(n) + 2O(|Σ|+m). For
a fixed alphabet, this reduces to O(n) + 2O(m).

4.2 The Word Case

We study the special but very common case of the pattern matching problem in
which we wish to know if a given word appears in a text. In this case, the pattern
p is the word itself. For the rest of the section, we consider an arbitrary but fixed
text t = a1 · · · an and an arbitrary but fixed word pattern p = b1 · · · bm. We do not
assume that the alphabet has fixed size but only that it has size O(n+m).

It is easy to find a faster algorithm for this special case, without any use of
automata theory: just move a “window” of length m over the text t, one letter at
a time, and check after each move whether the content of the window is p. The
number of moves is n−m+1, and a check requiresO(m) letter comparisons, giving
a runtime of O(nm), independently of the size of the alphabet. In the rest of the
section, we present a faster algorithm with time complexity O(m + n). Notice
that in many applications n is very large, and so, even for a relatively smallm, the
difference between nm and m+ n can be significant.

Example 4.2. Figure 4.1a depicts an NFAAp, recognizingΣ∗p for the case p = nano.

In general, the obvious NFA recognizing Σ∗p is Ap = (Q,Σ, δ, {q0}, F), where
Q = {0, 1, . . . ,m}, q0 = 0, F = {m}, and

δ = {(i, bi+1, i+ 1) : 0 ≤ i < m} ∪ {(0, a, 0) : a ∈ Σ}.

Clearly, Ap can reach state k whenever the word read so far ends with b0 · · · bk.
We define the hit and miss letters for each state of Ap. Intuitively, the hit letter
makes Ap “progress” toward reading p, while the miss letters “throw it back.”

Definition 4.3. A letter a ∈ Σ is a hit for state i of Ap if δ(i, a) = {i+1}; otherwise,
it is a miss for i.

Example 4.4. Figure 4.1b depicts the DFA Bp obtained by applying NFAtoDFA on
Ap. It has as many states as Ap, and there is a natural correspondence between the
states of Ap and Bp: each state of Ap is the largest element of exactly one state of
Bp. For example, 3 is the largest element of {3, 1, 0}, and 4 is the largest element of
{4, 0}.

Definition 4.5. The head of a state S ⊆ {0, . . . ,m} of Bp, denoted by h(S), is the
largest element of S. The tail of S, denoted by t(S), is the set t(S) = S \{h(S)}. The
hit for a state S of Bp is defined as the hit of the state h(S) in Ap.

If we label a state with head k by the word b1 · · · bk, as shown in figure 4.1c,
then we see that the states of Bp keep track of how close the automaton is to
finding nano. For instance:

• ifBp is in state n and reads an a (a hit for this state), then it “makes progress”
and moves to state na;

CHAPTER 4. APPLICATION I: PATTERN MATCHING 96

0 1 2 3 4(a)

Σ

n a n o

0 1, 0 2, 0 3, 1, 0 4, 0(b) n a n o

n

a

n

n

other

other

other

other

other

ε n na nan nano(c) n a n o

n

a

n

n

other

other

other

other

other

Figure 4.1: NFA Ap and DFA Bp for p = nano.

• if Bp is in state nan and reads an a (a miss for this state), then it is “thrown
back” to state na. Not to state ε, because if the next two letters are n and o,
then Bp should accept!

Automaton Bp has another property that will be very important later on: for each
state S ̸= {0} of Bp, the tail of S is again a state of Bp. For instance, the tail of
{3, 1, 0} is {1, 0}, which is also a state of Bp. We show that this property and the
ones above hold in general and not only in the special case p = nano. Formally,
we prove the following invariant of NFAtoDFA when applied to a word pattern p.
Algorithm NFAtoDFA is recalled in algorithm 21 for convenience.

Proposition 4.6. Let p be a pattern of length m. For every k ≥ 0, let Sk be the kth
set picked from the workset during the execution of NFAtoDFA(Ap). We have:

(a) h(Sk) = k (which implies k ≤ m), and

(b) either k = 0 and t(Sk) = ∅, or k > 0 and t(Sk) ∈ Q.

Proof. We first prove by induction on k that (a), (b), and the following fact (c)
hold for every 0 ≤ k ≤ m: before the kth iteration of the while loop, the workset
only contains Sk. Then, we prove that Sm is the last state added to the workset
and hence that the mth iteration is the last one.

For k = 0, we have S0 = {0}, which implies (a) and (b); further, (c) follows
because of line 2. Assume now k > 0. By induction hypothesis, we have h(Sk) = k

CHAPTER 4. APPLICATION I: PATTERN MATCHING 97

Algorithm 21 Conversion from NFA to DFA.
NFAtoDFA(A)
Input: NFA A = (Q,Σ, δ,Q0, F)
Output: DFA B = (Q,Σ,∆, Q0,F) with L (B) = L (A)
1 Q,∆,F ← ∅
2 W = {Q0}
3 whileW ̸= ∅ do
4 pick S fromW
5 add S to Q
6 if S ∩ F ≠ ∅ then add S to F
7 for all a ∈ Σ do
8 S′ ← δ(S, a)

9 if S′ /∈ Q then add S′ toW
10 add (S, a, S′) to ∆

by (a) and t(Sk) = Sl for some l < k by (b); further, by (c), at the start of the
kth iteration the, workset only contains Sk. At the start of the kth iteration the
algorithm picks Sk from the workset, which becomes empty, and examines the sets
δ(Sk, a) for every action a. We consider two cases:

• Letter a is a miss for Sk. By definition, it is also a miss for its head h(Sk) = k.
So we have δ(k, a) = ∅, and hence δ(Sk, a) = δ(t(Sk), a) = δ(Sl, a). So
δ(Sk, a) was already explored by the algorithm during the lth iteration of
the loop, and δ(Sk, a) is not added to the workset at line 9.

• Letter a is a hit for Sk. We have δ(k, a) = {k + 1}. Since δ(Sk, a) =
δ(h(Sk), a) ∪ δ(t(Sk), a), we get δ(Sk, a) = {k + 1} ∪ δ(Sl, a). Since state
k + 1 has not been explored before, the set {k + 1} ∪ δ(Sl, a) becomes the
(k + 1)th state added to the workset, that is, Sk+1 = {k + 1} ∪ δ(Sl, a).
Therefore, h(Sk+1) = k + 1, which yields (a). Further, t(Sk+1) = t(Sl, a),
and so t(Sk+1) ∈ Q, which gives (b).

Let us now prove (c). For every 0 ≤ k < m, exactly one letter is a hit for Sk.
Therefore, at the end of the kth iteration, Sk+1 is the only state added to the
workset, and so the workset only contains k + 1. Thus, (c) follows from the fact
that the end of the kth iteration, is also the beginning of the (k + 1)th iteration.

It still remains to prove that Sm is the last state added to the workset. For this,
observe that there is no hit letter for Sm. Therefore, during the mth iteration, no
state is added to the workset. So, at the end of the mth iteration, the workset is
empty, and the algorithm terminates.

By proposition 4.6, the DFA Bp has m + 1 states for a pattern of length m.
So, NFAtoDFA does not incur in any exponential blowup for word patterns. Even
more: since, for any two distinct prefixes p1 and p2 of p, the residuals (Σ∗p)p1 and
(Σ∗p)p2 are also distinct, any DFA for Σ∗p has at least m+ 1 states. Thus:

Corollary 4.7. Automaton Bp is the minimal DFA recognizing Σ∗p.

CHAPTER 4. APPLICATION I: PATTERN MATCHING 98

b a n a n a n o n a

q7

Figure 4.2: Tape with reading head.

Since Bp is a DFA withm+1 states, it has (m+1) · |Σ| transitions. Transitions
of Bp labeled by letters that do not appear in p always lead to state 0, and so they
do not need to be explicitly stored. The remaining O(m) transitions for each state
can easily be constructed and stored using space and time of O(m2), leading to
a O(n + m2) algorithm. To achieve a time of O(n + m), we introduce an even
more compact data structure: the lazy DFA for Σ∗p, which, as we shall see, can be
constructed in space and time O(m).

4.2.1 Lazy DFAs

Recall that a DFA can be seen as the control unit of a machine that reads an input
from a tape divided into cells by means of a reading head. At each step, the
machine reads the contents of the cell occupied by the reading head, updates the
current state according to the transition function, and moves the head one cell to
the right. It accepts a word if the state reached after reading it is final.

In lazy DFAs, the machine advances the head one cell to the right or keeps it
on the same cell (see figure 4.2). Which of the two takes place is a function of
the current state and the current letter read by the head. Formally, a lazy DFA
only differs from a DFA in the transition function, which has the form δ : Q×Σ→
Q × {R,N}, where R stands for “move Right” and N stands for “No move.” A
transition of a lazy DFA is a quadruple of the form (q, a, q′, d), where d ∈ {R,N}
is the move of the head. Intuitively, a transition (q, a, q′, N) means that state q
delegates processing the letter a to state q′.

A lazy DFA Cp for Σ∗p. Recall that each state Sk of Bp, except the last one, has
a hit letter and all other letters are misses. In particular, if letter a is a miss, then
δB(Sk, a) = δ(t(Sk), a), and so:

When Bp is in state Sk and reads a miss, it moves to the same state it
would move to if it were in state t(Sk).

Using this fact, we construct a lazy DFA Cp with the same states as Bp and with
transition function δC(Sk, a) given by:

• If a is a hit for Sk, then Cp behaves as Bp, that is:

δC(Sk, a) = (Sk+1, R).

• If a is a miss for Sk and k > 0, then Sk “delegates” to t(Sk), that is:

δC(Sk, a) = (t(Sk), N).

CHAPTER 4. APPLICATION I: PATTERN MATCHING 99

0 1, 0 2, 0 3, 1, 0 4, 0(a) n a n o

n

a

n

n

other

other

other

other

other

0 1, 0 2, 0 3, 1, 0 4, 0(b)
n,R a,R n,R o,R

miss, Nmiss, R

miss, N

miss, N

miss, N

Figure 4.3: DFA and lazy DFA for p = nano.

• If a is a miss for Sk and k = 0, then t(Sk) is not a state, and so Sk cannot
“delegate”; instead, Cp behaves as Bp:

δC(S0, a) = (S0, R).

Note that, in the case of a miss, Cp always delegates to the same state, inde-
pendently of the letter being read. So, we can “summarize” the transitions for all
misses into a single transition δC(Sk,miss) = (t(Sk), N).

Example 4.8. Figure 4.3 depicts the DFA and the lazy DFA for p = nano, where we
write k instead of Sk in the states of the lazy DFA. Consider the behavior of Bp and
Cp from state S3 if they read the letter n. While Bp moves to S1 (what it would do
if it were in state S1), Cp delegates to S1, which delegates to S0, which moves to S1.
That is, the move of Bp is simulated in Cp by a chain of delegations, followed by a
move of the head to the right (in the worst case, the chain of delegations reaches S0,
who cannot delegate to anybody). The final destination is the same in both cases.

Observe that Cp may require more steps than Bp to read the text. However,
we can easily show that the number of steps is at most 2n. For every letter, the
automaton Cp does a number of N -steps, followed by one R-step. Call this step
sequence a macrostep, and let Sji be the state reached after the ith macrostep,
with j0 = 0. Since the ith macrostep leads from Sji−1

to Sji , and N -steps never
move forward along the spine, the number of steps of the ith macrostep is bounded
by ji−1 − ji + 2. Hence, the total number of steps is bounded by

n∑
i=1

(ji−1 − ji + 2) = j0 − jn + 2n = 0− jn + 2n ≤ 2n.

CHAPTER 4. APPLICATION I: PATTERN MATCHING 100

Computing Cp in time O(m): The Knuth–Morris–Pratt algorithm. LetMiss(i)
be the head of the state reached from Si by the miss transition of the lazy DFA.
For instance, for p = nano, we have Miss(3) = 1 and Miss(i) = 0 otherwise (see
figure 4.3). Clearly, if we can computeMiss(0), . . . ,Miss(m) together in timeO(m),
then we can construct Cp in time O(m).

Consider the auxiliary function miss(Si) which returns the target state of the
miss transition, instead of its head, that is, Miss(i) = h(miss(Si)). We obtain some
equations for miss and then transform them into equations for Miss. By definition,
for every i > 0, in the case of a miss, the state Si delegates to t(Si), that is,
miss(Si) = t(Si). Since t(S1) = {0} = S0, this already gives miss(S1) = S0. For
i > 1, using Si−1 = {i− 1} ∪ t(Si−1), we get

t(Si) = t(δB(Si−1, bi)) = t(δ(i− 1, bi) ∪ δ(t(Si−1, bi))) =
t({i} ∪ δ(t(Si−1), bi)) = δB(t(Si−1), bi),

yielding
miss(Si) = δB(miss(Si−1), bi). (4.1)

Moreover, we have

δB(Sj , b) =

Sj+1 if b = bj+1 (hit),
S0 if b ̸= bj+1 (miss) and j = 0,

δB(t(Sj), b) if b ̸= bj+1 (miss) and j ̸= 0.
(4.2)

Combining (4.1) and (4.2), and recalling that miss(S0) = S0, we obtain

miss(Si) =

{
S0 if i = 0 or i = 1,

δB(miss(Si−1), bi) if i > 1,
(4.3)

δB(Sj , b) =

Sj+1 if b = bj+1 (hit),
S0 if b ̸= bj+1 (miss) and j = 0,

δB(miss(Sj), b) if b ̸= bj+1 (miss) and j ̸= 0.

(4.4)

Let Miss(i) = h(miss(Si)) and ∆B(i, b) = h(δB(Si, b)). Equations (4.3) and (4.4)
on sets of states become equations on numbers:

Miss(i) =

{
0 if i = 0 or i = 1,

∆B(Miss(i− 1), bi) if i > 1,
(4.5)

∆B(j, b) =

j + 1 if b = bj+1,

0 if b ̸= bj+1 and j = 0,

∆B(Miss(j), b) if b ̸= bj+1 and j ̸= 0.

(4.6)

Equations (4.5) and (4.6) lead to the procedures described in algorithm 22.
Given a word p of length m, CompMiss(p) computes Miss(i) for every index i ∈
{0, . . . ,m}. CompMiss(p) calls DeltaB(j, b), which in turn calls Miss(j).

It remains to prove that CompMiss(p) runs in time O(m). This amounts to
showing that all calls to DeltaB together take time O(m). During the execution

CHAPTER 4. APPLICATION I: PATTERN MATCHING 101

Algorithm 22 Algorithm CompMiss(p).
CompMiss(p)
Input: pattern p = b1 · · · bm
1 Miss(0)← 0; Miss(1)← 0

2 for i← 2, . . . ,m do
3 Miss(i)← DeltaB(Miss(i− 1), bi)

DeltaB(j, b)
Input: head j ∈ {0, . . . ,m}, letter b
Output: head of the state δB(Sj , b)
1 while b ̸= bj+1 and j ̸= 0 do j ← Miss(j)
2 if b = bj+1 then return j + 1

3 else return 0

of CompMiss(p), function DeltaB(j, b) is called with j = Miss(1), b = b2; j =
Miss(2), b = b3; …; j = Miss(m − 1), b = bm. Let ni be the number of iterations
of the while loop, at line 1 of DeltaB, executed during the call with arguments
j = Miss(i − 1) and b = bi. We show that

∑m
i=2 ni < m. To this end, we claim

that ni ≤ Miss(i − 1) − (Miss(i) − 1) holds. Indeed, since each iteration of the
loop decreases j by at least 1 (line 1 of DeltaB), the number of iterations is at most
equal to the value of j before the loop minus its value after the loop. The value of
j before the loop is Miss(i− 1), and so it suffices to show that the final value is at
least Miss(i) − 1. This follows from the fact that the call to DeltaB returns either
j + 1 or 0 (lines 2 and 3 of DeltaB), and the returned value is assigned to Miss(i)
(line 3 of CompMiss). This concludes the proof of the claim, and we get

m∑
i=2

ni ≤
m∑
i=2

(Miss(i− 1)−Miss(i) + 1) = Miss(1)−Miss(m) +m− 1 < m.

4.3 Exercises

 Exercise 81. Use ideas from the main text to design an algorithm for the
pattern matching problem that identifies a matched [i, j]-factor of the text, where
position j is minimal and where position i is as close to j as possible, that is,
maximal w.r.t. j. Run your algorithm on text t = caabac and pattern p = a+(b +
c)a+ + bac. What is the complexity of your algorithm?

 Exercise 82. The pattern matching problem deals with finding the first
[i, j]-factor of t that belongs to L (p). Show that the first such [i, j]-factor w.r.t. j is
not necessarily the first one w.r.t. to i.

 Exercise 83. Suppose we have an algorithm that solves the pattern match-
ing problem—that is, one that finds the first [i, j]-factor (w.r.t. j) of a text t that

CHAPTER 4. APPLICATION I: PATTERN MATCHING 102

matches a pattern p. How can we use it as a black box to find the last [i, j]-factor
w.r.t. i?

 Exercise 84. Use the ideas of exercises 81 and 83 to obtain an algorithm that
solves the pattern matching problem, but this time by finding the first [i, j]-factor
w.r.t. i (instead of j).

 Exercise 85.

(a) Build the automata Bp and Cp for the word pattern p = mammamia.

(b) How many transitions are taken when reading t = mami in Bp and Cp?

 Exercise 86. We have shown that lazy DFAs for a word pattern may need
more than n steps to read a text of length n but not more than 2n +m, where m
is the length of the pattern. Find a text t and a word pattern p such that the run
of Bp on t takes at most n steps and the run of Cp takes at least 2n− 1 steps.

Hint: A simple pattern of the form ak is sufficient.

 Exercise 87. Give an algorithm that, given a text t and a word pattern p,
counts the number of occurrences of p in t. Try to obtain a complexity ofO(|t|+|p|).

 Exercise 88. Two-way DFAs are an extension of lazy automata where the
reading head is also allowed to move left. Formally, a two-way DFA (2DFA) is a
tuple A = (Q,Σ, δ, q0, F), where δ : Q × (Σ ∪ {⊢,⊣}) → Q × {L,N,R}. Given a
word w ∈ Σ∗, A starts in q0 with its reading tape initialized with ⊢ w ⊣ and its
reading head pointing on ⊢. When reading a letter, A moves the head according
to δ (Left, No move, Right). Moving left on ⊢ or right on ⊣ does not move the
reading head. A accepts w if, and only if, it reaches ⊣ in a state of F .

(a) Let n ∈ N. Give a 2DFA that accepts (a+ b)
∗
a(a+ b)

n.

(b) Give a 2DFA that does not terminate on any input.

(c) Describe an algorithm to test whether a given 2DFA A accepts a given word
w.

(d) Let A1, A2, . . . , An be DFAs over a common alphabet. Give a 2DFA B such
that

L (B) = L (A1) ∩ L (A2) ∩ · · · ∩ L (An) .

 Exercise 89. In order to make pattern matching robust to typos, we further
wish to include “similar words” in our results. For this, we consider as “similar”
words with a small Levenshtein distance (also known as the edit distance). We
may transform a word w into a new word w′ using the following operations, where
ai, b ∈ Σ:

(R) Replace: w = a1 · · · ai−1aiai+1 · · · al → w′ = a1 · · · ai−1 b ai+1 · · · al,

CHAPTER 4. APPLICATION I: PATTERN MATCHING 103

(D) Delete: w = a1 · · · ai−1aiai+1 · · · al → w′ = a1 · · · ai−1 ε ai+1 · · · al,

(I) Insert: w = a1 · · · ai−1aiai+1 · · · al → w′ = a1 · · · ai−1ai b ai+1 · · · al.

The Levenshtein distance of w and w′, denoted ∆(w,w′), is the minimal number
of operations (R), (D), and (I) needed to transform w into w′. We write ∆L,i =
{w ∈ Σ∗ : ∃w′ ∈ L s.t. ∆(w,w′) ≤ i} to denote the language of all words with
Levenshtein distance at most i to some word of L.

(a) Compute ∆(abcde, accd).

(b) Prove the following statement: If L is a regular language, then ∆L,n is a
regular language.

(c) Let p be the pattern abba. Construct an NFA-ε locating the pattern or varia-
tions of it with Levenshtein distance 1.

Chapter 5
Operations on Relations:

Implementations

In this chapter, we show how to implement operations on relations over a (possibly
infinite) universe U . Even though we will encode elements from U as words, when
implementing relations, it is convenient to think of U as an abstract universe and
not as the set of all words over an alphabet. The reason is that for some operations
we will encode an object not by a single word but by (infinitely) many words. In
the case of operations on sets, this is not necessary, and one can safely identify the
object and its encoding as a word.

We are interested in several operations. A first group contains the operations
we already studied for sets but lifted to relations. For instance, given objects x, y
and a relation R, we consider the operation Membership((x, y), R) that returns
true if (x, y) ∈ R, and false otherwise, or Complement(R), which returns R =
(U × U) \R. Their implementations will be very similar to those of the language
case. A second group contains three fundamental operations proper to relations.
Given relations R,R1, R2 ⊆ U × U :

Operation Returns

Projection_1(R) π1(R) = {x : ∃y s.t. (x, y) ∈ R}

Projection_2(R) π2(R) = {y : ∃x s.t. (x, y) ∈ R}

Join(R1, R2) R1 ◦R2 = {(x, z) : ∃y s.t. (x, y) ∈ R1 ∧ (y, z) ∈ R2}

Finally, given X ⊆ U , we are interested in two derived operations:

Operation Returns

Post(X, R) postR(X) = {y : ∃x ∈ X s.t. (x, y) ∈ R}

Pre(X, R) preR(X) = {y : ∃x ∈ X s.t. (y, x) ∈ R}

Example 5.1. Let R = {(a, a), (b, a), (ab, ba)}, S = {(ba, b)} and X = {a, b, ab}.
We have

π1(R) = {a, b, ab}, π2(R) = {a, ba} and R ◦ S = {(ab, b)}.

Furthermore, postR(X) = {a, ba} and preR(X) = {a, b}.

104

CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS 105

5.1 Encodings

We encode elements of U as words over an alphabet Σ. It is convenient to assume
that Σ contains a padding letter # and that an element x ∈ U is encoded not only
by a word sx ∈ Σ∗ but by all the words of the language {sx#n : n ≥ 0}. That
is, an element x has a shortest encoding sx, and other encodings are obtained
by appending to sx an arbitrary number of padding letters. We assume that the
shortest encodings of two distinct elements are also distinct and that, for every
x ∈ U , the last letter of sx differs from #. It follows that the sets of encodings of
two distinct elements are disjoint.

The advantage of this assumption is that for any two elements x and y, there
exists a number n (and in fact infinitely many) such that both x and y have en-
codings of length n. We say that a pair of words (wx, wy) encodes the pair (x, y) if
wx encodes x, wy encodes y, and |wx| = |wy|. Note that if (wx, wy) encodes (x, y),
then so does (wx#k, wy#k) for every k ≥ 0. If sx and sy are the shortest encodings
of x and y, and |sx| ≤ |sy|, then the shortest encoding of (x, y) is (sx#|sy|−|sx|, sy).

Example 5.2. We encode the number 6 not only by its small end binary representa-
tion 011 but by any word of L (0110∗). In this case, we have Σ = {0, 1} with 0 as a
padding letter. Note, however, that taking 0 as a padding letter requires to take the
empty word as the shortest encoding of the number 0 (otherwise, the last letter of the
encoding of 0 is the padding letter).

In the rest of this chapter, we use this particular encoding of natural numbers
without further notice. We call it the least-significant-bit-first (LSBF) encoding and
write, for example, LSBF(6) to denote the language L (0110∗).

If we encode an element of U by more than one word, then we have to define
when is an element accepted or rejected by an automaton. Does it suffice that the
automaton accepts (rejects) some encoding, or does it have to accept (reject) all
of them? Several definitions are possible, leading to different implementations of
the operations. We choose the following option:

Definition 5.3. Suppose an encoding of the universe U over Σ∗ has been fixed. Let
A be an NFA. We say that

• A accepts x ∈ U if it accepts all encodings of x,

• A rejects x ∈ U if it accepts no encoding of x, and

• A recognizes a set X ⊆ U if

L (A) = {w ∈ Σ∗ : w encodes some element of X}.

A set is regular (with respect to the fixed encoding) if it is recognized by some NFA.

Observe that if A recognizes X ⊆ U , then, as one would expect, A accepts
every x ∈ X and rejects every x /∈ X. Furthermore, with this definition, an NFA
may neither accept nor reject a given x. An NFA is well formed if it recognizes some
set of objects and ill-formed otherwise.

CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS 106

5.2 Transducers and Regular Relations

Assume an encoding of the universe U over alphabet Σ has been fixed.

Definition 5.4. A transducer over Σ is an NFA over the alphabet Σ× Σ.

Transducers are also called Mealy machines. According to this definition, a
transducer accepts sequences of pairs of letters, but it is convenient to look at it as
a machine accepting pairs of words:

Definition 5.5. Let T be a transducer over Σ. Given words u = a1a2 · · · an and v =
b1b2 · · · bn, we say that T accepts the pair (u, v) if it accepts the word (a1, b1) · · · (an, bn) ∈
(Σ× Σ)∗.

In other words, we identify the set∪
i≥0

(Σi × Σi) with (Σ× Σ)∗ =
∪
i≥0

(Σ× Σ)i.

We now define when a transducer accepts a pair (x, y) ∈ U × U , which allows
us to define the relation recognized by a transducer. The definition is analogous
to definition 5.3.

Definition 5.6. Let T be a transducer. We say that

• T accepts a pair (x, y) ∈ U × U if it accepts all encodings of (x, y),

• T rejects a pair (x, y) ∈ U × U if it accepts no encoding of (x, y), and

• T recognizes a relation R ⊆ U × U if

L (T) = {(wx, wy) ∈ (Σ× Σ)∗ : (wx, wy) encodes some pair of R}.

A relation is regular if it is recognized by some transducer.

It is important to emphasize that not every transducer recognizes a relation,
because it may recognize only some, but not all, of the encodings of a pair (x, y).
As for NFAs, we say a transducer is well formed if it recognizes some relation and
ill-formed otherwise.

Example 5.7. The Collatz function is the function f : N→ N defined as follows:

f(n) =

{
3n+ 1 if n is odd,
n/2 if n is even.

Figure 5.1 depicts a transducer that recognizes {(n, f(n)) : n ∈ N} using the LSBF
encoding and Σ = {0, 1}.

The elements of Σ × Σ are drawn as column vectors with two components. The
transducer accepts, for instance, the pair (7, 22) because it accepts all pairs of words
of the form (111000k, 011010k), that is, it accepts[

1
0

] [
1
1

] [
1
1

] [
0
0

] [
0
1

] [
0
0

]k
for every k ≥ 0.

Moreover, we have LSBF(7) = L (1110∗) and LSBF(22) = L (011010∗).

CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS 107

1

2

4

3

5 6

[
0
0

]

[
1
0

]

[
0
1

]

[
0
1

]
[
1
0

]

[
0
0

] [
1
1

]

[
0
0

]
[
1
0

]
[
1
1

]

[
0
1

]

[
1
1

]
[
0
0

]

Figure 5.1: A transducer for Collatz’s function.

Why “transducer”? In engineering, a transducer is a device that converts signals
in one form of energy into signals of a different form. Two examples of transducers
aremicrophones and loudspeakers. We can look at a transducer T over an alphabet
Σ as a device that transforms an input word into an output word. If we chooseΣ as
the union of an input and an output alphabet, and ensure that in every transition

q
(a,b)−−−→ q′

the letters a and b are an input and an output letter, respectively, then the trans-
ducer transforms a word over the input alphabet into a word over the output al-
phabet. Observe that the same word can be transformed into different ones.

When looking at transducers from this point of view, it is customary to write
a pair (a, b) ∈ Σ × Σ as a/b and read it as “the transducer reads an a and writes
a b.” In some exercises, we use this notation. However, in section 5.4 we extend
the definition of a transducer and consider transducers that recognize relations
of arbitrary arity. For such transducers, the metaphor of a converter is less ap-
pealing: while in a binary relation, it is natural and canonical to interpret the
first and second components of a pair as “input” and “output,” there is no such
canonical interpretation for a relation of arity 3 or more. In particular, there is no
canonical extension of the a/b notation. For this reason, while we keep the name
“transducer” for historical reasons, we use the notation

q
(a1,...,an)−−−−−−−→ q′

for transitions, or the column notation, as in example 5.7.

Determinism. A transducer is deterministic if it is a DFA. In particular, a state of a
deterministic transducer over alphabet Σ×Σ has exactly |Σ|2 outgoing transitions.
The transducer of figure 5.1 is deterministic in this sense, when an appropriate trap
state is added.

CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS 108

There is another possibility to define determinism of transducers, which cor-
responds to the converter interpretation (a, b) 7→ a/b described in the previous
paragraph. If the letter a/b is interpreted as “the transducer receives the input a
and produces the output b,” then it is natural to call a transducer deterministic
if for every state q and every letter a, there is exactly one transition of the form
(q, a/b, q′). Note that these two definitions of determinism are not equivalent.

We do not give separate implementations of the operations for deterministic
and nondeterministic transducers. The new operations (projection and join) can
only be reasonably implemented on nondeterministic transducers, and so the de-
terministic case does not add anything new to the discussion of chapter 3.

5.3 Implementing Operations on Relations

In chapter 3, we made two assumptions on the encoding of objects from the uni-
verse U as words:

• every word is the encoding of some object, and

• every object is encoded by exactly one word.

We have relaxed the second assumption and allowed for multiple (and, in fact, in-
finitely many) encodings of an object. Fortunately, as long as the first assumption
still holds, the implementations of the boolean operations remain correct, in the
following sense: if the input automata are well formed, then the output automa-
ton is also well formed. Consider, for instance, the complementation operation
on DFAs. Since every word encodes some object, the set of all words can be par-
titioned in equivalence classes, each of them containing all the encodings of an
object. If the input automaton A is well formed, then for every object from the
universe, A either accepts all words in an equivalence class or none of them. The
complement automaton then satisfies the same property but accepts a class iff the
original automaton does not accept it.

Note that membership of an object x in a set represented by a well-formed
automaton can be checked by taking any encoding wx of x and checking if the
automaton accepts wx.

5.3.1 Projection

Given a transducer T recognizing a relation R ⊆ X × X, we construct an au-
tomaton over Σ recognizing the set π1(R). The initial idea is very simple: loosely
speaking, we go through all transitions and replace their labels (a, b) by a. This
transformation yields an NFA that has an accepting run on a word w iff T has an
accepting run on some pair (w,w′). Formally, this step is carried out in lines 1–4
of algorithm 23 (line 5 is explained below).

However, this initial idea is not fully correct. Consider R = {(1, 4)} over N. A
transducer T recognizing relation R recognizes the language

{(10n+2, 0010n) : n ≥ 0},

CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS 109

Algorithm 23 Projection onto the first component of a binary relation.
Proj_1(T)
Input: transducer T = (Q,Σ× Σ, δ,Q0, F)
Output: NFA A = (Q′,Σ, δ′, Q′0, F

′) with L (A) = π1(L (T))
1 Q′ ← Q; Q′0 ← Q0; F ′′ ← F

2 δ′ ← ∅
3 for all (q, (a, b), q′) ∈ δ do
4 add (q, a, q′) to δ′

5 F ′ ← PadClosure((Q′,Σ, δ′, Q′0, F ′′),#)

Algorithm 24 Closure with respect to a padding symbol #.
PadClosure(A,#)
Input: NFA A = (Σ, Q, δ, q0, F)
Output: new set F ′ of final states
1 W ← F ; F ′ ← ∅
2 whileW ̸= ∅ do
3 pick q fromW

4 add q to F ′

5 for all (q′,#, q) ∈ δ do
6 if q′ /∈ F ′ then add q′ toW
7 return F ′

and hence the NFA constructed after lines 1–4 recognizes {10n+2 : n ≥ 0}. How-
ever, it does not recognize the number 1, because it does not accept all of its
encodings: the encodings 1 and 10 are rejected.

This problem can be easily repaired. We introduce an auxiliary construction
that “completes” a given NFA: the padding closure of an NFA is another NFA that
accepts a wordw if and only if the first NFA acceptsw#n for some n ≥ 0. Formally,
the padding closure augments the set of final states and returns a new such set.
The procedure constructing the padding closure is described in algorithm 24.

Projection onto the second component is implemented in the same fashion.
The complexity of Proj_i is clearly O(|δ|+ |Q|), since every transition is examined
at most twice, once in line 3 and possibly a second time at line 5 of PadClosure.

Observe that projections do not preserve determinism, because two transitions
leaving a state and labeled by two different (pairs of) letters (a, b) and (a, c) be-
come after projection two transitions labeled with the same letter a. In practice,
the projection of a transducer is hardly ever deterministic. Since, typically, a se-
quence of operations manipulating transitions contains at least one projection,
deterministic transducers are relatively uninteresting.

Example 5.8. Figure 5.2 depicts the NFAs obtained by projecting the transducer for
the Collatz function onto the first and second components. States 4 and 5 of the NFA
on the left are made final by PadClosure, because they can both reach the final state
6 through a chain of 0s (recall that 0 is the padding symbol). The same happens to
state 3 for the NFA on the right, which can reach the final state 2 with 0.

CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS 110

Recall that the original transducer recognizes R = {(n, f(n)) : n ∈ N}, where
f denotes the Collatz function. Therefore, we have π1(R) = {n : n ∈ N} = N and
π2(R) = {f(n) : n ∈ N}, and a moment of thought shows that π2(R) = N as well.
So, both NFAs should be universal, and the reader can easily check that this is indeed
the case. Observe that both projections are nondeterministic, although the transducer
is deterministic.

5.3.2 Join, Post and Pre

We give an implementation of the Join operation and then show how to modify it
to obtain implementations of Pre and Post.

Given transducers T1 and T2 recognizing relations R1 and R2, we construct a
transducer T1 ◦T2 recognizing R1 ◦R2. We first construct a transducer T with the
following property: T accepts (w,w′) iff there is a word w′′ such that T1 accepts
(w,w′′) and T2 accepts (w′′, w′). The intuitive idea is to slightly modify the pairing
operation. Recall that the pairing [A1, A2] of two NFAs A1 and A2 has a transition
[q, r]

a−→[q′, r′] iff

A1 has a transition q a−→ q′ and A2 has a transition r a−→ r′.

Similarly, T has a transition [q, r]
(a,b)−−−→[q′, r′] if there is a letter c such that

T1 has a transition q
(a,c)−−−→ q′ and A2 has a transition r

(c,b)−−−→ r′.

So, loosely speaking, the transducer T can output b on input a if there is a letter
c such that T1 can output c on input a, and T2 can output b on input c. It follows
that T has a run

[q01, q02]
(a1,b1)−−−−−→[q11, q12]

(a2,b2)−−−−−→ · · · (an,bn)−−−−−→[qn1, qn2]

iff T1 and T2 respectively have runs

q01
(a1,c1)−−−−−→ q11

(a2,c2)−−−−−→ · · · (an,cn)−−−−−→ qn1,

q02
(c1,b1)−−−−−→ q12

(c2,b2)−−−−−→ · · · (cn,bn)−−−−−→ qn2.

1

2

4

3

5 6

0

1

0

0

1

0 1

0

1

1

0

1

0

1

2

4

3

5 6

0

0

1

1

0

0 1

0

0

1

1

1

0

Figure 5.2: Projection of the transducer for the Collatz function onto the first
component (left) and second component (right).

CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS 111

Algorithm 25 Join operation.
Join(T1, T2)
Input: transducers T1 = (Q1,Σ× Σ, δ1, Q01, F1), T2 = (Q2,Σ× Σ, δ2, Q02, F2)
Output: transducer T1 ◦ T2 = (Q,Σ× Σ, δ,Q0, F)

1 Q, δ, F ′ ← ∅; Q0 ← Q01 ×Q02

2 W ← Q0

3 whileW ̸= ∅ do
4 pick [q1, q2] fromW

5 add [q1, q2] to Q
6 if q1 ∈ F1 and q2 ∈ F2 then add [q1, q2] to F ′

7 for all (q1, (a, c), q′1) ∈ δ1, (q2, (c, b), q′2) ∈ δ2 do
8 add ([q1, q2], (a, b), [q

′
1, q
′
2]) to δ

9 if [q′1, q′2] /∈ Q then add [q′1, q
′
2] toW

10 F ← PadClosure((Q,Σ× Σ, δ,Q0, F
′), (#,#))

Formally, if T1 = (Q1,Σ×Σ, δ1, Q01, F1) and T2 = (Q2,Σ×Σ, δ2, Q02, F2), then
T = (Q,Σ×Σ, δ,Q0, F

′) is the transducer generated by lines 1–9 of algorithm 25.
However, transducer T does not necessarily recognize R1 ◦ R2 yet. The issue is
similar to the one of the projection operation. Consider the relations on numbers
R1 = {(2, 4)} and R2 = {(4, 2)}. Transducers T1 and T2 recognize

{(010n+1, 0010n) : n ≥ 0} and {(0010n, 010n+1) : n ≥ 0}.

Therefore, T recognizes {(010n+1, 010n+1) : n ≥ 0}. According to our definition,
T does not accept the pair (2, 2) ∈ N × N, because it does not accept all of its
encodings: the encoding (01, 01) is missing. To fix this, we add a padding closure
again at line 10, this time using (#,#) as a padding symbol.

The transducer T1 ◦ T2 has O(|Q1| · |Q2|) states.

Example 5.9. Recall that the transducer T of figure 5.1 recognizes the relation
{(n, f(n)) : n ∈ N}, where f is the Collatz function. Figure 5.3 depicts the transducer
T ◦ T as computed by Join(T , T). For example, the transition leading from [2, 3] to
[3, 2], labeled by (0, 0), is the result of “pairing” the transition from 2 to 3 labeled by
(0, 1) and the one from 3 to 2 labeled by (1, 0). Observe that T ◦T is not deterministic
since, for instance, [1, 1] is the source of two transitions labeled by (0, 0), even though
T is deterministic.

This transducer recognizes the relation {(n, f(f(n))) : n ∈ N}. A little calculation
gives

f(f((n)) =

n/4 if n ≡ 0 (mod 4)

3n/2 + 1 if n ≡ 2 (mod 4)

3n/2 + 1/2 if n ≡ 1 (mod 4) or n ≡ 3 (mod 4).

The three (shaded) components of the transducer reachable from state [1, 1] corre-
spond to these three cases.

CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS 112

2, 5

3, 4

2, 6

3, 5

[
0
1

]

[
1
0

]

[
1
0

] [
0
0

] [
1
1

] [
0
1

]

[
0
0

]

[
1
1

]

2, 2

2, 3

3, 2

3, 3

[
0
1

] [
1
0

]

[
0
1

]

[
1
0

]

[
0
0

]
[
1
1

]

[
0
0

]

[
1
1

]

4, 2 5, 3 6, 2

4, 3 5, 2 6, 3

[
0
1

] [
0
0

]

[
0
1

]

[
1
0

][
1
1

]

[
1
0

] [
0
0

]
[
1
0

]
[
0
1

]
[
1
1

]
[
1
1

]

[
0
0

]

1, 1

[
0
1

]
[
0
0

]

[
0
0

]

[
1
0

]
[
1
1

]

Figure 5.3: A transducer for f(f(n)).

Post and Pre. Note that Post(X, R) = Projection_2(Join(IdX , R)) and Pre(X,
R) = Projection_1(Join(R, Idx)), where IdX = {(x, x) : x ∈ X}. Thus, op-
erations Post and Pre can be applied by chaining the previous implementations.
However, it is possible to implement them directly.

Given an NFA A1 = (Q1,Σ, δ1, Q01, F1) recognizing a regular set X ⊆ U and a
transducer T2 = (Q2,Σ×Σ, δ2, q02, F2) recognizing a regular relation R ⊆ U ×U ,
we construct an NFA B recognizing the set postR(X). It suffices to slightly modify
the join operation. The algorithm Post(A1, T2) is the result of replacing lines 7–8
of Join by

7 for all (q1, c, q′1) ∈ δ1, (q2, (c, b), q′2) ∈ δ2 do
8 add ([q1, q2], b, [q

′
1, q
′
2]) to δ

As for the join operation, the resulting NFA has to be postprocessed, closing it with
respect to the padding symbol.

CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS 113

In order to construct an NFA recognizing preR(X), we replace lines 7–8 by

7 for all (q1, (a, c), q′1) ∈ δ1, (q2, c, q′2) ∈ δ2 do
8 add ([q1, q2], a, [q

′
1, q
′
2]) to δ

Observe that both post and pre are computed with the same complexity as the
pairing construction—namely, the product of the number of states of transducer
and NFA.

Example 5.10. Let us construct an NFA recognizing the image of multiples of 3
under the Collatz function—that is, the set {f(3n) : n ∈ N}. For this, we first need
an automaton recognizing the set Y of all LSBF encodings of the multiples of 3. Such
a DFA is depicted in figure 5.4a. For instance, this DFA recognizes 0011 (encoding
of 12) and 01001 (encoding of 18) but not 0101 (encoding of 10). We now compute
postR(Y), where, as usual, R = {(n, f(n)) : n ∈ N}. The result is the NFA shown in
figure 5.4c.

For instance, [1, 1] 1−→[1, 3] is generated by 1 0−→ 1 of the DFA and 1
(0,1)−−−→ 3 of the

transducer for the Collatz function. State [2, 3] becomes final due to the closure with
respect to the padding symbol 0.

The NFA of figure 5.4c is not difficult to interpret. The multiples of 3 are the union
of the sets {6k : k ∈ N}, all whose elements are even, and the set {6k + 3 : k ∈ N},
all whose elements are odd. Applying f to them yields the sets {3k : k ∈ N} and
{18k + 10 : k ∈ N}. The first of them is again the set of all multiples of 3, and it is

1 2 3

(a)

1

1

0

0

0 1

1

2

4

3

5 6

(b)

[
0
0

]

[
1
0

]

[
0
1

]

[
0
1

]

[
1
0

]

[
0
0

] [
1
1

]

[
0
0

]

[
1
0

]
[
1
1

]

[
0
1

]

[
1
1

]
[
0
0

]

1, 3 2, 2 3, 3

1, 2 2, 3 3, 2

0 1

0

10

1
1

1

0

0

1

0

2, 4 1, 4 1, 5

3, 4 2, 5 1, 6

3, 5 3, 6 2, 6

0

1

1

0

0

0

1

1

0

1

1

0

0

0

1

1

0

1, 1

1

0

0

(c)

Figure 5.4: Left: (a) DFA for multiples of 3, (b) transducer for the Collatz function
f . Right: (c) NFA computing f for multiples of 3.

CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS 114

recognized by the upper part of the NFA. In fact, this upper part is a DFA, and if we
minimize it, we obtain exactly the DFA described above. The lower part of the NFA
recognizes the second set. The lower part is minimal; it is easy to find for each state
a word recognized by it but not by the others.

It is interesting to observe that an explicit computation of the set {f(3k) : k ∈ N})
in which we apply f to eachmultiple of 3 does not terminate, because the set is infinite.
In a sense, our solution “speeds up” the computation by an infinite factor!

5.4 Relations of Higher Arity

The implementations described in the previous sections can be easily extended to
relations of higher arity over the universe U . We briefly describe the generaliza-
tion. Let us fix an encoding of U over the alphabet Σ with padding symbol #.
A tuple (w1, . . . , wk) of words over Σ encodes the tuple (x1, . . . , xk) ∈ Uk if wi
encodes xi for every 1 ≤ i ≤ k, and |w1| = · · · = |wk|. A k-transducer over Σ is
an NFA over alphabet Σk. Acceptance of a k-transducer is defined as for standard
transducers.

Boolean operations are defined as for NFAs. The projection operation can be
generalized to projection over an arbitrary subset of components. For this, given
an index set I = {i1, . . . , in} ⊆ {1, . . . , k}, let xI denote the projection of a tuple
x = (x1, . . . , xk) ∈ Uk over I, defined as the tuple (xi1 , . . . , xin) ∈ Un. Given a
relation R ⊆ U × U , we define:

Operation Returns

Projection_I(R): πI(R) = {xI : x ∈ R}

The operation is implemented analogously to the case of a binary relation.
Given a k-transducer T recognizingR, the n-transducer recognizing Projection_I(R)
is computed as follows:

• Replace every transition (q, (a1, . . . , ak), q
′) of T by (q, (ai1 , . . . , ain), q

′).

• Compute the padding closure: for every transition (q, (#, . . . ,#), q′), if q′ is
a final state, then add q to the set of final states.

The join operation can also be generalized. Given tuples x = (x1, . . . , xn) and
y = (y1, . . . , ym) respectively of arities n andm, we write x · y to denote the tuple
(x1, . . . , xn, y1, . . . , ym) of arity n + m. Given relations R1 ⊆ Uk1 and R2 ⊆ Uk2

respectively of aritiesk1 andk2, and index sets I1 ⊆ {1, . . . , k1}and I2 ⊆ {1, . . . , k2}
of the same cardinality ℓ, we define:

Operation Returns

Join_I(R1, R2) {x I1
· y I2

: ∃x ∈ R1,y ∈ R2 s.t. xI1 = yI2}

The arity of Join_I(R1, R2) is k1 + k2 − ℓ. The operation is implemented
similarly to the case of binary relations. We proceed in two steps. The first step
constructs a transducer according to the following rule:

CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS 115

If the transducer for R1 has a transition (q,a, q′), the transducer for
R2 has a transition (r, b, r′), and if aI1 = bI2 , then add a transition
([q, r],a I1 · b I2 , [q

′, r′]) to the transducer for Join_I(R1, R2).

In the second step, we compute the padding closure of the result. The generaliza-
tion of the Pre and Post operations is analogous.

5.5 Exercises

 Exercise 90. In phone dials, letters are mapped into digits as follows:

ABC 7→ 2 DEF 7→ 3 GHI 7→ 4 JKL 7→ 5
MNO 7→ 6 PQRS 7→ 7 TUV 7→ 8 WXYZ 7→ 9

This map can be used to assign a telephone number to a given word. For instance,
the number for AUTOMATON is 288662866.

Consider the problem of, given a telephone number (for simplicity, we assume
that it contains neither 1 nor 0), finding the set of English words that are mapped
into it. For instance, the set of words mapping to 233 contains at least ADD, BED,
and BEE. LetN be a given DFA over alphabet {A, . . . , Z} that recognizes the set of
all English words. Given a number n, explain how to construct an NFA recognizing
the set of all words mapped to n.

 Exercise 91. As we have seen, the application of the Post and Pre operations
to transducers requires to compute the padding closure in order to guarantee that
the resulting automaton accepts either all or none of the encodings of an object.
The padding closure has been defined for encodings where padding occurs on the
right—that is, w belongs to the padding closure of an NFA A iff w#k ∈ L (A) for
some k ∈ N. However, in some natural encodings, like themost-significant-bit-first
encoding of natural numbers, padding occurs on the left. Give an algorithm for
computing the padding closure of an NFA when padding occurs on the left (i.e.,
where we consider #kw).

 Exercise 92. Let val : {0, 1}∗ → N be the function such that val(w) is the
number represented by w ∈ {0, 1}∗ with the “least-significant bit-first” encoding.

(a) Give a transducer that doubles numbers, that is, a transducer accepting)

L1 = {[x, y] ∈ ({0, 1} × {0, 1})∗ : val(y) = 2 · val(x)} .

(b) Give an algorithm that takes k ∈ N as input and that produces a transducer
Ak accepting

Lk =
{
[x, y] ∈ ({0, 1} × {0, 1})∗ : val(y) = 2k · val(x)

}
.

Hint: Use (a) and consider operations seen in the chapter.

CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS 116

(c) Give a transducer for the addition of two numbers, that is, a transducer ac-
cepting

{[x, y, z] ∈ ({0, 1} × {0, 1} × {0, 1})∗ : val(z) = val(x) + val(y)} .

(d) For every k ∈ N>0, let

Xk = {[x, y] ∈ ({0, 1} × {0, 1})∗ : val(y) = k · val(x)} .

Suppose you are given transducers A and B accepting respectively Xa and
Xb for some a, b ∈ N>0. Sketch an algorithm that builds a transducer C
accepting Xa+b.

Hint: Use (b) and (c).

(e) Let k ∈ N>0. Using (b) and (d), how can you build a transducer accepting
Xk?

(f) Show that the following language has infinitely many residuals and hence is
not regular:

{
[x, y] ∈ ({0, 1} × {0, 1})∗ : val(y) = val(x)2

}
.

 Exercise 93. Let U = N be the universe of natural numbers, and consider
MSBF encodings. Give transducers for the sets of pairs (n,m) ∈ N2 such that

(a) m = n+ 1,

(b) m = ⌊n/2⌋,

(c) n ≤ 2m.

 Exercise 94. Let U be some universe of objects, and let us fix an encoding of
U over Σ∗. Prove or disprove: if a relationR ⊆ U×U is regular, then the following
language is regular:

LR = {wxwy : (wx, wy) encodes a pair (x, y) ∈ R}.

 Exercise 95. Let A be an NFA over alphabet Σ.

(a) Show how to construct a transducer T over alphabet Σ×Σ such that (w, v) ∈
L (T) iff wv ∈ L (A) and |w| = |v|.

(b) Give an algorithm that takes an NFAA as input and returns an NFAA÷2 such
that L (A÷2) = {w ∈ Σ∗ : ∃v ∈ Σ∗ s.t. wv ∈ L (A) and |w| = |v|}.

 Exercise 96. We have defined transducers as NFAs whose transitions are
labeled by pairs of symbols (a, b) ∈ Σ × Σ. With this definition, transducers can
only accept pairs of words (a1 · · · an, b1 · · · bn) of the same length, which is not
suitable for many applications.

CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS 117

An ε-transducer is an NFA whose transitions are labeled by elements of (Σ ∪
{ε})× (Σ ∪ {ε}). An ε-transducer accepts a pair (w,w′) of words if it has a run

q0
(a1,b1)−−−−→ q1

(a2,b2)−−−−→ · · · (an,bn)−−−−−→ qn with ai, bi ∈ Σ ∪ {ε}

such that w = a1 · · · an and w′ = b1 · · · bn. Note that |w| ≤ n and |w′| ≤ n. The
relation accepted by the ε-transducer T is denoted by L (T). The following figure
depicts an ε-transducer over alphabet {a, b} that, intuitively, duplicates the letters
of a word, for example, on input aba, it outputs aabbaa.

(a, a)

(b, b)

(ε, a)

(ε, b)

Give an algorithm Postε(A, T) that, given an NFA A and an ε-transducer T , both
over a common alphabet Σ, returns an NFA recognizing the language

postTε
(A) = {w : ∃w′ ∈ L (A) such that (w′, w) ∈ L (T)} .

Hint: View ε as an additional letter.

⋆ Exercise 97. In exercise 96, we have shown how to compute preimages
and postimages of relations described by ε-transducers. In this exercise, we show
that, unfortunately, and unlike standard transducers, ε-transducers are not closed
under intersection.

(a) Construct ε-transducers T1 and T2 recognizing the relations

R1 = {(anbm, c2n) : n,m ≥ 0} and R2 = {(anbm, c2m) : n,m ≥ 0}.

(b) Show that no ε-transducer recognizes R1 ∩R2.

 Exercise 98. Consider transducers whose transitions are labeled by ele-
ments of (Σ∪{ε})×Σ∗. Intuitively, at each transition, these transducers read one
letter or no letter, and write a string of arbitrary length. These transducers can be
used to perform operations on strings like, for instance, capitalizing all the words
in the string: if the transducer reads, say, “singing in the rain,” it writes “Singing
In The Rain.” Sketch ε-transducers for the following operations, each of which is
informally defined by means of two or three examples. In each example, when
the transducer reads the string on the left, it writes the string on the right.

Company\Code\index.html Company\Code
Company\Docs\Spec\specs.doc Company\Docs\Spec

CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS 118

International Business Machines IBM
Principles Of Programming Languages POPL

Oege De Moor Oege De Moor
Kathleen Fisher AT&T Labs Kathleen Fisher AT&T Labs

Eran Yahav Yahav, E.
Bill Gates Gates, B.

004989273452 +49 89 273452
(00)4989273452 +49 89 273452

273452 +49 89 273452

 Exercise 99. This exercise deals with transducers “normalizing” represen-
tations of numbers.

(a) Give a transducer that removes left-trailing zeros from a fractional number.
For example, the number 00123.45 should be written as 123.45. More pre-
cisely, the transducer should “remove” these zeros by replacing them by the
delete symbol “x,” for example,

00123.450 7→ xx123.450
00.000 7→ x0.000

98701.2304 7→ 98701.2304

(b) Give a transducer that now handles trailing zeros from both sides, for exam-
ple,

00123.450 7→ xx123.45x
00.000 7→ x0.0xx

98701.2304 7→ 98701.2304

(c) Give a transducer that achieves the task of (b) but that further handles neg-
ative and integral numbers, for example,

−00123.450 7→ −xx123.45x
−00.000 7→ x0xxxxx

98701.2304 7→ 98701.2304

00042.0 7→ xxx42xx
9000 7→ 9000

 Exercise 100. Transducers can be used to capture the behavior of simple
programs. For example, consider this program P and its control-flow diagram:

CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS 119

bool x, y init 0
x←?

write x
while true do

read y until y = x ∧ y
if x = y then write y end
x←x− 1 or y←x+ y

if x ̸= y then write x end

1

2

3

4

5
6

78

9 10

x←?

write x

read y

y = x ∧ y

y ̸= x ∧ y

x ̸= y

x = y

write y

y←x+ yx←x− 1

x ̸= y

write x

x = y

Program P communicates with the environment through its two boolean vari-
ables, both initialized to 0. The instruction end finishes the execution of P . The
I/O-relation of P is the set of pairs (wI , wO) ∈ {0, 1}∗ × {0, 1}∗ such that there is
an execution of P during which P reads the sequence wI of values and writes the
sequence wO.

Let [i, x, y] denote the configuration of P in which P is at node i of the control-
flow diagram, and the values of its two boolean variables are x and y, respec-
tively. The initial configuration of P is [1, 0, 0]. By executing the first instruction,
P moves nondeterministically to one of the configurations [2, 0, 0] and [2, 1, 0]; no
input symbol is read and no output symbol is written. Similarly, by executing its
second instruction, the program P moves from [2, 1, 0] to [3, 1, 0] while reading
nothing and writing 1.

(a) Give an ε-transducer recognizing the I/O-relation of P .

(b) Can an overflow error occur? That is, can a configuration be reached in
which the value of x or y is not 0 or 1?

(c) Can node 10 of the control-flow graph be reached?

(d) What are the possible values of x upon termination, that is, upon reaching
end?

(e) Is there an execution during which P reads 101 and writes 01?

(f) Let I and O be regular sets of inputs and outputs, respectively. Think of O
as a set of dangerous outputs that we want to avoid. We wish to prove that
the inputs from I are safe, that is, when P is fed inputs from I, none of the
dangerous outputs can occur. Describe an algorithm that decides, given I
and O, whether there are i ∈ I and o ∈ O such that (i, o) belongs to the
I/O-relation of P .

Chapter 6
Finite Universes and Decision

Diagrams

In chapter 2, we proved that every regular language has a unique minimal DFA. A
natural question is whether the operations on languages and relations, described
in chapters 3 and 5, can be implemented using minimal DFAs and minimal deter-
ministic transducers as data structure.

The implementations described in the first part of chapter 3 accept and return
DFAs but do not preserve minimality: even if the arguments are minimal DFAs,
the result may be nonminimal (the only exception was complementation). So, in
order to return the minimal DFA, an extra minimization operationmust be applied.
The situation is worse for the projection and join operations of chapter 5, because
they do not even preserve determinism: the result of projecting a deterministic
transducer or joining two of them may be nondeterministic. In order to return a
minimal DFA, it is necessary to first determinize, at exponential cost in the worst
case, and then minimize.

In this chapter, we present implementations that directly yield the minimal
DFA, with no need for an extra minimization step, for the special case in which
the universe of objects is finite. The fundamental feature of this case is that all
objects can be encoded by words over a suitable alphabet Σ of a fixed length. For
instance, if the universe consists of sixty-four-bit unsigned integers, that is, natural
numbers in the range {0, . . . , 264 − 1}, then its objects can be encoded by words
over Σ = {0, 1} of length 64. Number 0 is encoded by the word 064, number 1 by
0631, number 2 by 06210, and so on until number 264 − 1, encoded by 164. A first
consequence is that, since all encodings have the same length, we can represent a
tuple of n objects by a word of the same length over alphabet Σn, without having
to pad shorter words up to the length of the longest one, as we did in chapter 5.

In the first part of this chapter, we give a first implementation of the operations
on languages and relations using minimal DFAs as data structure. But we can
even do better. We introduce a very restricted class of automata with transitions
labeled by regular expressions. This class still has a unique minimal automaton for
each fixed-length language, which can have fewer states than the minimal DFA.
We reimplement the operations using these new minimal automata. The resulting
data structure, called decision diagrams, is a slight generalization of binary decision

120

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 121

diagrams, or BDDs, a fundamental data structure introduced by R. E. Bryant in
1986. Bryant introduced binary decision diagrams as a compact representation
of boolean functions and have been extensively used in many areas of computer
science, particularly in the synthesis and verification of logical circuits. We will
provide an example of such an application in section 6.4.1.

6.1 Fixed-Length Languages and the Master Automaton

Let us introduce fixed-length languages.

Definition 6.1. A language L ⊆ Σ∗ has length n ≥ 0 if every word of L has length
n. If L has length n for some n ≥ 0, then we say that L is a fixed-length language,
or that it has fixed-length.

Some remarks are in order:

• According to this definition, the empty language has length n for all n ≥ 0
(the assertion “every word of L has length n” is vacuously true).

• There are exactly two languages of length 0: the empty language ∅ and the
language {ε} containing only the empty word.

• Every fixed-length language contains only finitely many words, and so it is
regular.

In chapter 2, we introduced the master automaton, an object “encompassing”
all minimal DFAs of all regular languages (definition 2.14). We now consider the
fragment of the master automaton obtained by retaining the states corresponding
to fixed-length languages and the transitions between them. Given a language
L and a letter a ∈ Σ, recall that La, the residual of L with respect to a, is the
set of all words w such that aw ∈ L (definition 2.1). The fixed-length master
automaton is defined exactly as the master automaton but replacing the set of all
regular languages by the smaller set of all fixed-length languages:

Definition 6.2. The fixed-length master automaton over the alphabet Σ is the tuple
M = (QM ,Σ, δM , FM), where

• QM is the set of all fixed-length languages over Σ,

• δ : QM × Σ→ QM is given by δ(L, a) = La for every q ∈ QM and a ∈ Σ, and

• L ∈ FM iff ε ∈ L.

Example 6.3. Figure 6.1 depicts a small part of the fixed-length master automaton
for the alphabet Σ = {a, b}.

We make some observations:

• The set of transitions of M is well defined, because if L is a fixed-length
language, then so is La.

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 122

{ε} ∅

{a} {a, b} {b}

{aa, ab, ba} {aa, ab, ba, bb} {ab, bb} {aa, ab, bb}

{aaa, aab, aba, baa, bab, bba, bbb} {aab, abb, baa, bab, bbb}

a b a b

a

b

a, b a, b

a b

a

b

a, b

a
b

a, b
a, b

Figure 6.1: A fragment of the fixed-length master automaton over Σ = {a, b}.

• M has a single final state—namely, {ε}. Indeed, by definition 6.2, the final
states ofM are the fixed languages containing ε, and the only such language
is {ε}.

• For every k ≥ 1, every transition ofM starting at a language of length k leads
to a state of length k−1. This allows us to organize the states ofM in layers,
according to their lengths. (Recall that ∅ has all lengths, and so it could be
in any layer, but we assign it to layer 0.)

• M is almost acyclic. More precisely, the only cycles of M are the self-loops
leading from ∅ to itself for every letter a ∈ Σ.

We proved in chapter 2 that the minimal DFA for a regular language L is the
fragment of the master automaton with the state L as the initial state. In par-
ticular, the language recognized from the state L is L. The fixed-length master
automaton inherits this property; for example, the reader can check that the lan-
guage recognized from state {ab, bb} of figure 6.1 is indeed {ab, bb}.

6.2 A Data Structure for Fixed-Length Languages

The previous observations allow us to define a data structure for representing finite
sets of fixed-length languages, all of them of the same length. Loosely speaking, the
structure representing the languages L = {L1, . . . , Lm} is the fragment of the
fixed-length master automaton containing the states recognizing L1, . . . , Ln and
their descendants. It is a DFA with multiple initial states, and, for this reason, we
call it the multi-DFA for L. Formally:

Definition 6.4. Let L = {L1, . . . , Ln} be a set of languages of the same length over
a common alphabet Σ. The multi-DFA AL is the tuple AL = (QL,Σ, δL, Q0L, FL),
where

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 123

5

L1

6

L2

7

L3

2 3 4

1

a, b
a

b a, b

a
a, b

b

Figure 6.2: The multi-DFA for set L = {L1, L2, L3}, where L1 = {aa, ba}, L2 =
{aa, ba, bb}, and L3 = {ab, bb}.

• QL is the set of states of the fixed-length master automaton reachable from at
least one of the states L1, . . . , Ln,

• Q0L = {L1, . . . , Ln},

• δL is the projection of δM onto QL, and

• FL = FM ∩QL.

Example 6.5. Figure 6.2 depicts the multi-DFA for L = {L1, L2, L3}, where L1 =
{aa, ba}, L2 = {aa, ba, bb}, and L3 = {ab, bb}. For clarity, the state for the empty
language has been omitted, as well as the transitions leading to it.

In order to manipulate multi-DFAs, we represent them as a table of nodes. Let
Σ = {a1, . . . , am}. A node is a pair ⟨q, s⟩, where q is a state identifier and s =
(q1, . . . , qm) is the successor tuple of the node. Along the chapter, we denote the
state identifiers of the states for ∅ and {ε} by q∅ and qε, respectively.

A multi-DFA is represented by a table containing a node for each state, with
the exception of the nodes q∅ and qε. The table for the multi-DFA of figure 6.2,
where state identifiers are numbers, is as follows:

Ident. a-succ b-succ

2 1 0

3 1 1

4 0 1
5 2 2

6 2 3

7 4 4

The procedure make. The algorithms on multi-DFAs use a procedure make(s)
that returns the identifier of the state of T having s as successor tuple, if such a
state exists, and that, otherwise, adds a new node ⟨q, s⟩ to T , where q is a fresh

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 124

state identifier, different from all other state identifiers in T , and returns q. If s is
the tuple whose components all equal q∅, thenmake(s) returns q∅. The procedure
assumes that all the states of the tuple s (with the exception of q∅ and qε) appear in
T .1 For instance, if T is the table above, thenmake(2, 2) returns 5, andmake(3, 2)
adds a new row, say ⟨8, (3, 2)⟩, and returns 8.

6.3 Operations on Fixed-Length Languages

All operations assume that input fixed-length languages are given as multi-DFAs
represented as a table of nodes. Nodes are pairs of state identifier and successor
tuple. The key to all implementations is the fact that if L is a language of length
n ≥ 1, then La is a language of length n− 1. This allows to design recursive algo-
rithms that directly compute the result when the inputs are languages of length 0
and reduce the problem of computing the result for languages of length n ≥ 1 to
the same problem for languages of smaller length.

Fixed-length membership. The operation is implemented as for DFAs, and the
complexity is linear in the size of the input.

Fixed-length union and intersection. Implementing a boolean operation on
multi-DFAs corresponds to possibly extending the multi-DFA and returning the
state corresponding to the result of the operation. This is best explained by means
of an example. Consider again the multi-DFA of figure 6.2. An operation like
Union(L1, L2) gets the initial states 5 and 6 as input and returns the state recog-
nizing L1 ∪ L2. Since L1 ∪ L2 = L2, the operation returns state 6. However, if
we take Intersection(L2, L3), then the multi-DFA does not contain any state rec-
ognizing it. In this case, the operation extends the multi-DFA for {L1, L2, L3} to
the multi-DFA for {L1, L2, L3, L2 ∩ L3}, depicted in figure 6.3, and returns state
8. Thus, Intersection(L2, L3) not only returns a state but also has a side effect on
the multi-DFA underlying the operations.

Given two fixed-length languages L1, L2 of the same length, we present an al-
gorithm that returns the state of the fixed-length master automaton recognizing
L1 ∩L2 (the algorithm for L1 ∪L2 is analogous). The following properties lead to
the recursive algorithm inter(q1, q2) shown in algorithm 26:

• if L1 = ∅ or L2 = ∅, then L1 ∩ L2 = ∅;

• if L1 = {ε} and L2 = {ε}, then L1 ∩ L2 = {ε}; and

• if L1, L2 /∈ {∅, {ε}}, then (L1 ∩ L2)
a = La1 ∩ La2 for every a ∈ Σ.

Assume that the states q1 and q2 recognize languages L1 and L2 of the same
length. We say that q1 and q2 have the same length. The algorithm returns the
state identifier qL1∩L2 . If q1 = q∅, then L1 = ∅, which implies L1 ∩ L2 = ∅. So,
the algorithm returns the state identifier q∅. If q2 = q∅, then the algorithm also
returns q∅. If q1 = qε = q2, then the algorithm returns qε. This deals with all the
cases in which q1, q2 ∈ {q∅, qε} (and some more, which does no harm). If q1, q2 /∈

1Note that the procedure makes use of the fact that no two states have the same successor tuple.

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 125

5

L1

6

L2

7

L3

8

L2 ∩ L3

2 3 4

1

a, b
a

b a, b
b

a
a, b

b

Figure 6.3: The multi-DFA for {L1, L2, L3, L1 ∪ L2, L2 ∩ L3}.

Algorithm 26 Algorithm inter.
inter(q1, q2)
Input: states q1, q2 of the same length
Output: state recognizing L (q1) ∩ L (q2)
1 if G(q1, q2) is not empty then return G(q1, q2)
2 if q1 = q∅ or q2 = q∅ then return q∅
3 else if q1 = qε and q2 = qε then return qε
4 else /* q1, q2 /∈ {q∅, qε} */
5 for all i = 1, . . . ,m do ri ← inter(qai1 , q

ai
2)

6 G(q1, q2)← make(r1, . . . , rm)

7 return G(q1, q2)

{q∅, qε}, then the algorithm computes the state identifiers r1, . . . , rm recognizing
the languages (L1∩L2)

a1 , . . . , (L1∩L2)
am and returnsmake(r1, . . . , rm), creating

a new node if no node of T has (r1, . . . , rm) as successor tuple. But how does the
algorithm compute the state identifier of (L1 ∩ L2)

ai? By the above identity, we
have (L1 ∩ L2)

ai = Lai1 ∩ L
ai
2 , so the algorithm computes the state identifier of

Lai1 ∩ L
ai
2 by a recursive call inter(qai1 , q

ai
2).

The only remaining point is the role of table G. The algorithm uses memo-
ization to avoid recomputing the same object. Table G is initially empty. When
inter(q1, q2) is computed for the first time, the result is memoized in G(q1, q2). In
any subsequent call, the result is not recomputed but just read from G. For the
complexity, let n1 and n2 be the number of states of T reachable from states q1
and q2. It is easy to see that every call to inter receives as arguments states reach-
able from q1 and q2, respectively. Thus, inter is called with at most n1 · n2 possible
arguments, and hence the complexity is O(n1 · n2).

Algorithm inter is generic: in order to obtain an algorithm for another binary
operator, it suffices to change lines 2 and 3. For example, the symmetric difference
of L1 and L2 is implemented by changing lines 2 and 3 to

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 126

2 if (q1 = q∅ and q2 = qε) or (q1 = qε and q2 = q∅) then return qε
3 else if (q1 = qε and q2 = qε) or (q1 = q∅ and q2 = q∅) then return q∅

For intersection, we can easily obtain a more efficient version. For instance,
we know that inter(q1, q2) and inter(q2, q1) return the same state, and so we can
improve line 1 by checking not only if G(q1, q2) is nonempty but also if G(q2, q1)
is. Moreover, inter(q, q) always returns q, so there is no need to compute anything
either.

Example 6.6. Consider the multi-DFA at the top of figure 6.4 but without the colored
states. State 0 for ∅ is again not shown. The tree at the bottom of the figure graphically
describes the run of inter(12, 13), that is, we compute the node for the intersection of
the languages recognized from states 12 and 13. A node q, q′ 7→ q′′ of the tree stands
for a recursive call to inter with arguments q and q′ that returns q′′. For instance,
the node 2, 4 7→ 2 indicates that inter is called with arguments 2 and 4 and that
the call returns state 2. Let us see why the result is 2. The call inter(2, 4) produces
two recursive calls, first inter(1, 1) (the a-successors of 2 and 4) and then inter(0, 1).
The first call returns 1 and the second 0. Therefore, inter(2, 4) returns a state with
1 as a-successor and 0 as b-successor. Since this state already exists (it is state 2),
inter(2, 4) returns 2. On the other hand, inter(9, 10) creates and returns a new state:
its two “children calls” return 5 and 6, and so a new state with states 5 and 6 as a-
and b-successors must be created.

Solid colored nodes of the tree correspond to calls that have already been computed
and for which inter just looks up the result in G. Hatched colored nodes correspond
to calls that are not computed by the more efficient version. For instance, this version
immediately returns 4 as result of inter(4, 4).

Fixed-length complement. Observe that if a set X ⊆ U is encoded by a lan-
guage L of length n, then the set U \X is encoded by the fixed-length complement
Σn \ L, which we denote by L n. In particular, since the empty language has all
lengths, we have, for example, ∅

2
= Σ2, ∅

3
= Σ3, and ∅

0
= Σ0 = {ε}.

Given the state of the fixed-length master automaton recognizing L, we com-
pute the state recognizing L n with the help of these properties:

• if L has length 0 and L = ∅, then L 0
= {ε};

• if L has length 0 and L = {ε}, then L 0
= ∅; and

• if L has length n ≥ 1, then
(
L
n
)a

= La
(n−1) (observe that w ∈

(
L
)a iff

aw /∈ L iff w /∈ La iff w ∈ La).

We obtain the procedure described in algorithm 27. If the fixed-length master
automaton has n states reachable from q, then the operation has complexityO(n).

Example 6.7. Consider the multi-DFA at the top of figure 6.5 without the colored
states. The tree of recursive calls at the bottom of the figure graphically describes the
run of comp(4, 12)—that is, we compute the node for the complement of the language

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 127

5 6 7

2 3 4

1

8 9 1014 11

15 12 13

a

b
a b

a, b

a b
a, b

a

b
a a b

a
b

a, b

a
b a

b
a

b

12, 13 7→ 15

8, 11 7→ 8

5, 7 7→ 5

2, 4 7→ 2

1, 1 7→ 1 0, 1 7→ 0

3, 4 7→ 3

0, 1 7→ 0 1, 1 7→ 1

0, 7 7→ 0

9, 10 7→ 14

5, 7 7→ 5 7, 6 7→ 6

4, 2 7→ 2

1, 1 7→ 1 1, 0 7→ 0

4, 4 7→ 4

1, 1 7→ 1 1, 1 7→ 1

Figure 6.4: An execution of inter.

Algorithm 27 Algorithm comp.
comp(n, q)
Input: length n, state q of length n
Output: state recognizing L (q)

n

1 if G(n, q) is not empty then return G(n, q)
2 if n = 0 and q = q∅ then return qε
3 else if n = 0 and q = qε then return q∅
4 else / ∗ n ≥ 1 ∗ /
5 for all i = 1, . . . ,m do ri ← comp(n− 1, qai)

6 G(n, q)← make(r1, . . . , rm)

7 return G(n, q)

recognized from state 12, which has length 4. For instance, comp(1, 2) generates
two recursive calls, first comp(0, 1) (the a-successor of 2) and then comp(0, 0). The
calls return 0 and 1, respectively, and so comp(1, 2) returns 3. Observe how the call
comp(2, 0) returns 7, the state accepting {a, b}2.

Solid colored nodes correspond again to calls for which comp just looks up the

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 128

5 6 7

2 3 4

1

8 9 10 11

12 13

14

1516

17

a

b
a b

a, b

a b
a, b

a a b
a

b

a, b

a
b

a
b

a

b

a

b

a

a
b

4 : 12 7→ 17

3 : 8 7→ 15

2 : 5 7→ 14

1 : 2 7→ 3

0 : 1 7→ 0 0 : 0 7→ 1

1 : 3 7→ 2

2 : 0 7→ 7

1 : 0 7→ 4

0 : 0 7→ 1 0 : 0 7→ 1

1 : 0 7→ 4

3 : 9 7→ 16

2 : 5 7→ 14 2 : 7 7→ 0

Figure 6.5: An execution of comp.

result in G. Hatched colored nodes correspond to calls whose result is directly com-
puted by a more efficient version of comp that applies the following rule: if comp(i, j)
returns k, then comp(i, k) returns j.

Fixed-length emptiness. A fixed-language language L is empty iff the node rep-
resenting L has q∅ as state identifier. Hence, emptiness can be checked in constant
time.

Fixed-length universality. A language L of length n is fixed-length universal if
L = Σn. The universality of a language of length n recognized by a state q can
be checked in time O(n). It suffices to check for all states reachable from q, with
the exception of q∅, that no transition leads to q∅. More systematically, we use the
following properties that lead to algorithm 28:

• if L = ∅, then L is not universal;

• if L = {ε}, then L is universal; and

• if ∅ ̸= L ̸= {ε}, then L is universal iff La is universal for every a ∈ Σ.

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 129

Algorithm 28 Algorithm univ.
univ(q)
Input: state q
Output: true if L (q) is fixed-length universal,

false otherwise
1 if G(q) is not empty then return G(q)
2 if q = q∅ then return false
3 else if q = qε then return true
4 else / ∗ q ̸= q∅ and q ̸= qε ∗ /
5 G(q)← and(univ(qa1), . . . , univ(qam))

6 return G(q)

Algorithm 29 Algorithm eq2.
eq2(q1, q2)
Input: states q1, q2 of different tables, of the same length
Output: true if L (q1) = L (q2), false otherwise
1 if G(q1, q2) is not empty then return G(q1, q2)
2 if q1 = q∅1 and q2 = q∅2 then G(q1, q2)← true
3 else if q1 = q∅1 and q2 ̸= q∅2 then G(q1, q2)← false
4 else if q1 ̸= q∅1 and q2 = q∅2 then G(q1, q2)← false
5 else / ∗ q1 ̸= q∅1 and q2 ̸= q∅2 ∗ /
6 G(q1, q2)← and(eq2(qa11 , qa12), . . . , eq2(qam1 , qam2))

7 return G(q1, q2)

For a better algorithm, see exercise 103.

Fixed-length equality. Since minimal DFAs are unique, two languages are equal
iff the nodes representing them have the same state identifier. This leads to a
constant time algorithm. This solution, however, assumes that the two input nodes
come from the same table. If they come from two different tables T1 and T2,
then, since state identifiers can be assigned in both tables in different ways, it is
necessary to check if the DFAs rooted at the states q1 and q2 are isomorphic. This
is done by eq2 described in algorithm 29, which assumes that qi belongs to a table
Ti and that both tables assign state identifiers q∅1 and q∅2 to ∅.

Fixed-length inclusion. Given L1, L2 ⊆ Σn, in order to check L1 ⊆ L2, we
compute L1 ∩ L2 and check whether it is equal to L1 using the equality check.
The complexity is dominated by the complexity of computing the intersection.

6.4 Determinization and Minimization

Let L be a fixed-length language, and let A = (Q,Σ, δ,Q0, F) be an NFA recogniz-
ingL. The forthcoming procedure det&min(A) returns the state of the fixed-length
master automaton recognizing L. In other words, det&min(A) simultaneously de-
terminizes and minimizes A.

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 130

Algorithm 30 Algorithm det&min.
det&min(A)
Input: NFA A = (Q,Σ, δ,Q0, F)
Output: master state recognizing L (A)
1 return state(Q0)

state(S)
Input: set S ⊆ Q recognizing languages of the same length
Output: state recognizing L (S)
1 if G(S) is not empty then return G(S)
2 else if S = ∅ then return q∅
3 else if S ∩ F ̸= ∅ then return qε
4 else / ∗ S ̸= ∅ and S ∩ F = ∅ ∗ /
5 for all i = 1, . . . ,m do Si ← δ(S, ai)

6 G(S)← make(state(S1), . . . , state(Sm))

7 return G(S)

The algorithm actually solves a more general problem. Given a set S ⊆ Q
of states, all recognizing languages of the same length, the language L (S) =
∪q∈SL (q) has also this common length. The heart of the algorithm is a proce-
dure state(S) that returns the state recognizing L (S). Since L = L ({q0}), the
algorithm det&Min(A) just calls state({q0}).

Wemake the assumption that for every state q ofA, there is a path leading from
q to some final state. This assumption can be enforced by suitable preprocessing,
but usually it is not necessary; in applications, NFAs for fixed-length languages
usually satisfy the property by construction. With this assumption, L (S) satisfies
the following properties:

• if S = ∅, then L (S) = ∅;

• if S ∩ F ̸= ∅, then L (S) = {ε} (since the states of S recognize fixed-length
languages, the states of F recognize {ε}; since all the states of S recognize
languages of the same length and S ∩ F ̸= ∅, we have L (S) = {ε}); and

• if S ̸= ∅ and S ∩F = ∅, then L (S) =
∪n
i=1 ai · L (Si), where Si = δ(S, ai) :=∪

q∈S δ(q, ai).

These properties lead to the recursive procedure of algorithm 30. The procedure
state(S) uses a table G of results, initially empty. When state(S) is computed for
the first time, the result is memoized in G(S), and any subsequent call directly
reads the result from G.

The algorithm has exponential complexity, as, in the worst case, it may call
state(S) for every set S ⊆ Q. To show that an exponential blowup is unavoidable,
consider the family {Ln}n≥0, where Ln = {ww′ : w,w′ ∈ {0, 1}n, w ̸= w′}. While
Ln can be recognized by an NFA of size O(n2), its minimal DFA has O(2n) states:
for all u, v ∈ Σn if u ̸= v, then Lun ̸= Lvn, as v ∈ Lun but v /∈ Lvn.

Example 6.8. Figure 6.6 shows an NFA (top left) and the result of applying det&min
to it (top right). The run of det&min is shown at the bottom of the figure, where, for

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 131

α

β γ

δ ϵ ζ

η θ

a a, b

a b

b

a, b

b

b

b a

b

5

4

2 3

1

a, b

a b

b a, b

α 7→ 5

β, γ 7→ 4

δ, ϵ 7→ 2

∅ 7→ 0 η 7→ 1

ϵ, ζ 7→ 3

η 7→ 1 η, θ 7→ 1

γ 7→ 4

ϵ 7→ 2

∅ 7→ 0 η 7→ 1

ϵ, ζ 7→ 3

Figure 6.6: Run of det&min on an NFA for a fixed-length language.

the sake of readability, sets of states are written without curly brackets (e.g., β, γ
instead of {β, γ}). Observe, for instance, that the algorithm assigns to {γ} the same
node as to {β, γ}, because both have the states 2 and 3 as a-successor and b-successor,
respectively.

6.4.1 An Application: Equivalence of Digital Circuits

A carry-ripple adder is a digital circuit that adds two n-bits binary numbers xn · · ·x1
and yn · · · y1, producing a (n + 1)-bit number sn+1sn · · · s1. The circuit imple-
ments the simple algorithm that repeatedly adds the bits xi and yi, together with
a carry-bit cini−1, producing the sum-bit si and the carry-bit couti (where cin0 := 0
and sn+1 := cn). So, the adder consists of a cascade of one-bit full adders, each of
which implements one step of the algorithm.

A full adder has three inputs x, y, cin; two outputs s, cout; and the following
specification: s must be set to 1 iff exactly one or exactly three of the inputs are 1,
and cout must be set to 1 iff at least two of the inputs are 1.

When asked to implement a full adder, some students produce the circuit de-
picted on the left of figure 6.7. It corresponds to the logical formulas

s = cin ⊕ x⊕ y,
cout = ((cin ∧ x) ∨ (cin ∧ y)) ∨ (x ∧ y),

where ⊕ denotes the exclusive-or operator. It is a natural seven-gate implemen-
tation, which deals with the three possible cases for the carry-bit separately: cin

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 132

⊕

yx

⊕

cin

s (sum)

∧ ∧∧

∨

∨

cout (carry)

⊕

yx

⊕

cin

s (sum)

∧ ∧

∨

cout (carry)

Figure 6.7: Two implementations of a full adder.

and x are 1, cin and y are 1, and x and y are 1. However, there is a more eco-
nomic and efficient five-gate implementation, depicted on the right of figure 6.7.
It corresponds to the formulas

s = cin ⊕ x⊕ y,
cout = (x ∧ y) ∨ (cin ∧ (x⊕ y).

Verifying that the two circuits indeed compute the same boolean function re-
duces to checking the logical equivalence of the two boolean formulas

φ1 := (cin ∧ x) ∨ (cin ∧ y) ∨ (x ∧ y) and φ2 := (x ∧ y) ∨ (cin ∧ (x⊕ y)).

In this simple example, equivalence can be checked by computing the truth tables
of φ1 and φ2; since they have three variables, there are only eight truth assign-
ments. However, a formula with n variables has 2n truth assignments, and so this
approach does not scale to circuits with hundreds of input signals. A much bet-
ter algorithm encodes assignments as words and constructs a multi-DFA for the
languages of satisfying assignments of φ1 and φ2.

Let us encode an assignment cin := b1, x := b2 and y := b3 as the word
b1b2b3 ∈ Σ3, where Σ = {0, 1}. Figure 6.8 depicts the multi-DFA produced to con-
struct nodes for φ1 and φ2. It has been constructed by starting with the smallest
subformulas of φ1, iteratively constructing nodes for increasingly large subformu-
las, ending with a node for φ1 itself, and then proceeding in the same way for
φ2. More precisely, we first construct nodes for the smallest subformulas of φ1—
namely, cin, x, and y. Their languages of satisfying assignments are 1ΣΣ, Σ1Σ,
and ΣΣ1, respectively, corresponding to nodes 4, 6, and 9. Then, we repeatedly
apply the algorithms for union, intersection, and symmetric difference to construct
nodes for increasingly larger subformulas; for example, node 10 is obtained by
applying the intersection algorithm to nodes 4 and 6. We compute in this way

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 133

4

cin

6

x

9

y

10

cin ∧ x

11

cin ∧ y

13

x ∧ y

15

(cin ∧ x)
∨

(cin ∧ y)

16

φ1 φ2

19

x⊕ y

20

cin ∧ (x⊕ y)

3 5 8 12 14 18

2 7 17

1

1 0, 1
0, 1

0, 1

1

1

0, 1

1

0, 1

1

0, 1

1

1

0

1

0

1 0, 1

0
1

0

1

Figure 6.8: Multi-DFA produced when computing the sets of satisfying assign-
ments of the formulas φ1 and φ2.

nodes 10, 11, 13, 15, and, finally, node 16 for φ1. We proceed in the same way
for φ2. For example, node 19 is the result of applying the algorithm for symmetric
difference to nodes 6 and 9. In this way, we compute nodes 19, 20, and finally
node 16. Since φ1 and φ2 point to the same node, they have the same satisfying
assignments, and hence they are equivalent.

6.5 Operations on Fixed-Length Relations

Fixed-length relations can bemanipulated very similarly to fixed-length languages.
Boolean operations are as for fixed-length languages. Nonetheless, the projection,
join, pre, and post operations can be implemented more efficiently than in chap-
ter 5.

We start with an observation on encodings. In chapter 5, we assumed that
if an element of X is encoded by word w ∈ Σ∗, then it is also encoded by w#,
where # is the padding symbol. This ensures that every pair (x, y) ∈ X×X has an
encoding (wx, wy) such that wx and wy have the same length. Since, in the fixed-
length case, all shortest encodings have the same length, the padding symbol is no
longer necessary. So, in this section, we assume that each word or pair has exactly
one encoding.

The basic definitions on fixed-length languages extend easily to fixed-length
relations. A word relation R ⊆ Σ∗×Σ∗ has length n ≥ 0 if for all pairs (w1, w2) ∈
R, the words w1 and w2 have length n. If R has length n for some n ≥ 0, then we
say that R has fixed length.

Recall that a transducer T accepts a pair (u, v) ∈ Σ∗ × Σ∗ if u = a1 · · · an,
v = b1 · · · bn, and T accepts the word (a1, b1) · · · (an, bn) ∈ (Σ × Σ)∗. A fixed-
length transducer accepts a relation R ⊆ U × U if it recognizes the word relation
{(wx, wy) : (x, y) ∈ R}.

Given a relation R ⊆ Σ∗ × Σ∗ and a, b ∈ Σ, we define R[a,b] = {(w1, w2) ∈
Σ∗ × Σ∗ : (aw1, bw2) ∈ R}. Note that, in particular, ∅[a,b] = ∅ and that if R has

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 134

fixed length, then so does R[a,b]. The fixed-length master transducer over alphabet
Σ is the tuple MT = (QM ,Σ× Σ, δM , FM), where

• QM is the set of all fixed-length relations,

• FM = {(ε, ε)}, and

• δM : QM × (Σ × Σ) → QM is given by δM (R, [a, b]) = R[a,b] for all q ∈ QM
and a, b ∈ Σ.

As in the language case, the minimal deterministic transducer recognizing a fixed-
length relation R is the fragment of the fixed-length master transducer containing
the states reachable from R.

Likeminimal DFAs, minimal deterministic transducers are represented as tables
of nodes. However, a remark is in order: since a state of a deterministic transducer
has |Σ|2 successors, one for each letter of Σ×Σ, a row of the table has |Σ|2 entries,
too large when the table is only sparsely filled. Sparse transducers over Σ×Σ are
better encoded as NFAs over Σ by introducing auxiliary states:

a transition q
[a,b]−−−→ q′ is “simulated” by two transitions q a−→ r

b−→ q′,

where r is an auxiliary state with exactly one input and one output transition.

Fixed-length projection. The implementation of the projection operation of chap-
ter 5 may yield a nondeterministic transducer, even if the initial transducer is de-
terministic. So we need a different implementation. We observe that projection
can be reduced to pre or post: the projection of a binary relation R onto its first
component is equal to preR(Σ∗) and the projection onto the second component to
postR(Σ∗). Thus, we defer dealing with projection until the implementation of pre
and post has been discussed.

Fixed-length join. We give a recursive definition of the join R1 ◦R2 of two fixed-
length relations R1, R2. Given a fixed-length relation R, let [a, b]R = {(aw1, bw2) :
(w1, w2) ∈ R}. We have the following properties:

• ∅ ◦R = R ◦ ∅ = ∅,

• {[ε, ε]} ◦ { [ε, ε]} = {[ε, ε]}, and

• R1 ◦R2 =
∪

a,b,c∈Σ

[a, b] ·
(
R

[a,c]
1 ◦R[c,b]

2

)
.

This leads to algorithm 31, where union is defined similarly to inter. The complex-
ity is exponential in the worst case: if t(n) denotes the worst-case complexity for
two states of length n, then we have t(n) ∈ O(t(n−1)2), since union has quadratic
worst-case complexity. This exponential blowup is unavoidable. We prove it later
for projections (see example 6.9), which is a special case of pre and post, which in
turn can be seen as variants of join.

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 135

Algorithm 31 Algorithm join.
join(r1, r2)
Input: states r1, r2 of a transducer table, of the same length
Output: state recognizing L (r1) ◦ L (r2)
1 if G(r1, r2) is not empty then return G(r1, r2)
2 if r1 = q∅ or r2 = q∅ then return q∅
3 else if r1 = qε and r2 = qε then return qε
4 else / ∗ q∅ ̸= r1 ̸= qε and q∅ ̸= r2 ̸= qε ∗ /
5 for all (ai, aj) ∈ Σ× Σ do

6 ri,j ← union
(
join

(
r
[ai,a1]
1 , r

[a1,aj]
2

)
, . . . , join

(
r
[ai,am]
1 , r

[am,aj]
2

))
7 G(r1, r2) = make(r1,1, . . . , rm,m)

8 return G(r1, r2)

Fixed-length pre and post. Recall that in the fixed-length case, we do not need
any padding symbol. Given a fixed-length language L and a fixed-length rela-
tion R, preR(L) admits an inductive definition that we now derive. We have the
following:

• if R = ∅ or L = ∅, then preR(L) = ∅;

• if R = {[ε, ε]} and L = {ε}, then preR(L) = {ε}; and

• if ∅ ̸= R ̸= {[ε, ε]} and ∅ ̸= L ̸= {ε}, then preR(L) =
∪
a,b∈Σ a · preR[a,b](Lb),

where R[a,b] = {w ∈ (Σ× Σ)∗ : [a, b]w ∈ R}.

The first two properties are obvious. For the last one, observe that all pairs of R
have length at least 1, and so every word of preR(L) also has length at least 1.
Now, given a ∈ Σ and w1 ∈ Σ∗, we have

aw1 ∈ preR(L) ⇐⇒ ∃bw2 ∈ L s.t. [aw1, bw2] ∈ R
⇐⇒ ∃b ∈ Σ,∃w2 ∈ Lb s.t. [w1, w2] ∈ R[a,b]

⇐⇒ ∃b ∈ Σ s.t. w1 ∈ preR[a,b](Lb)

⇐⇒ aw1 ∈
∪
b∈Σ

a · preR[a,b](Lb).

These properties lead to the recursive procedure of algorithm 32, which accepts
as inputs a state of the transducer table for a fixed-length relation R and a state
of the automaton table for a language L, and returns the state of the automaton
table recognizing preR(L). The transducer table is not changed by the algorithm.

As promised, we can now implement the operation that projects a fixed-length
relationR onto its first component. We provide a dedicated procedure for preR(Σ∗),
described in algorithm 33.

Algorithm pro1 has exponential worst-case complexity. As for join, the reason
is the quadratic blowup introduced by unionwhen the recursion depth increases by
1. The next example shows that projection is inherently exponential. Slight mod-
ifications of this example show that join, pre, and post are inherently exponential
as well.

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 136

Algorithm 32 Algorithm pre.
pre(r, q)
Input: state r of a transducer table and state q of an automaton table, of
the same length
Output: state recognizing preL(r)(L (q))
1 if G(r, q) is not empty then return G(r, q)
2 if r = r∅ or q = q∅ then return q∅
3 else if r = rε and q = qε then return qε
4 else
5 for all ai ∈ Σ do
6 q′i ← union

(
pre
(
r[ai,a1], qa1

)
, . . . , pre

(
r[ai,am], qam

))
7 G(q, r)← make(q′1, . . . , q′m)

8 return G(q, r)

Algorithm 33 Algorithm pro1.
pro1(r)
Input: state r of a transducer table
Output: state recognizing proj1(L (r))
1 if G(r) is not empty then return G(r)
2 if r = r∅ then return q∅
3 else if r = rε then return qε
4 else
5 for all ai ∈ Σ do
6 q′i ← union

(
pro1

(
r[ai,a1]

)
, . . . , pro1

(
r[ai,am]

))
7 G(r)← make(q′1, . . . , q′m)

8 return G(r)

Example 6.9. Consider the relation R ⊆ Σ2n × Σ2n given by

R =
{(
w1xw2yw3, 0

|w1|10|w2|10|w3|
)
: x ̸= y, |w2| = n, |w1w3| = n− 2

}
.

That is, R contains all pairs of words of length 2n whose first word has a position
i ≤ n such that the letters at positions i and i+n are distinct and whose second word
contains only 0s except for two 1s at the same two positions. It is easy to see that the
minimal deterministic transducer for R has O(n2) states (intuitively, it memorizes
the letter x above the first 1, reads n − 1 letters of the form [z, 0], and then reads
[z, 1], where y ̸= x). On the other hand, we have

proj1(R) = {ww′ : w,w′ ∈ Σn and w ̸= w′},

whose minimal DFA, as shown when discussing det&min, has O(2n) states. Thus,
any algorithm for projection has complexity Ω(2

√
n).

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 137

6.6 Decision Diagrams

Binary decision diagrams, BDDs for short, are a very popular data structure for the
representation and manipulation of boolean functions. In this section, we show
that they can be seen as minimal automata of a certain kind.

Given a boolean function f(x1, . . . , xn) : {0, 1}n → {0, 1}, let Lf denote the
set of strings b1b2 · · · bn ∈ {0, 1}n such that f(b1, . . . , bn) = 1. The minimal DFA
recognizing Lf is very similar to the BDD representing f but not completely equal.
We modify the constructions of the last section to obtain an exact match.

Consider the DFA depicted in figure 6.9. It is a minimal DFA for some language
of length 4 that can be described as follows: after reading an a, accept any word
of length 3; after reading ba, accept any word of length 2; and after reading bb,
accept any two-letter word whose last letter is a b. Following this description, the
language can also be more compactly described by the automaton of figure 6.10
with regular expressions as transitions.

We call such an automaton a decision diagram (DD). The intuition behind this
name is that, if we view states as points at which a decision is made—namely,
which should be the next state—then states q1, q3, q4, and q5 do not correspond to
any real decision; whatever the next letter, the next state is the same. As we shall
see, the states of a minimal DD will always correspond to “real” decisions.

The forthcoming section 6.6.1 shows that the minimal DD for a fixed-length
language is unique and can be obtained by repeatedly applying to the minimal
DFA the reduction rule of figure 6.11.

The converse direction also works: the minimal DFA can be recovered from
the minimal DD by “reversing” the rule. This already allows us to use DDs as a
data structure for fixed-length languages but only through conversion to minimal
DFAs: to compute an operation using minimal DDs, expand them to minimal DFAs,
conduct the operation, and convert the result back. The forthcoming section 6.6.2
shows how to do better by directly defining the operations on minimal DDs, by-
passing the minimal DFAs.

q0

q1

q2

q3 q5

q4 q6

q7

a

b

a

b

a

b
a

b
a

b

a

b

b

Figure 6.9: A minimal DFA for some language of length 4.

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 138

r0

r1 r2

r3
a · Σ3

b

a · Σ2

b · Σ

b

Figure 6.10: Compact presentation of the DFA from figure 6.9.

... q r

q1

qn

...

ℓ1

ℓn

a1

am

⇝ ... r

q1

qn

ℓ1 · Σ

ℓn · Σ

Figure 6.11: Decision diagram reduction rule.

6.6.1 Decision Diagrams and Kernels

A decision diagram (DD) is an automaton A = (Q,Σ, δ,Q0, F) whose transitions
are labeled by regular expressions of the form

aΣn = aΣΣΣ · · ·ΣΣ︸ ︷︷ ︸
n

and that satisfies the following determinacy condition: for all q ∈ Q and a ∈ Σ,
there is exactly one k ∈ N such that δ(q, aΣk) ̸= ∅, and for this k, there is a state
q′ such that δ(q, aΣk) = {q′}. Observe that DFAs are DDs in which k = 0 for every
state and every letter.

We introduce the notion of kernel, as well as kernel of a fixed-length language.

Definition 6.10. A fixed-length language L ⊆ Σ∗ is a kernel if L = ∅, L = {ε}, or
La ̸= Lb for some a, b ∈ Σ. The kernel of a fixed-length language L, denoted by ⟨L⟩,
is the unique kernel satisfying L = Σk⟨L⟩ for some k ≥ 0.

Observe that the number k is also unique for every language but ∅. Indeed, for
the empty language, we have ⟨∅⟩ = ∅ and so ∅ = Σk⟨∅⟩ for every k ≥ 0.

Example 6.11. Let Σ = {a, b, c}. The language L1 = {aab, abb, bab, cab} is a kernel
because La1 = {ab, bb} ̸= {ab} = Lb1. The language L2 = {aa, ba} is also a kernel
since La2 = {a} ̸= ∅ = Lc2. However, if we change the alphabet to Σ′ = {a, b}, then
L2 is no longer a kernel, and we have ⟨L2⟩ = {a}.

For the language L3 = {aa, ab, ba, bb} over Σ′, we have L3 = (Σ′)2, and so k = 2
and ⟨L3⟩ = {ε}.

The mapping that assigns to every nonempty fixed-length language L the pair
(k, ⟨L⟩) is a bijection. In other words, L is completely determined by k and ⟨L⟩.

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 139

{ε} ∅

{a} {b}

{aa, ab, ba} {aa, ab, bb}

{aaa, aab, aba, baa, bab, bba, bbb} {aab, abb, baa, bab, bbb}

a

bΣ2

b

aΣ

b

aΣ

b

aΣ

a
b

a
b

a, b
a, b

Figure 6.12: A fragment of the master decision diagram.

Thus, a representation of kernels can be extended to a representation of all fixed-
length languages. Let us now see how to represent kernels.

Themaster decision diagram has the set of all kernels as states, the kernel {ε} as
a unique final state, and a transition (K, aΣk, ⟨Ka⟩) for every kernelK and a ∈ Σ,
where k is equal to the length of Ka minus the length of ⟨Ka⟩. For K = ∅, which
has all lengths, we take k = 0.

Example 6.12. Figure 6.12 shows a fragment of the master decision diagram over
alphabet {a, b}. In comparison to the fixed-length master automaton of figure 2.4,
the languages {a, b}, {ab, bb}, and {aa, ab, ba, bb} are not states of the master since
they are not kernels.

The DD AK for a kernel K is the fragment of the master decision diagram
containing the states reachable from K. It is readily seen that AK recognizes K.
A DD is minimal if no other DD for the same language has fewer states. Observe
that, since every DFA is also a DD, the minimal DD for a language has at most as
many states as its minimal DFA.

The following proposition shows that the minimal DD of a kernel has very sim-
ilar properties to the minimal DFAs of a regular language. In particular, AK is
always a minimal DD for the kernel K. However, because of a technical detail, it
is not the unique minimal DD: the label of the transitions of the master leading to
∅ can be changed from a to aΣk for any k ≥ 0, and from b to bΣk for any k ≥ 0,
without changing the language. To recover unicity, we redefine minimality: a
DD is minimal if no other DD for the same language has fewer states, and every
transition leading to a state from which no word is accepted is labeled by a or b.

Proposition 6.13. The following statements hold.

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 140

(a) Let A be a DD such that L (A) is a kernel. It is the case that A is minimal if
and only if (i) every state of A recognizes a kernel, and (ii) distinct states of A
recognize distinct kernels.

(b) For every K ̸= ∅, AK is the unique minimal DD recognizing K.

(c) The result of exhaustively applying the reduction rule to the minimal DFA rec-
ognizing a fixed-length language L is the minimal DD recognizing ⟨L⟩.

Proof.

(a) ⇒) For (i), assume A contains a state q such that L (q) is not a kernel. We
prove that A is not minimal. Since L (A) is a kernel, q is neither initial
nor final. Let k be the smallest number such that A contains a transition
(q, aΣk, q′) for some letter a and some state q′. We have L (q)a = ΣkL (q′),
and since L (q) is not a kernel, L (q)a = L (q)b for every b ∈ Σ. So, we have
L (q) =

∪
a∈Σ aΣ

kL (q′) = Σk+1L (q′). Now we perform the following two
operations: first, we replace every transition (q′′, bΣl, q) of A by a transition
(q′′, bΣl+k+1, q′); then, we remove q and any other state no longer reachable
from the initial state (recall that q is neither initial nor final). The result-
ing DD recognizes the same language as A and has at least one state less.
Therefore, A is not minimal.
For (ii), observe that the quotienting operation can be defined for DDs as for
DFAs, and so we can merge states that recognize the same kernel without
changing the language. If two distinct states ofA recognize the same kernel,
then the quotient has fewer states than A, and so A is not minimal.

⇐) We show that two DDsA andA′ that satisfy (i) and (ii) and recognize the
same language are isomorphic, which, together with ⇒), proves that they
are minimal. It suffices to prove that if two states q and q′ of A and A′ satisfy
L (q) = L (q′), then for every a ∈ Σ, the (unique) transitions (q, aΣk, r) and
(q′, aΣk

′
, r′) satisfy k = k′ and L (r) = L (r′). Let L (q) = K = L (q′). By (i),

both L (r) and L (r′) are kernels. Thus, we necessarily have L (r) = ⟨Ka⟩ =
L (q′), because the only solution to the equation K = aΣℓK ′, where ℓ and
K ′ are unknowns and K ′ must be a kernel, is K ′ = ⟨Ka⟩.

(b) Automaton AK recognizes K, and it satisfies conditions (i) and (ii) of (a)
by definition. So, it is a minimal DD. Uniqueness follows from the proof of
direction⇐) of (a).

(c) Let B be a DD obtained by exhaustively applying the reduction rule to A. By
(a), it suffices to prove thatB satisfies (i) and (ii). For (ii), observe that, since
every state ofA recognizes a different language, so does every state ofB (the
reduction rule preserves the recognized languages). For (i), assume that
some state q does not recognize a kernel. Without loss of generality, we can
chooseL (q) of minimal length, and therefore the target states of all outgoing
transitions of q recognize kernels. It follows that all of them necessarily
recognize ⟨L (q)⟩. Since B contains at most one state recognizing ⟨L (q)⟩,
all outgoing transitions of q have the same target, and so the reduction rule
can be applied to q, contradicting the hypothesis that it has been applied
exhaustively.

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 141

6.6.2 Operations on Kernels

We usemulti-DDs to represent sets of fixed-length languages of the same length. A
set L = {L1, . . . , Lm} is represented by the states of the master decision diagram
recognizing ⟨L1⟩, . . . , ⟨Lm⟩ and by the common length ofL1, . . . , Lm. Observe that
the states and the length completely determine L.

Example 6.14. Figure 6.13 shows the multi-DD for the set L = {L1, L2, L3} previ-
ously depicted in figure 6.2. Recall that we have L1 = {aa, ba}, L2 = {aa, ba, bb},
and L3 = {ab, bb}. The multi-DD is the result of applying the reduction rule to the
multi-DFA of figure 6.2. Observe that, while L1, L2, and L3 have the same length,
⟨L2⟩ has a different length than ⟨L1⟩ and ⟨L3⟩.

Multi-DDs are represented as a table of kernodes. A kernode is a triple ⟨q, ℓ, s⟩,
where q is a state identifier, ℓ is a length, and s = (q1, . . . , qm) is the successor tuple
of the kernode. The table for the multi-DD of figure 6.13 is the following:

Ident. Length a-succ b-succ

2 1 1 0
4 1 0 1
6 2 2 1

This example explains the role of the new length field. If we only know that
the a- and b-successors of, say, state 6 are states 2 and 1, we cannot infer which
expressions label the transitions from 6 to 2 and from 6 to 1: they could be a and
bΣ, aΣ and bΣ2, or aΣn and bΣn+1 for any n ≥ 0. However, once we know that
state 6 accepts a language of length 2, we can deduce the correct labels: since
states 2 and 1 accept languages of length 1 and 0, respectively, the labels are a
and bΣ.

The procedure kmake(ℓ, s). All algorithms call a procedure kmake(ℓ, s)with the
following specification. LetKi be the kernel recognized by the ith component of s.
A call to kmake(ℓ, s) returns the kernode for ⟨L⟩, where L is the unique language
of length ℓ such that ⟨Lai⟩ = Ki for every ai ∈ Σ.

6

L2

2

L1

4

L3

1

a

a b

bΣ

Figure 6.13: The multi-DD for {L1, L2, L3}, where L1 = {aa, ba}, L2 = {aa, ba,
bb}, and L3 = {ab, bb}.

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 142

If Ki ̸= Kj for some i and j, then kmake(ℓ, s) behaves like make(s): if the
current table already contains a kernode ⟨q, ℓ, s⟩, then kmake(ℓ, s) returns q, and
if no such kernode exists, then kmake(ℓ, s) creates a new kernode ⟨q, ℓ, s⟩ with a
fresh identifier q and returns q.

If K1, . . . ,Km are all equal to some kernel K, then we have L =
∪m
i=1 aiΣ

kK
for some k, and hence ⟨L⟩ = ⟨Σℓ+1K⟩ = K. So, kmake(ℓ, s) returns the kernode
for K. For instance, if T is the table above, then kmake(3, (2, 2)) returns 3, while
make(2, 2) creates a new node having 2 as a-successor and b-successor.

Algorithms. The algorithms for operations on kernels are modifications of the
algorithms of the previous section. We show how to modify the algorithms for in-
tersection, complement, and simultaneous determinization and minimization. In
the previous section, the state of the fixed-length master automaton for a language
L was the language L itself and was obtained by recursively computing the states
for La1 , . . . , Lam and then applying make. Now, the state of the master for L is
⟨L⟩ and can be obtained by recursively computing states for ⟨La1⟩, . . . , ⟨Lam⟩ and
applying kmake.

Fixed-length intersection. Given kernels K1 and K2 of languages L1 and L2,
we compute the state recognizing K1 ⊓K2 = ⟨L1 ∩ L2⟩.2 We have the following
obvious property: if K1 = ∅ or K2 = ∅, then K1 ⊓K2 = ∅. Assume K1 ̸= ∅ ̸= K2.
If the lengths of K1 and K2 are ℓ1 and ℓ2, then since ⟨ΣkL⟩ = ⟨L⟩ holds for every
k and L, we have

K1 ⊓K2 =

⟨Σl2−l1K1 ∩K2⟩ if ℓ1 < ℓ2,

⟨K1 ∩ Σl1−l2K2⟩ if ℓ1 > ℓ2,

⟨K1 ∩K2⟩ if ℓ1 = ℓ2,

which allows us to obtain the state for K1 ⊓K2 by computing states for

⟨(Σℓ1−ℓ2K1 ∩K2)
a⟩, ⟨(K1 ∩ Σℓ2−ℓ1K2)

a⟩ or ⟨(K1 ∩K2)
a⟩

for every a ∈ Σ and applying kmake.
These states can be computed recursively by means of the following rules,

which lead to the procedure of algorithm 34:

if ℓ1 < ℓ2, then ⟨(Σℓ2−ℓ1K1 ∩K2)
a⟩ = ⟨Σℓ2−ℓ1−1K1 ∩Ka

2 ⟩ = K1 ⊓ ⟨Ka
2 ⟩;

if ℓ1 > ℓ2, then ⟨(K1 ∩ Σℓ1−ℓ2K2)
a⟩ = ⟨Ka

1 ∩ Σℓ1−ℓ2−1K2⟩ = ⟨Ka
1 ⟩ ⊓K2; and

if ℓ1 = ℓ2, then ⟨(K1 ∩K2)
a⟩ = ⟨Ka

1 ∩Ka
2 ⟩ = ⟨Ka

1 ⟩ ⊓ ⟨Ka
2 ⟩.

Example 6.15. Figure 6.14 shows a run of kinter on the two languages represented
by the multi-DFA at the top of figure 6.4. The multi-DD for the same languages is
shown at the top of figure 6.14, and the rest of the figure describes the run of kinter
on it. Recall that solid colored nodes correspond to calls whose result has already
been memoized and need not be executed. The meaning of the hatched colored nodes
is explained below.

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 143

5 6

2 3

1

8 9 1014

15 12 13

a

b
a

a b

a

b
a a b

a
b a

b b

aΣ3

aΣ2

bΣ2

bΣ

12, 13 7→ 15

8, 1 7→ 8

5, 1 7→ 5

2, 1 7→ 2

1, 1 7→ 1

0, 0 7→ 0 0, 0 7→ 0

0, 1 7→ 0

3, 1 7→ 3

0, 1 7→ 0 1, 1 7→ 1

0, 1 7→ 0

9, 10 7→ 14

5, 1 7→ 5 1, 6 7→ 6

1, 2 7→ 2

1, 1 7→ 1 1, 0 7→ 0

1, 1 7→ 1

Figure 6.14: An execution of kinter.

Algorithm 34 Algorithm kinter.
kinter(q1, q2)
Input: states q1, q2 recognizing ⟨L1⟩, ⟨L2⟩
Output: state recognizing ⟨L1 ∩ L2⟩
1 if G(q1, q2) is not empty then return G(q1, q2)
2 if q1 = q∅ or q2 = q∅ then return q∅
3 if q1 ̸= q∅ and q2 ̸= q∅ then
4 if ℓ1 < ℓ2 /* lengths of the kernodes for q1, q2 */ then
5 for all i = 1, . . . ,m do ri ← kinter(q1, q

ai
2)

6 G(q1, q2)← kmake(ℓ2, r1, . . . , rm)

7 else if ℓ1 > ℓ2 then
8 for all i = 1, . . . ,m do ri ← kinter(qai1 , q2)

9 G(q1, q2)← kmake(ℓ1, r1, . . . , rm)

10 else /* ℓ1 = ℓ2 */
11 for all i = 1, . . . ,m do ri ← kinter(qai1 , q

ai
2)

12 G(q1, q2)← kmake(ℓ1, r1, . . . , rm)

13 return G(q1, q2)

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 144

Algorithm 35 Algorithm kcomp.
kcomp(q)
Input: state q recognizing a kernel K
Output: state recognizing K̂
1 if G(q) is not empty then return G(q)
2 if q = q∅ then return qε
3 else if q = qε then return q∅
4 else
5 for all i = 1, . . . ,m do ri ← kcomp(qai)
6 G(q)← kmake(r1, . . . , rm)

7 return G(q)

The algorithm can be improved by noting that two further properties hold:

If K1 = {ε}, then L1 ∩ L2 = L2, and so K1 ⊓K2 = K2.

If K2 = {ε}, then L1 ∩ L2 = L1, and so K1 ⊓K2 = K1.

These properties imply that kinter(qε, q) = q = kinter(q, qε) for every state q.
Thus, we can improve kinter by explicitly checking if one of the arguments is qε.
The hatched colored nodes in figure 6.14 correspond to calls whose result is im-
mediately returned with the help of this check. Observe how this improvement
has a substantial effect, reducing the number of calls from nineteen to only five.

Fixed-length complement. Given the kernel K of a fixed-language L of length
n, we wish to compute the state of the master decision diagram recognizing ⟨L n⟩,
where n is the length of L. The superscript n is only necessary because ∅ has all
possible lengths, and so ∅

n
= Σn ̸= Σm = L

m for n ̸= m. But now we have
⟨∅

n
⟩ = {ε} for all n ≥ 0, and so the superscript is not needed anymore. We define

the operator ̂ on kernels by K̂ = ⟨L⟩.3 We obtain the state for K̂ by recursively
computing states for ⟨K̂a⟩ by means of the following properties, which lead to
algorithm 35:

• If K = ∅, then K̂ = {ε}, and if K = {ε}, then K̂ = ∅.

• If ∅ ̸= K ̸= {ε}, then ⟨K̂a⟩ = K̂a.

6.6.3 Determinization and Minimization

The algorithm kdet&min that converts an NFA recognizing a fixed-language L into
the minimal DD recognizing ⟨L⟩ differs from det&min essentially in one letter: it
uses kmake instead of make. It is described in algorithm 36.

Example 6.16. Figure 6.15 shows again the NFA of figure 6.6 and the minimal
DD for the kernel of its language. The run of kdet&min(A) is at the bottom of the

2Operation ⊓ is well defined as ⟨L1⟩ = ⟨L′
1⟩ and ⟨L2⟩ = ⟨L′

2⟩ implies ⟨L1 ∩ L2⟩ = ⟨L′
1 ∩ L′

2⟩.
3The operator is well defined because ⟨L⟩ = ⟨L′⟩ implies ⟨L⟩ = ⟨L′⟩.

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 145

Algorithm 36 Algorithm kdet&min.
kdet&min(A)
Input: NFA A = (Q,Σ, δ,Q0, F)
Output: state of a multi-DFA recognizing L (A)
1 return kstate(Q0)

kstate(S)
Input: set S of states of length ℓ
Output: state recognizing L (R)
1 if G(S) is not empty then return G(S)
2 else if S = ∅ then return q∅
3 else if S ∩ F ̸= ∅ then return qε
4 else / ∗ S ̸= ∅ and S ∩ F = ∅ ∗ /
5 for all i = 1, . . . ,m do Si ← δ(S, ai)

6 G(S)← kmake(ℓ, kstate(S1), . . . , kstate(Sm));
7 return G(S)

figure. For the difference with det&min(A), consider the call kstate({ε, ζ}). Since
the two recursive calls kstate({η}) and kstate({η, θ}) return both state 1 with length
1, kmake(1, 1) does not create a new state, as make(1, 1) would return state 1. The
same occurs at the top call kstate({α}).

α

β γ

δ ϵ ζ

η θ

a a, b

a b

b

a, b

b

b

b a

b

3

2

1

a

b

bΣ

α 7→ 3

β, γ 7→ 3

δ, ϵ 7→ 2

∅ 7→ 0 η 7→ 1

ϵ, ζ 7→ 1

η 7→ 1 η, θ 7→ 1

γ 7→ 3

ϵ 7→ 2

∅ 7→ 0 η 7→ 1

ϵ, ζ 7→ 1

Figure 6.15: Run of kdet&min on an NFA for a fixed-length language.

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 146

6.7 Exercises

 Exercise 101. Prove that the minimal DFA for a language of length 4 over
a two-letter alphabet has at most twelve states, and give a language for which the
minimal DFA has twelve states.

 Exercise 102. Give an efficient algorithm that receives as input the minimal
DFA of a fixed-length language and returns the number of words it contains.

 Exercise 103. The algorithm for fixed-length universality given in table 28
has a best-case runtime equal to the length of the input state q. Give an improved
algorithm that only needs O(|Σ|) time for inputs q such that L (q) is not fixed-size
universal.

 Exercise 104. Let Σ = {0, 1}. Let f : Σ6 → Σ be the boolean function
defined by f(x1, x2, . . . , x6) = (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ (x5 ∧ x6).

(a) Construct the minimal DFA recognizing {x1 · · ·x6 ∈ Σ6 : f(x1, . . . , x6) = 1}.
For example, the DFA accepts 111000 because f(1, 1, 1, 0, 0, 0) = 1 but not
101010.

(b) Show that the minimal DFA recognizing {x1x3x5x2x4x6 : f(x1, . . . , x6) = 1}
has at least fifteen states. Variables are ordered differently, for example, the
DFA accepts neither 111000 nor 101010.

(c) More generally, consider function f(x1, . . . , x2n) =
∨

1≤k≤n(x2k−1∧x2k) and
languages

Ln = {x1x2 · · ·x2n−1x2n : f(x1, . . . , x2n) = 1},
Kn = {x1x3 · · ·x2n−1x2x4 · · ·x2n : f(x1, . . . , x2n) = 1}.

Show that the size of the minimal DFA grows linearly for Ln and exponen-
tially for Kn.

 Exercise 105. Let L1 = {abb, bba, bbb} and L2 = {aba, bbb}.

(a) Suppose you are given a fixed-length language L described explicitly by a
set instead of an automaton. Give an algorithm that outputs the state q of
the fixed-length master automaton for L.

(b) Use the previous algorithm to build the states of the fixed-length master
automaton for L1 and L2.

(c) Compute the state of the fixed-length master automaton representing L1 ∪
L2.

(d) Identify the kernels ⟨L1⟩, ⟨L2⟩, and ⟨L1 ∪ L2⟩.

 Exercise 106.

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 147

(a) Give an algorithm to compute L (p) · L (q) given states p and q of the fixed-
length master automaton.

(b) Give an algorithm to compute both the length and size of L (q) given a state
q of the fixed-length master automaton.

(c) The length and size of L (q) could be obtained in constant time if they were
simply stored in the fixed-length master automaton table. Give a new im-
plementation of make for this representation.

 Exercise 107. Let k ∈ N>0. Let flip : {0, 1}k → {0, 1}k be the function that
inverts the bits of its input, for example, flip(010) = 101. Let val : {0, 1}k → N
be such that val(w) is the number represented by w with the “least significant bit
first” encoding.

(a) Describe the minimal transducer that accepts

Lk =
{
[x, y] ∈ ({0, 1} × {0, 1})k : val(y) = val(flip(x)) + 1 mod 2k

}
.

(b) Build the state r of the fixed-length master transducer for L3 and the state
q of the fixed-length master automaton for {010, 110}.

(c) Adapt the algorithm pre seen in the chapter to compute post(r, q).

 Exercise 108. We define the language of a boolean formula φ over variables
x1, . . . , xn as

L (φ) = {a1 · · · an ∈ {0, 1}n : assignment x1 7→ a1, . . . , xn 7→ an satisfies φ}.

(a) Give a polynomial-time algorithm that takes as input a DFA A recognizing
a language of length n and returns a boolean formula φ such that L (φ) =
L (A).

(b) Give an exponential-time algorithm that takes a boolean formula φ as input
and returns a DFA A recognizing L (φ).

 Exercise 109. Given X ⊆ {0, 1, . . . , 2k − 1}, where k ≥ 1, let AX be the
minimal DFA recognizing the “least-significant-bit-first” encodings of length k of
the elements of X.

(a) Let X + 1 = {x + 1 mod 2k : x ∈ X}. Give an algorithm that on input AX
produces AX+1.

(b) Let AX = (Q, {0, 1}, δ, q0, F). What is the set of numbers recognized by the
automaton A′ = (Q, {0, 1}, δ′, q0, F), where δ′(q, b) = δ(q, 1− b)?

 Exercise 110. Recall that weakly acyclic languages and DFAs have been
introduced in exercise 35. Recall that the relation ⪯ on the states of a weakly
acyclic DFA, defined by q ⪯ q′ iff δ(q, w) = q′ for some word w, is a partial order.
Show that:

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 148

(a) Every fixed-length language is weakly acyclic.

(b) If L is weakly acyclic, then Lw is also weakly acyclic for every w ∈ Σ∗.

Given weakly acyclic languages L and L′, let L ⪯L L′ denote that L = (L′)w for
some word w. Show that:

(c) ⪯L is a partial order on the set of all weakly acyclic languages.

(d) ⪯L has no infinite descending chains.

(e) The only two minimal languages w.r.t. ⪯L are ∅ and Σ∗.

Recall that, by exercise 57, the minimal DFA recognizing a given weakly acyclic
language is weakly acyclic. We define the weakly acyclic master automaton over
alphabet Σ as M = (QM ,Σ, δM , FM), where

• QM is the set of all weakly acyclic languages over Σ;

• δ : QM ×Σ→ QM is given by δ(L, a) = La for every q ∈ QM and a ∈ Σ; and

• L ∈ FM iff ε ∈ L.

Prove the following result, which generalizes the corresponding one for fixed-
length languages:

(f) For every weakly acyclic language L, the language recognized from the state
L of the weakly acyclic master automaton M is L.

 Exercise 111. Recall that exercise 110 establishes that weakly acyclic lan-
guages can be represented by a weakly acyclic master automaton. A state q of the
weakly acyclic master automaton can be represented by a table as follows. A node
is a triple ⟨q, s, b⟩, where

• q is a state identifier;

• s = (α1, . . . , αm) is the successor tuple of the node, where for every 1 ≤ i ≤
m, the component αi is either a state identifier or the special symbol self;
and

• b ∈ {0, 1} indicates whether the state is accepting (b = 1) or not (b = 0).

For example, if Σ = {a, b} and q is an accepting state satisfying δ(q, a) = q′ and
δ(q, b) = q, then q is represented by the triple ⟨q, s, b⟩, where s = (q′, self) and
b = 1. The state identifiers of the states for the languages ∅ and Σ∗ are denoted
respectively by q∅ and qΣ∗ .

Given a table T that represents a fragment of the weakly acyclic master au-
tomaton, the procedure make(s, b) returns the state identifier of the unique state
of T having s as successor tuple and b as boolean flag, if such a state exists; other-
wise, it adds a new node ⟨q, s, b⟩ to T , where q is a fresh identifier, and it returns
q.

CHAPTER 6. FINITE UNIVERSES AND DECISION DIAGRAMS 149

(a) Give an algorithm to compute L (q1) ∩ L (q2) given states q1 and q2 of the
weakly acyclic master automaton.

(b) Give an algorithm to compute L (q1) ∪ L (q2) given states q1 and q2 of the
weakly acyclic master automaton.

(c) Give an algorithm to compute L (q) given a state q of the weakly acyclic
master automaton.

 Exercise 112. Recall that we can associate a language to a boolean formula
as done in exercise 108. Show that the following problem is NP-hard:

Given: a boolean formula φ.

Decide: whether the minimal DFA for L (φ) has more than one state.

Chapter 7
Application II: Verification

A significant part of the development of computer systems consists of finding and
fixing bugs. For many systems, code inspection and testing are not enough to
catch every bug. In particular, this is the case for concurrent systems. A concur-
rent system consists of multiple computing units communicating by some means,
like shared memory or message-passing. The order in which different units of a
concurrent system execute instructions depends on many factors, like the partic-
ular hardware on which the system is running, the specific state of the memory,
the relative speed of communication channels, and others. These factors are not
under the control of the designer, and so a concurrent system that is repeatedly
started in the same initial configuration can potentially execute in many different
ways. A bug that is only revealed in a few of these executions is very hard to find
and to reproduce.

One of the main applications of automata theory is the algorithmic verification
or falsification of correctness properties of hardware and software systems, in par-
ticular of concurrent ones. Given a system (such as a digital circuit, a program, or
a communication protocol) and a property (such as “after termination, the values
of variables x and y are equal” or “every sent message is eventually received”), we
wish to automatically determine whether the system satisfies the property or not.
We apply the theory developed in the previous chapters to this question.

7.1 The Automata-Theoretic Approach to Verification

We consider discrete systems for which a notion of configuration is definable.1 At
every timemoment, the system is in a configuration. Moves from one configuration
to the next take place instantaneously and are determined by the system dynamics.
If the semantics allows a move from a configuration c to another one c′, then c′ is
a legal successor of c. A configuration may have several successors, in which case
the system is said to be nondeterministic. There is a distinguished set of initial
configurations. An execution is a finite or an infinite sequence of configurations
starting at some initial configuration and in which every other configuration is a

1We speak of the “configurations” of a system and not of its “states,” as it is sometimes done in the
literature, in order to avoid confusion with the states of automata.

150

CHAPTER 7. APPLICATION II: VERIFICATION 151

legal successor of its predecessor in the sequence. A full execution is either an
infinite execution or an execution whose last configuration has no successors.

In this chapter, we are only interested in finite executions (see chapter 13 for
an extension to infinite executions). The set of executions can then be seen as a
language E ⊆ C∗, where the alphabet C is the set of possible configurations of
the system. We call C∗ the set of potential executions of the system.

Example 7.1. Consider program 1, which has two boolean variables x and y. A
configuration of the program is a triple [ℓ, nx, ny], where ℓ ∈ {1, 2, 3, 4, 5} is the
current value of the program counter, and nx, ny ∈ {0, 1} are the current values of x
and y. The set C of all possible configurations contains 5 · 2 · 2 = 20 elements. The
initial configurations are [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]—that is, all configurations
in which control is at line 1.

The sequence

[1, 1, 1] [2, 1, 1] [3, 1, 1] [4, 0, 1] [1, 0, 1] [5, 0, 1]

is a full execution, while

[1, 1, 0] [2, 1, 0] [4, 1, 0] [1, 1, 0]

is also an execution but not a full one. All words of

([1, 1, 0] [2, 1, 0] [4, 1, 0])
∗

are executions, and hence the language E of all executions is infinite.

1 while x = 1 do
2 if y = 1 then
3 x← 0

4 y ← 1− x
5 end

Program 1: A simple boolean program.

Assume we wish to determine whether the system has an execution satisfying
some property of interest. If we can construct automata for the language E ⊆ C∗
of executions and the language P ⊆ C∗ of potential executions satisfying the
property, then we can solve the problem by checking whether the language E ∩P
is empty, which can be decided using the algorithms of chapter 3. This is the main
insight behind the automata-theoretic approach to verification.

The requirement that the language E of executions is regular is satisfied by all
systems with finitely many reachable configurations (i.e., finitely many configu-
rations c such that some execution leads from some initial configuration to c). A
system automaton recognizing the executions of the system can be easily obtained
from the configuration graph: the graph having the reachable configurations as
nodes and arcs from each configuration to its successors. There are two possible
constructions, both very simple.

CHAPTER 7. APPLICATION II: VERIFICATION 152

• In the first construction, the states are the reachable configurations of the
program plus a new state i, which is also the initial state. All states are
final. For every transition c→ c′ of the graph, there is a transition c c′−−→ c′ in
the system automaton. Moreover, there is a transition i c−→ c for every initial
configuration.
It is easy to see that this construction produces a deterministic automaton.
Since the label of a transition is also its target state, for any two transitions
c

c′−−→ c1 and c c′−−→ c2 we necessarily have c1 = c′ = c2, and so the automaton
is deterministic.

• In the second construction, the states are the reachable configurations of the
program plus a new state f . The initial states are all the initial configura-
tions, and all states are final. For every transition c→ c′ of the graph, there is
a transition c c−→ c′ in the system automaton. Moreover, there is a transition
c

c−→ f for every configuration c having no successor.

Example 7.2. Figure 7.1 depicts the configuration graph of program 1, together with
the system automata produced by the two constructions above. Let us algorithmically
decide whether the system has a full execution such that initially y = 1, finally y = 0,
and y never increases. Let [ℓ, x, 0] and [ℓ, x, 1] stand for the sets of configurations
where y = 0 and y = 1, respectively, and the values of ℓ and x are arbitrary. Sim-
ilarly, let [5, x, 0] stand for the set of configurations where ℓ = 5, y = 0, and x
is arbitrary. The set of potential executions satisfying the property is given by the
regular expression

[ℓ, x, 1] [ℓ, x, 1]∗ [ℓ, x, 0]∗ [5, x, 0],

which is recognized by the property automaton at the top of figure 7.2. Its inter-
section with the system automaton in the middle of figure 7.1 (we could also use the
other one) is shown at the bottom of figure 7.2. A solid colored state of the pairing
labeled by [ℓ, x, y] is the result of pairing the solid colored state of the property NFA
and the state [ℓ, x, y] of the system DFA. Since labels of the transitions of the pairing
are always equal to the target state, they are omitted for the sake of readability.

Since the intersection has no hatched colored state, the intersection is empty, and
so the program has no execution satisfying the property.

Example 7.3. Let us determine whether the assignment “y ← 1 − x” on line 4 of
program 1 is redundant and can be safely removed. This is the case if the assignment
never changes the value of y. The potential executions of the program in which the
assignment changes the value of y at some point correspond to the regular expression

[ℓ, x, y]∗ ([4, x, 0] [1, x, 1] + [4, x, 1] [1, x, 0]) [ℓ, x, y]∗.

A property automaton for this expression can be easily constructed, and its intersec-
tion with the system automaton is again empty. So, the property holds, and the
assignment is indeed redundant.

7.2 Programs as Networks of Automata

We can also model program 1 as a network of communicating automata. The key
idea is to model the two variables x and y and the control flow of the program

CHAPTER 7. APPLICATION II: VERIFICATION 153

1, 0, 0 5, 0, 0

1, 1, 0 2, 1, 0 4, 1, 0

1, 0, 1 5, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1

1, 0, 0 5, 0, 0

1, 1, 0 2, 1, 0 4, 1, 0

1, 0, 1 5, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1

i

[1, 0, 0]

[1, 1, 0]

[1, 0, 1]

[1, 1, 1]

[5, 0, 0]

[2, 1, 0] [4, 1, 0]

[1, 1, 0]

[5, 0, 1]

[2, 1, 1] [3, 1, 1] [4, 0, 1]

[1, 0, 1]

1, 0, 0 5, 0, 0

1, 1, 0 2, 1, 0 4, 1, 0

1, 0, 1 5, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1

f

[5, 0, 0]

[5, 0, 1]

[1, 0, 0]

[1, 1, 0] [2, 1, 0]

[4, 1, 0]

[1, 0, 1]

[1, 1, 1] [2, 1, 1] [3, 1, 1]

[4, 0, 1]

Figure 7.1: Top: the configuration graph of program 1. Middle and bottom: two
system automata arising from the configuration graph.

as three independent processes. The processes for x and y maintain their current
values, and the control flow process maintains the current value of the program
counter. The execution of, say, the assignment “x← 0” in line 3 of the program is
modeled as the execution of a joint action between the control flow process and
the process for variable x: the control flow process updates the current control
position to 4, and simultaneously, the process for x updates the current value of x
to 0.

CHAPTER 7. APPLICATION II: VERIFICATION 154

[ℓ, x, 1] [5, x, 0]

[ℓ, x, 1] [ℓ, x, 0]

1, 0, 1 5, 0, 1

1, 0, 1 5, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1

i

Figure 7.2: Top: property automaton. Bottom: product automaton.

The processes for the variables and the control flow are represented by finite
automata whose states are all final. The three automata for program 1 are shown
in figure 7.3. Since all states are final, we do not use the graphical representa-
tion with a double circle. The automata for x and y have two states, one for each
possible value of the variables. The control-flow automaton has five states, one for
each control location. The alphabet of the automaton for x contains the assign-
ments and the boolean conditions of the program involving x and similarly for y.
So, for example, the alphabet for x contains x ← 0 but not y = 1. However, a
single assignment may produce several alphabet letters. For instance, the assign-
ment “y ← 1 − x” at line 4 produces two alphabet letters, corresponding to two
possible actions: if the automaton for x is currently at state 0 (i.e., if x currently
has value 0), then the automaton for y must move to state 1, otherwise to state
0. We let “x = 0 ⇒ y ← 1” and “x = 1 ⇒ y ← 0” denote these two alphabet
letters. Observe also that the execution of “y ← 1−x” is modeled as a joint action
of all three automata: intuitively, the action “x = 0 ⇒ y ← 1” can be executed
only if the automaton for x is currently at state 0 and the control-flow automaton
is currently at state 4.

Let us give a formal definition of networks of automata. In the definition, we
do not require all states to be final, because, as we shall see later, a more general
definition proves to be useful.

Definition 7.4. A network of automata is a tuple A = ⟨A1, . . . , An⟩ of NFAs, not
necessarily over a common alphabet. Let Ai = (Qi,Σi, δi, Q0i, Fi) for every i ∈
{1, . . . , n}, and letΣ = Σ1∪· · ·∪Σn. A letter ofΣ is called an action. A configuration
of A is a tuple [q1, . . . , qn] of states such that qi ∈ Qi for every i ∈ {1, . . . , n}. A
configuration is initial if qi ∈ Q0i for every i ∈ {1, . . . , n} and final if qi ∈ Fi for

CHAPTER 7. APPLICATION II: VERIFICATION 155

1

2

3

4

5

x = 1

y = 1

x ̸= 1

y ̸= 1

x← 0

x = 1⇒ y ← 0,
x = 0⇒ y ← 1

0 1

x = 0⇒ y ← 1,
x← 0,
x ̸= 1

x = 1⇒ y ← 0,
x = 1

x← 0

0 1

x = 1⇒ y ← 0,
y ̸= 1

x = 0⇒ y ← 1,
y = 1

x = 0⇒ y ← 1

x = 1⇒ y ← 0

Figure 7.3: A network of three automata modeling program 1. All states are final,
so the double circles are drawn as simple circles for clarity.

every i ∈ {1, . . . , n}.

Observe that each NFA of a network has its own alphabet Σi. The alphabets
Σ1, . . . ,Σn are not necessarily disjoint; in fact, usually they are not. We define
when is an action enabled at a configuration and what happens when it occurs.

Definition 7.5. Let A = ⟨A1, . . . , An⟩ be a network of automata, where Ai =
(Qi,Σi, δi, Q0i, Fi). Given an action a ∈ Σ, we say that Ai participates in a if
a ∈ Σi. An action a is enabled at a configuration [q1, . . . , qn] if δi(qi, a) ̸= ∅ for
every i ∈ {1, . . . , n} such that Ai participates in a. If a is enabled, then it can occur,
and its occurrence leads to any element of Q′1 × · · · ×Q′n, where

Q′i =

{
δ(qi, a) if Ai participates in a,
{qi} otherwise.

We call Q′1× · · · ×Q′n the set of successor configurations of [q1, . . . , qn] with respect
to action a. We write [q1, . . . , qn]

a−→[q′1, . . . , q
′
n] to denote that [q1, . . . , qn] enables a

and [q′1, . . . , q
′
n] ∈ Q′1 × · · · ×Q′n.

The language accepted by a network is defined in the standard way:

Definition 7.6. A run of A on input a0a1 · · · an−1 ∈ Σ∗ is a sequence

c0
a0−−→ c1

a1−−→· · · an−1−−−−→ cn,

where c0, . . . , cn are configurations of A, the configuration c0 is initial, and ci+1 is
a successor of ci with respect to ai for every 0 ≤ i < n. A run is accepting if cn is a
final configuration. Network A accepts w ∈ Σ∗ if it has an accepting run on input
w. The language recognized by A, denoted by L (A), is the set of words accepted by
A.

CHAPTER 7. APPLICATION II: VERIFICATION 156

Example 7.7. Let Ax, Ay, and AP be the three automata of figure 7.3 for the vari-
ables x and y and the control flow, respectively. We have

Σx = {x = 1;x ̸= 1;x← 0;x = 0⇒ y ← 1;x = 1⇒ y ← 0},
Σy = {y = 1; y ̸= 1;x = 0⇒ y ← 1;x = 1⇒ y ← 0}, and
ΣP = Σx ∪ Σy.

The automata participating in the action x ← 0 are AP and Ax, and all three au-
tomata participate in “x = 1⇒ y ← 0.” Observe that AP participates in all actions.
If we define A = ⟨AP , Ax, Ay⟩, then the configurations of A are the configurations
of program 1. The configuration [3, 1, 1] enables the action x ← 0, and we have
[3, 1, 1]

x←0−−−→[4, 0, 1]. One of the runs of A is

[1, 1, 1]
x=1−−−→[2, 1, 1]

y=1−−−→[3, 1, 1]
x←0−−−→[4, 0, 1]

x=0⇒y←1−−−−−−−−→[5, 0, 1]

and so the word (x = 1)(y = 1)(x← 0)(x = 0⇒ y ← 1) belongs to L (A).

7.2.1 Parallel Composition of Languages

We introduce a useful characterization of the language of a network of automata.
GivenL1 ⊆ Σ∗1, . . . , Ln ⊆ Σ∗n, the parallel composition ofL1, . . . , Ln is the language
L1 ∥ L2 ∥ · · · ∥ Ln ⊆ (Σ1 ∪ · · · ∪ Σn)

∗ defined as follows: w ∈ L1 ∥ · · · ∥ Ln iff
projΣi

(w) ∈ Li for every 1 ≤ i ≤ n, where projΣi
(w) is the word obtained from w

by only keeping letters from Σi.

Example 7.8. Let L1 = {aa, bc} be a language over alphabet Σ1 = {a, b, c} and
L2 = {ada, dc} a language over alphabet Σ2 = {a, c, d}. We have L1 ∥ L2 =
{ada, bdc, dbc}.

Notice that, strictly speaking, parallel composition is an operation that depends
not only on the languages L1, . . . , Ln, but also on their alphabets. Take, for exam-
ple, L1 = {a} and L2 = {ab}. If we look at them as languages over the alphabet
{a, b}, then L1 ∥ L2 = ∅, but if we look at L1 as a language over {a} and L2 as a
language over {a, b}, then L1 ∥ L2 = {ab}. Thus, the correct notation would be
L1 ∥Σ1,Σ2

L2, but we abuse language and assume that when a language is defined,
its alphabet is clear from the context.

Proposition 7.9. The parallel composition of languages satisfies the following:

(a) Parallel composition is associative, commutative, and idempotent, that is, (L1 ∥
L2) ∥ L3 = L1 ∥ (L2 ∥ L3) (associativity), L1 ∥ L2 = L2 ∥ L1 (commutativ-
ity), and L ∥ L = L (idempotence).

(b) If L1 and L2 are over a common alphabet Σ1 = Σ2, then L1 ∥ L2 = L1 ∩ L2.

(c) If A = ⟨A1, . . . , An⟩ is a network of automata, then L (A) = L (A1) ∥ · · · ∥
L (An).

Proof. See exercise 115.

CHAPTER 7. APPLICATION II: VERIFICATION 157

By property (b), two automata A1 and A2 over a common alphabet satisfy
L (A1 ∥ A2) = L (A1)∩L (A2). Intuitively, in this case, every action must be jointly
executed by A1 and A2, or, in other words, the automata move in lockstep. At the
other extreme, if the input alphabets of A1 and A2 are pairwise disjoint, then,
intuitively, the automata do not communicate at all and move independently of
each other.

7.2.2 Asynchronous Product

Given a network of automata A = ⟨A1, . . . An⟩, we can compute an NFA recog-
nizing the same language. This NFA, called the asynchronous product of A and
denoted by A1 ⊗ · · · ⊗An, is the output of algorithm 37.

Algorithm 37 Asynchronous product.
AsyncProduct(A1, . . . , An)
Input: a network of automata A = ⟨A1, . . . , An⟩, where

Ai = (Qi,Σi, δi, Q0i, Fi) for every i ∈ {1, . . . , n}
Output: NFA A1 ⊗ · · · ⊗An = (Q,Σ, δ,Q0, F) recognizing L (A)
1 Q, δ, F ← ∅
2 Q0 ← Q01 × · · · ×Q0n

3 W ← Q0

4 whileW ̸= ∅ do
5 pick [q1, . . . , qn] fromW

6 add [q1, . . . , qn] to Q
7 if

∧n
i=1 qi ∈ Fi then add [q1, . . . , qn] to F

8 for all a ∈ Σ1 ∪ . . . ∪ Σn do
9 for all i ∈ [1..n] do
10 if a ∈ Σi then Q′i ← δi(qi, a) else Q′i = {qi}
11 for all [q′1, . . . , q′n] ∈ Q′1 × . . .×Q′n do
12 if [q′1, . . . , q′n] /∈ Q then add [q′1, . . . , q

′
n] toW

13 add ([q1, . . . , qn], a, [q
′
1, . . . , q

′
n]) to δ

14 return Q,Σ1 ∪ · · · ∪ Σn, δ,Q0, F

The algorithm follows closely definitions 7.5 and 7.6. Starting at the initial config-
urations, AsyncProduct repeatedly picks a configuration from the workset, stores
it, constructs its successors, and adds them (if not yet stored) to the workset.
Line 10 is the crucial one. Assume we are in the middle of the execution of
AsyncProduct(A1, A2), currently processing a configuration [q1, q2] and an action a
at line 8. There are three cases.

• Assume that a belongs to Σ1 ∩ Σ2, and the a-transitions leaving q1 and q2
are q1

a−→ q′1, q1
a−→ q′′1 and q2

a−→ q′2, q1
a−→ q′′2 . Then, we obtainQ′1 = {q′1, q′′1}

and Q′2 = {q′2, q′′2}, and the loop at lines 11–13 adds the transitions

[q1, q2]
a−→ [q′1, q

′
2], [q1, q2]

a−→ [q′′1 , q
′
2],

[q1, q2]
a−→ [q′1, q

′′
2], [q1, q2]

a−→ [q′′1 , q
′′
2],

CHAPTER 7. APPLICATION II: VERIFICATION 158

1, 0, 0 5, 0, 0

1, 1, 0 2, 1, 0 4, 1, 0

1, 0, 1 5, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1

x ̸= 1

x = 1 y ̸= 1

x = 1⇒ y ← 0

x ̸= 1

x = 1 y = 1 x← 0

x = 0⇒ y ← 1

Figure 7.4: Asynchronous product of the automata of figure 7.3.

corresponding to the four possible “joint a-moves” that A1 and A2 can exe-
cute from [q1, q2].

• Assume that a only belongs to Σ1, the a-transitions leaving q1 are as be-
fore, and, since a /∈ Σ2, there are no a-transitions leaving q2. Then, Q′1 =

{q′1, q′′1}, Q′2 = {q2}, and the loop adds transitions [q1, q2]
a−→[q′1, q2] and

[q1, q2]
a−→[q′′1 , q2], which correspond to A1 making a move while A2 stays

put.

• Assume that a belongs to Σ1 ∩Σ2, the a-transitions leaving q1 are as before,
and there are no a-transitions leaving q2 (which is possible even if a ∈ Σ2,
because A2 is an NFA). Then, Q′1 = {q′1, q′′1}, Q′2 = ∅, and the loop adds no
transitions. This corresponds to the fact that, since a-moves must be jointly
executed by A1 and A2, and A2 is not currently able to do any a-move, no
joint a-move can happen.

Example 7.10. The asynchronous product AP ⊗ Ax ⊗ Ay, where AP , Ax, Ay are
the three automata of figure 7.3, is shown in figure 7.4. Its states are the reachable
configurations of the program. Since all states are final, we draw all states as simple
instead of double circles.

Finally, while we have defined the asynchronous product of A1⊗· · ·⊗An as an
automaton over alphabet Σ = Σ1 ∪ · · · ∪Σn, the algorithm can be easily modified
to return a system automaton recognizing the set of executions of the program.
We provide a procedure SysAut(A1, . . . , An) in algorithm 38 for the first of the two
constructions on page 152 (the one in which the automaton has an extra initial
state i). Giving an algorithm for the second construction is left as an exercise (see
exercise 114). To obtain SysAut, we first modify line 13 of AsyncProduct so that,
instead of transition [q1, . . . , qn]

a−→[q′1, . . . , q
′
n], it adds

[q1, . . . , qn]
[q1,...,qn]−−−−−−→[q′1, . . . , q

′
n] (see line 14 of SysAut).

It only remains to add the initial state and its outgoing transitions, which happens
in lines 1 to 4.

CHAPTER 7. APPLICATION II: VERIFICATION 159

Algorithm 38 Generation of the system automaton with an extra initial state.
SysAut(A1, . . . , An)
Input: a network of automata ⟨A1, . . . An⟩, where

A1 = (Q1,Σ1, δ1, Q01, Q1), . . . , An = (Qn,Σn, δn, Q0n, Qn)
Output: a system automaton S = (Q,Σ, δ,Q0, F)

1 Q, δ,Q0, F ← ∅
2 add i to Q; add i to Q0; add i to F
3 for all [q1, . . . , qn] ∈ Q01 × · · · ×Q0n do
4 add (i, [q1, . . . , qn], [q1, . . . , qn]) to δ
5 W ← Q01 × · · · ×Q0n

6 whileW ̸= ∅ do
7 pick [q1, . . . , qn] fromW

8 add [q1, . . . , qn] to Q; add [q1, . . . , qn] to F
9 for all a ∈ Σ1 ∪ . . . ∪ Σn do
10 for all i ∈ [1..n] do
11 if a ∈ Σi then Q′i ← δi(qi, a) else Q′i = {qi}
12 for all [q′1, . . . , q′n] ∈ Q′1 × . . .×Q′n do
13 if [q′1, . . . , q′n] /∈ Q then add [q′1, . . . , q

′
n] toW

14 add ([q1, . . . , qn], [q
′
1, . . . , q

′
n], [q

′
1, . . . , q

′
n]) to δ

15 return (Q,Σ, δ,Q0, F)

7.2.3 State- and Action-Based Properties

We have defined executions as sequences of configurations of the program and
modeled properties as sets of potential executions. This is called the state-based
approach. One can also define executions as sequences of instructions. The set
of executions of a network ⟨A1, . . . , An⟩ is then defined directly as the language
of AsyncProduct(A1, . . . , An). For example, the execution of our running example
is the language of the NFA shown in figure 7.4. The property “no terminating
execution of the program contains an occurrence of the action (x = 0 ⇒ y ← 1)”
holds iff this language and the regular language

Σ∗P (x = 0⇒ y ← 1) Σ∗P (x ̸= 1)

have an empty intersection, which is not the case. In this context, program in-
structions are called actions, and we speak of action-based verification.

7.3 Concurrent Programs

Networks of automata can also elegantly model concurrent programs—that is, pro-
grams consisting of several sequential programs, usually called processes, commu-
nicating in some way. A popular communication mechanism includes shared vari-
ables, where processes communicate by writing a value to a variable, which can
then be read by other processes. As an example, we consider (a simplified version
of) Lamport-Burns’ mutual exclusion algorithm for two processes, called process
0 and process 1, whose code is described in algorithm 39.

CHAPTER 7. APPLICATION II: VERIFICATION 160

Algorithm 39 Lamport-Burns’ mutual exclusion algorithm.
Process 0

repeat
nc0 : b0 ← 1
t0 : while b1 = 1 do skip
c0 : b0 ← 0

forever

Process 1

repeat
nc1 : b1 ← 1
t1 : if b0 = 1 then
q1 : b1 ← 0
q′1 : while b0 = 1 do skip

goto nc1
c1 : b1 ← 0

forever

The processes communicate through the shared boolean variables b0 and b1,
which initially hold the value 0. Process i reads and writes variable bi and reads
variable b1−i. The algorithm should guarantee that the processes are never simul-
taneously at control points c0 and c1 (their critical sections) and that they will not
reach a deadlock. Other properties the algorithm should satisfy will be discussed
later. Initially, process 0 is in its noncritical section (local state nc0); it can also be
trying to enter its critical section (t0) or be already in its critical section (c0). The
process can move from nc0 to t0 at any time by setting b0 to 1, it can move from
t0 to c0 only if the current value of b1 is 0, and it can move from c0 to nc0 at any
time by setting b0 to 0.

Process 1 is a bit more complicated. The local states nc1, t1, and c1 play the
same role as in process 0. The local states q1 and q′1 model a “polite” behavior:
intuitively, if process 1 sees that process 0 is trying to enter or in the critical section,
it moves to an “after you” local state q1 and sets b1 to 0 to signal that it is no longer
trying to enter its critical section (local state q′1). It can then return to its noncritical
section if the value of b0 is 0.

A configuration of this program is a tuple [nb0 , nb1 , ℓ0, ℓ1], where nb0 , nb1 ∈
{0, 1}, ℓ0 ∈ {nc0, t0, c0}, and ℓ1 ∈ {nc1, t1, q1, q′1, c1}. We define executions of
the program by interleaving. We assume that, if at the current configuration both
processes can do an action, then one of the two will occur before the other, but
which one occurs before is decided nondeterministically. So, loosely speaking, if
two processes can execute two sequences of actions independently of each other
(because, say, they involve disjoint sets of variables), then the sequences of actions
of the two processes running in parallel are the interleaving of the sequences of
the processes.

For example, at the initial configuration [0, 0, nc0, nc1], both processes can set
their variables to 1. Hence, there are two possible transitions:

[0, 0, nc0, nc1]→ [1, 0, t0, nc1] and [0, 0, nc0, nc1]→ [0, 1, nc0, t1].

Since the other process can still set its variable, we also have transitions

[1, 0, t0, nc1]→ [1, 1, t0, t1] and [1, 0, t0, nc1]→ [1, 1, t0, t1].

In order to model a shared-variable program as a network of automata, we model
each process and variable by an automaton. The network of automata modeling

CHAPTER 7. APPLICATION II: VERIFICATION 161

nc0 t0 c0
b0 ← 1 b1 = 0

b1 = 1

b0 ← 0

nc1 t1 c1

q′1 q1

b1 ← 1 b0 = 0

b0 = 0 b0 = 1

b1 ← 0
b0 = 1

b1 ← 0

0 1

b0 ← 1

b0 ← 0

b0 ← 0
b0 = 0

b0 ← 1
b0 = 1

0 1

b1 ← 1

b1 ← 0

b1 ← 0
b1 = 0

b1 ← 1
b1 = 1

Figure 7.5: A network of four automata modeling the Lamport–Burns mutex algo-
rithm for two processes. The automata on the left model the control flow of the
processes and the automata on the right the two shared variables. All states are
final.

Lamport-Burns’ algorithm is shown in figure 7.5 and its asynchronous product in
figure 7.6.

7.3.1 Expressing and Checking Properties

We use Lamport-Burns’ algorithm to present some more examples of properties
and how to check them automatically.

The mutual exclusion property can be easily formalized: it holds if the asyn-
chronous product does not contain any configuration of the form [v0, v1, c0, c1],
where v0, v1 ∈ {0, 1}. The property can be easily checked on-the-fly while con-
structing the asynchronous product, and an inspection of figure 7.6 shows that it
holds. Notice that in order to check mutual exclusion, we do not need to construct
the NFA for the executions of the program. This is always the case if we only wish
to check the reachability of a configuration or set of configurations.

Other properties of interest for the algorithm are as follows:

• Deadlock freedom. The algorithm is deadlock-free if every configuration
of the asynchronous product has at least one successor. Again, the property
can be checked on-the-fly, and it holds.

• Bounded overtaking. The property states that after process 0 signals its
interest in accessing the critical section by moving to t0, process 1 can en-
ter the critical section at most once before process 0 enters the critical sec-

CHAPTER 7. APPLICATION II: VERIFICATION 162

0, 0, nc0, nc1 1, 1, t0, t1 1, 1, t0, q1 1, 0, t0, q
′
1

1, 0, t0, nc1 1, 1, c0, t1 0, 1, nc0, q1

1, 0, c0, nc1 1, 1, c0, q1 1, 0, c0, q
′
1

0, 0, nc0, q
′
1

0, 1, nc0, t1 1, 1, t0, c1

0, 1, nc0, c1

b0 = 1 b1 ← 0

b0 ← 1

b1 ← 1

b1 ← 1

b0 ← 1 b1 = 1 b1 = 1 b0 = 1

b0 = 0 b0 ← 1
b1 = 0b1 ← 0

b1 ← 0

b1 = 0 b1 ← 1

b0 ← 0

b0 = 1

b0 ← 0

b1 ← 0

b1 = 0

b0 = 1

b0 ← 0

b1 ← 0

b0 ← 1

b0 = 0

b0 ← 0 b0 ← 1

Figure 7.6: Asynchronous product of the network of figure 7.5. Solid (respectively,
dotted) transitions correspond to moves by process 0 (respectively, process 1).

tion.2 Bounded overtaking can be checked using the NFA recognizing the
executions of the network. The NFA can be easily obtained from the asyn-
chronous product by renaming the transitions as shown in example 7.2. Let
NCi, Ti, Ci be the sets of configurations in which process i is in its noncriti-
cal section, is trying to access its critical section, and is in its critical section,
respectively. Let Σ stand for the set of all configurations. The regular ex-
pression

r = Σ∗ T0 (Σ \ C0)
∗ C1 (Σ \ C0)

∗ NC1 (Σ \ C0)
∗ C1 Σ∗

represents potential executions of the algorithm that violate the property.

7.4 Coping with the State-Explosion Problem

Recall that the automata-theoretic approach to the verification of networks of au-
tomata reduces the verification problem to the question of deciding whether given
an automaton AE and a regular expression rV , the language L (AE) ∩ L (rV) is
empty or not. Automaton AE recognizes the language E of executions of the

2More precisely, this is the bounded overtaking property for process 0. We would like it to hold
for both process 0 and process 1.

CHAPTER 7. APPLICATION II: VERIFICATION 163

system, and rV is a regular expression for the set V of potential executions that
violate the property.

When the system is modeled as a network of automata, AE is essentially the
asynchronous product of the network (after the minor modifications mentioned at
the end of section 7.2.2; see also exercise 114). The main problem of the approach
is the number of states ofAE . If the network has n components, each of them with
at most k states, then AE can have as many as kn states. Thus, in the worst case,
the number of states of AE grows exponentially in the size of the network. This is
called the state-explosion problem.

The existence of a polynomial-time algorithm for the verification problem is
very unlikely. Indeed, the problem is PSPACE-complete. For readers not famil-
iar with complexity theory, “PSPACE-complete” informally means that there is
most likely no verification algorithm that uses less than exponential time and a
polynomial amount of memory. The proof is deferred to a forthcoming optional
subsection, which may be skipped.

Despite this result, the automata-theoretic approach is successfully applied to
many hardware and software systems. This is possible thanks to numerous clever
ideas that improve its performance in practice. We introduce three of them in the
rest of the section.

7.4.1 ⋆ Verification Is PSPACE-Complete

Theorem 7.11. The following problem is PSPACE-complete.

Given: a network of automataA = ⟨A1, . . . , An⟩ over alphabetsΣ1, . . . ,Σn,
a regular expression rV over the set of configurations of A.
Decide: whether L (A1 ⊗ · · · ⊗An) ∩ L (rV) ̸= ∅.

Proof. To prove that the problem is in PSPACE, we show that it lies in NPSPACE
and apply Savitch’s theorem. Let B = IntersNFA(A1⊗· · ·⊗An, AV). The states of
B are tuples [q1, . . . , qn, q], where qi is a state of Ai for every 1 ≤ i ≤ n, and q is a
state of V . The polynomial-space nondeterministic algorithm guesses a run of B,
one state at a time, leading to a final state. Notice that storing a state of B only
requires linear space.

To prove PSPACE-hardness, consider the special case of the problem in which
all the alphabets Σ1, . . . ,Σn are equal. By proposition 7.9(b) and (c), in this case,
we have L (A1 ⊗ · · · ⊗An) =

∩n
i=1 L (Ai), and the problem reduces to checking

whether the intersection
∩n
i=1 L (Ai) is empty. This problem was shown to be

PSPACE-hard in exercise 77 by a reduction from the acceptance problem for de-
terministic linearly bounded automata.

7.4.2 On-the-Fly Verification

Given a program with a set E of executions and a regular expression describing
the set V of potential executions violating a property, we can check if E ∩ V = ∅
holds in four steps:

(1) model the program as a network of automata ⟨A1, . . . , An⟩, and construct
AE = SysAut(A1, . . . , An) with L (AE) = E;

CHAPTER 7. APPLICATION II: VERIFICATION 164

Algorithm 40 Algorithm to check violation of a property.
CheckViol(A1, . . . , An, rV)
Input: a network A = ⟨A1, . . . An⟩, where Ai = (Qi,Σi, δi, Q0i, Fi)

a regular expression rV over the configurations of A
Output: true if L (A1 ⊗ · · · ⊗An) ∩ L (rV) is nonempty, false other-
wise
1 (QV ,ΣV , δV , Q0V , FV)← REtoNFA(rV)
2 Q← ∅; Q0 ← Q01 × · · · ×Q0n ×Q0V

3 W ← Q0

4 whileW ̸= ∅ do
5 pick [q1, . . . , qn, q] fromW

6 add [q1, . . . , qn, q] to Q
7 for all a ∈ Σ1 ∪ . . . ∪ Σn do
8 for all i ∈ [1..n] do
9 if a ∈ Σi then Q′i ← δi(qi, a) else Q′i = {qi}
10 for all [q′1, . . . , q′n] ∈ Q′1 × . . .×Q′n do
11 Q′ ← δV (q, [q

′
1, . . . , q

′
n])

12 for all q′ ∈ Q′ do
13 if

∧n
i=1 q

′
i ∈ Fi and q′ ∈ FV then return true

14 if [q′1, . . . , q′n, q′] /∈ Q then add [q′1, . . . , q
′
n, q
′] toW

15 return false

(2) transform the regular expression into an NFA AV using the algorithm of
section 1.4.3;

(3) construct an NFA AE∩V recognizing E ∩ V ; and

(4) check the emptiness of AE∩V .

Observe that AE may have more states than AE∩V . Indeed, if a state of AE is
not reachable by any word of V , then it does not appear in AE∩V . The difference
in size between AE and AE∩V can be large, and so it is better to directly construct
AE∩V , bypassing the construction of AE . Further, it is inefficient to first construct
AE∩V and then check if its language is empty. It is better to check for emptiness
on-the-fly, while constructing AE∩V . This is done by CheckViol as described in
algorithm 40.

Algorithm CheckViol is designed for state-based properties. For action-based
properties, the algorithm is even simpler. Recall that, in the action-based ap-
proach, the potential executions of a network ⟨A1, . . . , An⟩ violating the property
are specified by a regular expression rV over the alphabet Σ = Σ1 ∪ · · · ∪ Σn of
actions. Therefore, both the asynchronous product A1⊗ · · ·⊗An and the NFA AV
computed from rV have Σ as an alphabet. Furthermore, recall that if two NFAs A1

and A2 have the same alphabet, then L (A1 ⊗A2) = L (A1) ∩ L (A2) (by proposi-
tion 7.9b and c). So, we have L (A)∩L (AV) = L (A1 ⊗ · · · ⊗An ⊗AV). Thus, we
can test the emptiness of L (A)∩L (V) by constructing the asynchronous product
A1 ⊗ · · · ⊗ An ⊗ AV , checking on-the-fly if its language is empty. If we rename

CHAPTER 7. APPLICATION II: VERIFICATION 165

AV as An+1, then it suffices to change line 7 of AsyncProduct to

if
n+1∧
i=1

qi ∈ Fi then return true.

Intuitively, in the construction above, we consider AV as another component
of the asynchronous product. This has another small advantage. Let us consider
again the language

Σ∗P (x = 0⇒ y ← 1) Σ∗P (x ̸= 1).

In order to check whether some execution of the program belongs to it, we are only
interested in the actions “x = 0⇒ y ← 1” and “x ̸= 1.” Thus, we can replace AV
by an automaton A′V with only these two actions as an alphabet and recognizing
only the word (x = 0 ⇒ y ← 1) (x ̸= 1). Note that A′V only participates in these
two actions. Intuitively, A′V is an observer of the network ⟨A1, . . . , An⟩ that only
monitors occurrences of “x = 0⇒ y ← 1” and “x ̸= 1.”

7.4.3 Compositional Verification

Consider the asynchronous product A1 ⊗ A2 of two NFAs over alphabets Σ1 and
Σ2. Intuitively, A2 does not see the actions of Σ1\Σ2; they are “internal” actions of
A1. Therefore, A1 can be replaced by any other automaton A′1 satisfying L (A′1) =
projΣ2

(L (A1)) without A2 “noticing,” meaning that the sequences of actions that
A2 can execute with A1 and A′1 as partners are the same. Formally,

projΣ2
(A1 ⊗A2) = projΣ2

(A′1 ⊗A2).

In particular, we have L (A1 ⊗A2) ̸= ∅ iff L (A′1 ⊗A2) ̸= ∅, and so instead of
checking emptiness of A1 ⊗A2, one can also check the emptiness of A′1 ⊗A2.

It is easy to construct an automaton recognizing projΣ2
(L (A1)): it suffices to

replace all transitions of A1 labeled with letters of Σ1 \ Σ2 by ε-transitions. This
automaton has the same size as A1, and so substituting it for A1 has no immediate
advantage. However, after removing the ε-transitions and reducing the resulting
NFA, we may obtain an automaton A′1 smaller than A1.

This idea can be extended to the problem of checking emptiness of a product
A1⊗· · ·⊗An with an arbitrary number of components. Exploiting the associativity
of⊗, we rewrite the product as A1⊗(A2⊗· · ·⊗An) and replace A1 by a hopefully
smaller automaton A′1 over the alphabet Σ2 ∪ · · · ∪ Σn. In a second step, we
rewrite A′1⊗A2⊗A3⊗· · ·⊗An as (A′1⊗A2)⊗(A3⊗· · ·⊗An) and, applying again
the same procedure, replace A′1 ⊗ A2 by a new automaton A′2 over the alphabet
Σ3 ∪ · · · ∪ Σn. The procedure continues until we are left with a single automaton
A′n over Σn, whose emptiness can be checked directly on-the-fly. We call this
approach compositional verification because it exploits the structure of the system
as a network of components.

To see this idea in action, consider the network of automata depicted on the left
of figure 7.7. It models a 3-bit counter consisting of an array of three 1-bit counters,
where each counter communicates with its neighbors. We call the components of
the network ⟨A0, A1, A2⟩ instead of ⟨A1, A2, A3⟩ to better reflect that Ai stands for

CHAPTER 7. APPLICATION II: VERIFICATION 166

the ith bit. Each NFA but the last one has three states, two of which are marked
with 0 and 1 (“a” stands for “auxiliary”). The alphabets are

Σ0 = {inc, inc1, 0, . . . , 7},
Σ1 = {inc1, inc2, 0, . . . , 7},
Σ2 = {inc2, 0, . . . , 7}.

Intuitively, the system interacts with its environment by means of the “visible”
actions Vis = {inc, 0, 1, . . . , 7}. More precisely, inc models a request of the envi-
ronment to increase the counter by 1, and i ∈ {0, . . . , 7} models a query of the
environment asking whether i is the current value of the counter. A configuration
of the form [b2, b1, b0] ∈ {0, 1}3 indicates that the current value of the counter is
4b2 + 2b1 + b0 (configurations are represented as triples of states of A2, A1, A0, in
that order).

0

1

A2:

1

0 a

A1:

1

0

a

A0:

inc2 inc2

4, 5, 6, 7

0, 1, 2, 3

inc1
inc1

inc2

2, 3, 6, 7

0, 1, 4, 5

inc1

inc

inc1

1, 3, 5, 7

0, 2, 4, 6

1, a, 0

1, a, 1

1, a, a

0, 0, a

0, 1, a

0, a, 0

0, a, 1

0, a, a

1, 0, a

1, 1, a

0, 0, 0

0, 0, 1

0, 1, 0

0, 1, 1

1, 0, 0

1, 0, 1

1, 1, 0

1, 1, 1

inc

inc

inc

inc

0

1

2

3

4

5

6

7

inc

inc

inc2

inc1

inc

inc

inc2

inc1

inc

inc

inc

inc

inc2

inc2

inc1

inc2

inc2

inc1

Figure 7.7: A network modeling a 3-bit counter and its asynchronous product.

CHAPTER 7. APPLICATION II: VERIFICATION 167

Here is a run of the network starting and ending at configuration [0, 0, 0]:

[0, 0, 0]
inc−−→ [0, 0, 1]
inc−−→ [0, 0, a]

inc1−−−→ [0, 1, 0]
inc−−→ [0, 1, 1]
inc−−→ [0, 1, a]

inc1−−−→ [0, a, 0]
inc2−−−→ [1, 0, 0]

inc−−→ [1, 0, 1]

inc−−→ [1, 0, a]
inc1−−−→ [1, 1, 0]

inc−−→ [1, 1, 1]

inc−−→ [1, 1, a]
inc1−−−→ [1, a, 0]

inc2−−−→ [0, 0, 0] · · · .

The right-hand side of figure 7.7 illustrates the asynchronous product of the net-
work (all states are final, but we have drawn them as simple instead of double
ellipses for simplicity). The asynchronous product has eighteen states.

Assume we wish to check some property whose violations are given by the
language of an automaton AV over the alphabet Vis of visible actions. For this,
we construct an automaton A′0 such that L (A′0) = projVis(L (A2 ⊗A1 ⊗A0)) and
check emptiness of A′0 ⊗ AV . If we compute A′0 by first constructing the asyn-
chronous product A2 ⊗ A1 ⊗ A0, replacing invisible actions by ε, and removing
ε-transitions, then the maximum size of all intermediate automata involved is at
least 18, because that is the number of states of A2 ⊗ A1 ⊗ A0. Let us instead
apply the procedure above, starting with A2. We first construct an automaton A′2
over the alphabet Σ1 ∪ Σ0 ∪ Vis such that L (A′2) = projΣ1∪Σ0∪Vis(L (A2)). Since
Σ2 ⊆ (Σ1 ∩ Σ0), we take A′2 = A2. In the next step, we compute the product
A′2 ⊗A1, shown on the left of figure 7.8, and replace it by an automaton A′1 such
that L (A′1) = projΣ0∪Vis(L (A1)). Since inc2 /∈ Σ0 ∪ Vis, we can replace inc2 by
ε and remove ε-transitions, leading to the automaton A′1 shown on the right of
figure 7.8.

In the next step, we construct A′1 ⊗ A0, shown on the left of figure 7.9, and
replace it by an automatonA′0 such that L (A′0) = projVis(L (A0)). Since inc1 /∈ Vis,
we replace inc1 by ε and eliminate ε-transitions. The result is shown on the left of
the figure. The important fact is that we have never had to construct an automaton
with more than twelve states, saving six states with respect to the method that
directly computes A2⊗A1⊗A0. While saving six states is, of course, irrelevant in
practice, in larger examples, the savings can be significant. In particular, it can be
the case that an asynchronous product A0 ⊗ · · · ⊗ An is too large to be stored in
memory, but each of the intermediate automata constructed by the compositional
approach fits in it.

7.4.4 Symbolic State-Space Exploration

Recall that many program properties, like deadlock-freedom or mutual exclusion,
can be checked by computing the set of reachable configurations of the program. In
breadth-first search, this is done by iteratively computing the set of configurations
reachable in at most 0, 1, 2, . . . steps from the set I of initial configurations until

CHAPTER 7. APPLICATION II: VERIFICATION 168

a fixed point is reached. Let C denote the set of all possible configurations of
the program, and let S ⊆ C × C be the step relation, defined by (c, c′) ∈ S iff
the program can reach c′ from c in one step. Note that c may or may not be a
reachable configuration. For example, [4, 0, 0] → [1, 0, 1] is a step of program 1,
even though [4, 0, 0] is not reachable. Algorithm 41 computes the configurations
reachable from I.

Algorithm 41 Computation of configurations reachable from I.
Reach(I,R)
Input: set I of initial configurations; step relation S
Output: set of configurations reachable from I

1 OldP ← ∅; P ← I

2 while P ̸= OldP do
3 OldP ← P

4 P ← Union(P,Post(P, S))
5 return P

The algorithm can be implemented using different data structures, which can
be explicit or symbolic. Explicit data structures store separately each configuration
of I and each pair of configurations of S; typical examples are lists and hash tables.
Their distinctive feature is that the memory needed to store a set is proportional
to the number of its elements. Symbolic data structures, on the contrary, do not
store a set by storing each of its elements; they store a representation of the set
itself. A prominent example of a symbolic data structure are finite automata and
transducers: given an encoding of configurations as words over some alphabet Σ,
the set I and the step relation S are represented by an automaton and a trans-
ducer, respectively, recognizing the encodings of its elements. Their sizes can be
much smaller than the sizes of I or S. For instance, if I is the set of all possible
configurations, then its encoding is often Σ∗, which is represented by a very small

0, 0

0, 1

1, 0

1, 1

1, 0

1, a

inc1

inc1

inc1

inc2

inc1

inc2

0, 1

2, 3

4, 5

6, 7

0, 0

0, 1

1, 0

1, 1

inc1

inc1

inc1

inc1

0, 1

2, 3

4, 5

6, 7

Figure 7.8: Asynchronous product A2 ⊗A1 and reduced automaton A′1.

CHAPTER 7. APPLICATION II: VERIFICATION 169

0, 0, 0

0, 0, 1

0, 1, 0

0, 1, 1

1, 0, 0

1, 0, 1

1, 1, 0

1, 1, 1

0, 0, a

0, 1, a

1, 0, a

1, 1, a

inc

inc

inc

inc

0

1

2

3

4

5

6

7

inc

inc

inc

inc

inc1

inc1

inc1

inc1

0, 0, 0

0, 0, 1

0, 1, 0

0, 1, 1

1, 0, 0

1, 0, 1

1, 1, 0

1, 1, 1

inc

inc

inc

inc

inc

inc

inc

0

1

2

3

4

5

6

7

inc

Figure 7.9: The asynchronous product A′1 ⊗A0 and the reduced automaton A′0.

automaton. Symbolic data structures are only useful if all the operations required
by the algorithm can be implemented without having to switch to an explicit data
structure. This is the case of automata and transducers: Union, Post, and the
equality check in the condition of the while loop operation are implemented by
the algorithms of chapters 3 and 5 or, if they are of fixed length, by the algorithms
of chapter 6.

Symbolic data structures are interesting when the set of reachable configura-
tions can be very large or even infinite. When the set is small, the overhead of
symbolic data structures usually offsets the advantage of a compact representa-
tion. Despite this, and in order to illustrate the method, we apply it to the five-line
program 1, shown with its flow graph in figure 7.10.

An edge of the flow graph leading from node ℓ to node ℓ′ can be associated a
step relation Sℓ,ℓ′ containing all pairs of configurations

(
[ℓ, x0, y0], [ℓ

′, x′0, y
′
0]
)
such

that if at control point ℓ, the current values of the variables are x0 and y0, then
the program can take a step after which the new control point is ℓ′, and the new
values are x′0, y′0. For instance, for the edge leading from node 4 to node 1, we
have

S4,1 = {([4, x0, y0], [1, x′0, y′0]) : x′0 = x0, y
′
0 = 1− x0} ,

and, for the edge leading from 1 to 2, we have

S1,2 = {([1, x0, y0], [2, x′0, y′0]) : x0 = 1 = x′0, y
′
0 = y0} .

CHAPTER 7. APPLICATION II: VERIFICATION 170

1 while x = 1 do
2 if y = 1 then
3 x← 0

4 y ← 1− x
5 end

3

2

1

4

5

x = 1

y = 1

x ̸= 1

y ̸= 1

x← 0

y ← 1− x

Figure 7.10: Flow graph of program 1.

[
1
2

]
[
1
5

]
[
3
4

]

[
4
1

]
[
2
3

]
[
2
4

]

[
0
1

]
[
0
0

]
[
0
0

]
,

[
1
0

]
[
0
0

]

[
1
1

]

[
0
0

]
,

[
1
1

]

[
0
0

]
,

[
1
1

]

[
0
0

]
,

[
1
1

]
[
0
1

]
,

[
1
1

]
[
0
0

]
,

[
1
0

]

[
1
1

]
[
0
0

]

Figure 7.11: Transducer for the program of figure 7.10.

It is convenient to assign a relation to every pair of nodes of the control graph,
even to those not connected by any edge. If no edge leads from a to b, then we
define Sa,b = ∅. The complete step relation of the program is then described by

S =
∪

ℓ,ℓ′∈L

Sℓ,ℓ′ ,

where L is the set of control points.
The fixed-length transducer for the step relation S is shown in figure 7.11; a

configuration [ℓ, x0, y0] is encoded by the word ℓx0y0 of length 3.
Consider, for instance, the transition labeled by [4, 1]. Using it, the transducer

can recognize four pairs of configurations describing the action of the instruction

CHAPTER 7. APPLICATION II: VERIFICATION 171

1 0, 1 0, 1

2

1

5

1

0, 1

0

0, 1

2

1

5

1

0, 1

0

0, 1

4

3

1

1

0

1

2

1

5

1

0, 1

0

0, 1

4

3

1

1

0

1

0

Figure 7.12: Minimal DFAs for the reachable configurations of the program of
figure 7.10.

“y ← 1− x”, namely, {[
400
101

]
,

[
401
101

]
,

[
410
110

]
,

[
411
110

]}
.

Figure 7.12 depicts minimal DFAs for the set I and for the sets obtained after each
iteration of the while loop.

7.4.4.1 Variable Orders

We have defined a configuration of program 1 as a triple [ℓ, nx, ny], and we have
encoded it as the word ℓnxny. We could also have encoded it as the word nxℓny,
nxℓny, or any other permutation, since in all cases, the information contents is the
same. Of course, when encoding a set of configurations, all elements of the set
must be encoded using the same variable order. While the information contents is
independent of the variable order, the size of the automaton encoding a set is not.
The following example gives an extreme case.

Example 7.12. Consider the set of tuples Xk = {[x1, x2, . . . , x2k] : x1, . . . , x2k ∈
{0, 1}} and the subset Yk ⊆ Xk of tuples satisfying x1 = xk+1, x2 = xk+2, . . . , xk =

CHAPTER 7. APPLICATION II: VERIFICATION 172

x2k. Consider two possible encodings of a tuple [x1, x2, . . . , x2k]: by the word x1x2 · · ·x2k
and by the word x1xk+1x2xk+2 . . . xkx2k. In the first case, the encoding of Yk for
k = 3 is the language

L1 = {000000, 001001, 010010, 011011, 100100, 101101, 110110, 111111},

and, in the second case, the language

L2 = {000000, 000011, 001100, 001111, 110000, 110011, 111100, 111111}.

Figure 7.13 depicts the minimal DFAs for the languages L1 and L2. It is readily seen
that the minimal DFA for L1 has at least 2k states: since for every word w ∈ {0, 1}k,
the residual Lw1 is equal to {w}, the language L1 has a different residual for each
word of length k, and so the minimal DFA has at least 2k states (the exact number
is 2k+1 + 2k − 2). On the other hand, it is easy to see that the minimal DFA for L2

has only 3k + 1 states. So, a good variable order can lead to an exponentially more
compact representation.

We can also appreciate the effect of the variable order in Lamport–Burns’ algo-
rithm. The set of reachable configurations, where a configuration is described by
the control point of the first process, the control point of the second process, the

Figure 7.13: Minimal DFAs for the languagesL1 andL2. For the sake of readability,
0 and 1 are respectively represented by solid and dotted arcs.

CHAPTER 7. APPLICATION II: VERIFICATION 173

nc0

t0

c0

nc1, q
′
1

t1, c1, q1

nc1, q
′
1

t1, c1, q1

nc1, q
′
1

t1, q1

0
01

1

0 1

0

nc1, q
′
1

nc0

0

1

c1

t0

1

t1, q1

nc0 t0, c0

Figure 7.14: Minimal DFAs for the reachable configurations of Lamport–Burns’s
algorithm. On the left, a configuration ⟨s0, s1, v0, v1⟩ is encoded by the word
s0s1v0v1, on the right, by v1s1s0v0.

variable of first process, and finally the variable of the second process, is

⟨nc0, nc1, 0, 0⟩ ⟨t0, nc1, 1, 0⟩ ⟨c0, nc1, 1, 0⟩
⟨nc0, t1, 0, 1⟩ ⟨t0, t1, 1, 1⟩ ⟨c0, t1, 1, 1⟩
⟨nc0, c1, 0, 1⟩ ⟨t0, c1, 1, 1⟩
⟨nc0, q1, 0, 1⟩ ⟨t0, q1, 1, 1⟩ ⟨c0, q1, 1, 1⟩
⟨nc0, q′1, 0, 0⟩ ⟨t0, q′1, 1, 0⟩ ⟨c0, q′1, 1, 0⟩

If we encode a tuple ⟨s0, s1, v0, v1⟩ as the word v0s0s1v1, then the set of reach-
able configurations is recognized by the minimal DFA on the left of figure 7.14.
However, if we encode it as the word v1s1s0v0, then we get the minimal DFA illus-
trated on the right.

The same example can be used to visualize how, by adding configurations to
a set, the size of its minimal DFA can decrease. If we add the “missing” configura-
tion ⟨c0, c1, 1, 1⟩ to the set of reachable configurations (filling the “hole” in the list
above), two states of the DFAs of figure 7.14 can be merged, yielding the minimal
DFAs of figure 7.15. Further note that the set of all configurations, reachable or
not, contains 120 elements but is recognized by a five-state DFA.

7.5 Safety and Liveness Properties

Apart from the state-explosion problem, the automata-theoretic approach to auto-
matic verification as described in this chapter has a second limitation: it assumes
that the violations of the property can be witnessed by finite executions. In other

CHAPTER 7. APPLICATION II: VERIFICATION 174

nc0

nc1, q
′
1

0

0

t0, c0

t1, c1, q1

1

1

t1, c1, q1

0

nc1, q
′
1

1

0

nc1, q
′
1

nc0

0

1

t1, c1, q1

t0, c0

1

Figure 7.15: Minimal DFAs for the reachable configurations of Lamport’s algorithm
plus ⟨c0, c1, 1, 1⟩.

words, if an execution violates the property, then we can detect the violation after
finite time. Not all properties satisfy this assumption. A typical example is the
property “if a process requests access to the critical section, then it eventually en-
ters the critical section” (without specifying how long it may take). After a finite
time, we can only tell that the process has not entered the critical section yet, but
we cannot say that the property has been violated: the process might still enter
the critical section in the future. A violation of the property can only be witnessed
by an infinite execution, in which we observe that the process requests access, but
the access is never granted.

Properties that are violated by finite executions are called safety properties. In-
tuitively, they correspond to properties of the form “nothing bad ever happens.”
Typical examples are “the system never deadlocks” or, more generally, “the system
never enters a set of bad states.” Clearly, every interesting system must also satisfy
properties of the form “something good eventually happens” because otherwise,
the system that does nothing would already satisfy all properties. Properties of
this kind are called liveness properties and can only be witnessed by infinite execu-
tions. Fortunately, the automata-theoretic approach can be extended to liveness
properties. This requires to develop a theory of automata on infinite words, which
is the subject of the second part of this book. The application of this theory to
the verification of liveness properties is presented in chapter 13. As an appetizer,
some exercises of this chapter already start to discuss them.

7.6 Exercises

 Exercise 113. Exhibit a family {Pn}n≥1 of sequential programs (like pro-
gram 1) satisfying the following conditions:

• Pn has O(n) boolean variables, O(n) lines, and exactly one initial configu-
ration; and

CHAPTER 7. APPLICATION II: VERIFICATION 175

• Pn has at least 2n reachable configurations.

 Exercise 114. When applied to program 1, algorithm SysAut outputs the
system automaton shown in the middle of figure 7.1. Give an algorithm SysAut′
that outputs the automaton depicted at the bottom.

 Exercise 115. Prove the following statements:

(a) Parallel composition is

• associative: (L1 ∥ L2) ∥ L3 = L1 ∥ (L2 ∥ L3),
• commutative: L1 ∥ L2 = L2 ∥ L1, and
• idempotent: L ∥ L = L.

(b) If L1, L2 ⊆ Σ∗, then L1 ∥ L2 = L1 ∩ L2.

(c) It is the case that L (A) = L (A1) ∥ · · · ∥ L (An) for any network of automata
A = ⟨A1, . . . , An⟩.

 Exercise 116. Let Σ = {request, answer,working, idle}.

(a) Build a regular expression and an automaton recognizing all words with the
property P1: “for every occurrence of request, there is a later occurrence of
answer.”

(b) Property P1 does not imply that every occurrence of request has “its own”
answer: for instance, the sequence request request answer satisfies P1, but
both requests must necessarily be mapped to the same answer. If words
were infinite and there were infinitely many requests, would P1 guarantee
that every request has its own answer?

More precisely, let w = w1w2 · · · satisfy P1 and contain infinitely many oc-
currences of request, and let f : N→ N be such that wf(i) is the ith request of
w. Is there always an injective function g : N→ N satisfying wg(i) = answer
and f(i) < g(i) for all i ∈ {1, . . . , k}?

(c) Build an automaton recognizing all words with the property P2: “there is an
occurrence of answer before which only working and request occur.”

(d) Using automata-theoretic constructions, prove that all words accepted by the
following automatonA satisfy P1, and give a regular expression for all words
accepted by A that violate P2.

q0 q1

Σ

answer

CHAPTER 7. APPLICATION II: VERIFICATION 176

⋆ Exercise 117. Consider two processes (process 0 and process 1) being
executed through the following generic mutual exclusion algorithm:

1 while true do
2 enter(process_id)
3 critical section
4 leave(process_id)
5 for arbitrarily many iterations do
6 noncritical section
7 end

(a) Consider the following implementations of enter and leave:

1 x← 0

2 proc enter(i)
3 while x = 1− i do
4 pass
5 proc leave(i)
6 x← 1− i

(i) Design a network of automata capturing the executions of the two pro-
cesses.

(ii) Build the asynchronous product of the network.
(iii) Show that both processes cannot reach their critical sections at the same

time.
(iv) If a process wants to enter its critical section, is it always the case that

it can eventually enter it? Hint: Reason in terms of infinite executions.

(b) Consider the following alternative implementations of enter and leave:

1 x0 ← false
2 x1 ← false
3 proc enter(i)
4 xi ← true
5 while x1−i do
6 pass
7 proc leave(i)
8 xi ← false

(i) Design a network of automata capturing the executions of the two pro-
cesses.

(ii) Say whether a deadlock can occur, that is, can both processes get stuck
trying to enter their critical sections?

 Exercise 118. Consider a circular railway divided into eight tracks: 0 →
1 → . . . → 7 → 0. Three trains, modeled by three automata T1, T2, and T3,
circulate on the railway. Each automaton Ti is defined as follows:

CHAPTER 7. APPLICATION II: VERIFICATION 177

• states: {qi,0, . . . , qi,7};

• alphabet: {enter[i, j] : 0 ≤ j ≤ 7}, where enter[i, j]models that train i enters
track j;

• transition relation: {(qi,j , enter[i, j⊕1], qi,j⊕1) : 0 ≤ j ≤ 7}, where⊕ denotes
addition mod 8;

• initial state: qi,2i (i.e., initially the trains occupy tracks 2, 4, and 6).

Describe automata C0, . . . , C7, called local controllers, that ensure that two
trains can never be on the same track or adjacent tracks, that is, there must al-
ways be at least one empty track between two trains. Each controller Cj can only
have knowledge of the state of tracks j⊖1, j, and j⊕1; there must be no deadlocks;
and every train must eventually visit every track. More formally, the network of
automata A = ⟨C0, . . . , C7, T1, T2, T3⟩ must satisfy the following specification:

(a) Cj only knows the state of local tracks: Cj has alphabet {enter[i, j ⊖ 1],
enter[i, j], enter[i, j ⊕ 1] : 1 ≤ i ≤ 3};

(b) no deadlock and each train eventually visits every segment:

L (A) |Σi
= (enter[i, 2i] enter[i, 2i⊕ 1] · · · enter[i, 2i⊕ 7])∗

for each i ∈ {1, 2, 3}; and

(c) no two trains on the same or adjacent tracks: for every word w ∈ L (A), it
is the case that w = u enter[i, j] enter[i′, j′] v and i′ ̸= i implies |j − j′| /∈
{0, 1, 7}.

Chapter 8
Automata and Logic

A regular expression can be seen as a set of instructions (a “recipe”) for generating
the words of a language. For instance, the expression aa(a+b)∗b can be interpreted
as the recipe “write two as, repeatedly choose one a or b and write it, an arbitrary
number of times, and then write a b.” We say that regular expressions are an
operational formalism.

Languages can also be described in declarative style, as the set of words that
satisfy a property. For instance, “the words over {a, b} containing an even num-
ber of as and an even number of bs” is a declarative description. It describes the
property but does not give a recipe to construct the words that satisfy it.

For some languages, declarative descriptions can be simpler than operational
ones. For instance, the regular expression

(aa+ bb+ (ab+ ba)(aa+ bb)∗(ba+ ab))∗

is an operational description of the language “even number of as and even number
of bs,” and most people will agree that it is far less intuitive than the declarative
description. In particular, the expression does not consist of the conjunction of two
smaller regular expressions, one for “even number of as” and the other for “even
number of bs.” Another example in which a declarative description is arguably
simpler is “the words over {a, b} that do not contain any occurrence of aba.” This
description is immediately understood by a human, who also has no problem to
formulate it as the negation of the simpler property “the words over {a, b} that
contain some occurrence of aba.” However, the operational description

(b+ aa∗bb)∗(ε+ aa∗(b+ ε))

is substantially harder to understand and produce.
In this chapter, we first present a logical formalism for the declarative descrip-

tion of regular languages. We use logical formulas to describe properties of words
and logical operators to construct complex properties out of simpler ones. In par-
ticular, the formalism allows us to combine properties using conjunction, disjunc-
tion, and negation. We then show how to automatically translate a formula de-
scribing a property of words into an automaton recognizing the words satisfying
the property. As a consequence, we obtain an algorithm to convert declarative
into operational descriptions and vice versa.

178

CHAPTER 8. AUTOMATA AND LOGIC 179

8.1 Predicate Logic on Words: An Informal Introduction

In declarative style, a language is defined indirectly as the set of words satisfying
a given property, called themembership predicate. A word belongs to the language
if and only if it satisfies the membership predicate. For example, the membership
predicates of the languages discussed in the previous section are “to have an even
number of as and an even number of bs,” and “to not contain any occurrence of
aba.”

The standard mathematical framework for expressing membership predicates
is predicate logic, also called—for reasons explained in section 8.5—first-order logic.
Starting from very few natural “atomic formulas,” predicate logic allows one to
build more complex formulas through boolean combinations and quantification.
Formulas of predicate logic represent predicates in the same sense that regular
expressions represent languages. We consider a version of predicate logic usually
called “predicate logic on words,” because its atomic formulas represent predicates
on words.1

Before introducing predicate logic on words, let us become familiar with it at
an intuitive level. (Readers acquainted with predicate logic can move directly to
section 8.5.) For the time being, it suffices to know that the symbols ∧, ∨, ¬,
→, ∃x, and ∀x roughly correspond to the English expressions “and,” “or,” “not,”
“implies,” “there exists an x such that,” and “every x satisfies.”

We start by fixing an alphabet, for example, Σ = {a, b}. Predicate logic on
words has two types of atomic formulas:

• Formulas of the form Qa(x) or Qb(x), where x is a variable ranging over the
positions of the word.

The intended meaning of Qa(x) is “the letter at position x is an a,” and the
meaning of Qb(x) is analogous. For instance, the predicate “all letters of
the word are as” is expressed by the formula ∀x Qa(x). The language of
all words satisfying the formula, called just the language of the formula, is
L (a∗).

• Formulas of the form x < y, where x and y range over the positions of the
word.

The intended meaning is “position x is smaller than (lies to the left of) posi-
tion y.” For example, the predicate “if some letter is an a, then all subsequent
letters are also as” is expressed by the formula

∀x ∀y ((Qa(x) ∧ x < y)→ Qa(y)) .

The language of the formula is L (b∗a∗). Notice, however, that this is so
because Σ = {a, b}. If Σ = {a, b, c}, then the language of the formula is
L ((b+ c)∗a∗).

Example 8.1. Other examples of formulas are
1Chapter 9 presents a different predicate logic expressing properties of tuples of numbers.

CHAPTER 8. AUTOMATA AND LOGIC 180

• ∀x Qa(x) ∨ ∀x Qb(x).

The formula expresses the predicate “either all letters are as or all letters are
bs.” The same predicate is also expressed by ¬∃x ∃y (Qa(x) ∧ Qb(y)). The
language of both formulas is L (a∗ + b∗).

• ∀x ∀y (Qa(x) ∧ x < y ∧Qa(y))→ ∃z (x < z ∧ z < y ∧Qb(z)).

The formula expresses the predicate “between every two as, there is at least one
b,” which corresponds to the language L ((b+ ab)∗(ϵ+ a)). For Σ = {a, b},
this predicate is equivalent to “after every a there is a b, unless that a is the last
letter,” which corresponds to the formula ∀x ∀y

(
Qa(x) ∧ x < y ∧ ¬∃z (x <

z ∧ z < y)
)
→ Qb(y).

While our intuitive understanding of themeaning of “and,” “implies,” and so on
can bring us a long way, it is not precise enough for formal reasoning. For example,
faced with the question whether the empty word ε satisfies ∀x Qa(x), some people
answer “yes,” others “no.” Some people argue that the questionwhether the empty
word satisfies the formula ∃x Qa(x) → ∀x Qa(x) does not make sense. Some
formulas truly seem to make no sense, for example ∃x ∀x Qa(x) or ∃x Qa(y),
which raises the problem of defining which formulas make sense. Such problems
can only be solved by formally specifying which sequences of symbols are formulas
and, for every formula, which are the words that satisfy it. These specifications
are called the syntax and the semantics of predicate logic on words.

8.2 Syntax and Semantics

We introduce the syntax and semantics of predicate logic on words over a given
alphabet Σ. Readers familiar with logic only need to look at the forthcoming def-
inition 8.2 (syntax) and definitions 8.3 and 8.5 (semantics).

8.2.1 Syntax

The following definition determines which sequences of symbols are formulas of
predicate logic on words.

Definition 8.2. Let V = {x, y, z, . . .} be an infinite set of variables, and let Σ =
{a, b, c, . . .} be a finite alphabet. The formulas of predicate logic on words over Σ,
also called the first-order formulas over Σ and denoted FO(Σ), are the expressions
generated by the grammar

φ ::= Qa(x) | x < y | ¬φ | (φ ∨ φ) | ∃x φ

where a ∈ Σ and x, y ∈ V . Expressions of the form Qa(x) and x < y are called
atomic formulas.

In the rest of the section, we introduce or recall several notions, using the
following three formulas as running examples.

φ1 := (∃x (Qa(x) ∨ z < y) ∨ y < x) (8.1)
φ2 := ∃x ∃y (Qa(x) ∨ ¬(x < y ∨Qb(y))) (8.2)
φ3 := ¬∃x ¬¬(¬∃x Qa(x) ∨ ¬Qb(x)) (8.3)

CHAPTER 8. AUTOMATA AND LOGIC 181

∨

∃x y < x

∨

Qa(x) z < y

∃x

∃y

∨

Qa(x) ¬

∨

x < y Qb(y)

¬

∃x

¬

¬

∨

¬ ¬

∃x

Qa(x)

Qb(x)

Figure 8.1: Syntax trees of (8.1), (8.2), and (8.3).

Syntax tree of a formula. We assume that the reader is familiar with the notion
and just show the syntax trees of (8.1), (8.2), and (8.3) in figure 8.1.

Free and bound variables. The occurrences of a variable x in a formula are the
leaves of the syntax tree containing x. For example, x occurs twice in all of (8.1),
(8.2), and (8.3), while y occurs two, two, and zero times, respectively. An occur-
rence of a variable x is bound if it is in the scope of some ∃x, that is, if the unique
path of the syntax tree leading from the root to the occurrence of x traverses a
node labeled by ∃x; otherwise, the occurrence of x is free. Observe that the same
variable can occur bound and free in a formula; for example, x occurs bound and
free in (8.1). A variable is free in φ if it has at least one free occurrence in φ and
bound otherwise. The set of free variables of φ, denoted free(φ), can also be defined
inductively as follows:

free(Qa(x)) = {x}, free(x < y) = {x, y},
free(¬φ) = free(φ), free(φ1 ∨ φ2) = free(φ1) ∪ free(φ2), (8.4)

free(∃x φ) = free(φ) \ {x}.

For the formulas (8.1), (8.2), and (8.3), we get free(φ1) = {x, y, z} and free(φ2) =
free(φ3) = ∅. A formula without free variables is called a sentence, and so (8.2)
and (8.3) are sentences, but (8.1) is not.

We use the following abbreviations:

(φ1 ∧ φ2) := ¬(¬φ1 ∨ ¬φ2), (φ1 → φ2) := (¬φ1 ∨ φ2), ∀x φ := ¬∃x ¬φ.

For example, (8.3) can be rewritten as ∀x (∃x Qa(x) ∧Qb(x)).

8.2.2 Semantics

The semantics of FO(Σ) is the definition that determines whether a given word
over Σ satisfies a given sentence or not. In logical jargon, this definition allows us

CHAPTER 8. AUTOMATA AND LOGIC 182

to interpret the sentence on the word. The definition is inductive, that is, the set of
words satisfying a sentence is defined as a function of the sets of words satisfying
its subformulas. However, we have to overcome the fact that the subformulas of a
sentence may not be sentences themselves. So, we give a semantics not only for
sentences but also for formulas with free variables.

Interpretations. While a sentence can be interpreted on just a word (e.g., we
intuitively see that aaa satisfies ∀x Qa(x) and aba does not), formulas with free
variables usually cannot. For example, whether aba satisfiesQa(x) or not depends
on the position x is referring to. If x 7→ 1 or x 7→ 3, then aba satisfies the formula,
but if x 7→ 2, then it does not. Generally, we interpret a formula, with or without
free variables, over a pair (w,V), wherew is a word and V is a mapping that assigns
to every free variable of the formula, and perhaps to others, a position in the word,
that is, a value in the range {1, . . . , |w|}. We call V a valuation. Formally, we define
valuations as partial mappings V → N, that is, mappings that may be defined only
for a subset of V . In particular, the totally undefined valuation ⊥ : V → N is the
partial map that is undefined for every variable of V .2

Definition 8.3. An interpretation of a formula φ of FO(Σ) is a pair (w,V), where
w ∈ Σ∗ and V : V → N is a partial mapping such that V(x) is defined and satisfies
1 ≤ V(x) ≤ |w| for every x ∈ free(φ). We call V a valuation.

We often write the map V extensionally, that is, enumerating the value assigned
to each variable for which themap is defined. For example, if V is the valuation that
is defined only for the variables x and y and satisfies V(x) = 5 and V(y) = 3, then
we write (w, {x 7→ 5, y 7→ 3}) instead of (w,V). With this convention, (ab, {x 7→
1}) is an interpretation of formulas likeQa(x), ∃x Qa(x), or ∃x ∃y (Qa(x)∧Qb(y))
but not of x < y or Qa(y). In particular, the definition of interpretation requires
that all free variables are assigned values but does not forbid that other variables
are assigned values as well.

Remark 8.4.
• Since ε has no positions, it is not possible to assign values to them. Thus, a

formula with at least one free variable has no interpretation of the form (ε,V).

• If φ is a sentence and w ̸= ε, then (w,V) is an interpretation of φ for every
valuation V : V → {1, . . . , |w|}, including the totally undefined valuation ⊥.
However, if w = ε, then (w,V) is an interpretation if and only if V = ⊥.
Indeed, if V(x) is defined, then by the definition of an interpretation we have
1 ≤ V(x) ≤ |ϵ| = 0, which is not possible.

Models. The pairs (ab, {x 7→ 1}) and (ab, {x 7→ 2}) are interpretations of Qa(x).
Intuitively, the first interpretation satisfies Qa(x), but the second does not. In
logical jargon, the interpretations of a formula that satisfy it are called the models
of the formula. We formally define which interpretations (w,V) of a formula φ are
models of φ.

2A partial mapping f : V → N is just a set of pairs of V × N, containing one pair for each x ∈ V
such that f(x) is defined; the totally undefined map corresponds to the empty set of pairs.

CHAPTER 8. AUTOMATA AND LOGIC 183

Given a word w and a number 1 ≤ i ≤ |w|, let w[i] denote the letter of w
at position i, and let V[i/x] denote the partial mapping that assigns i to x and
coincides with V on all other variables (in particular, V[i/x](x) is always defined
and satisfies V[i/x](x) = i, even if V(x) is undefined).

Definition 8.5. Let φ be a formula of FO(Σ), and let (w,V) be an interpretation of
φ. We say that (w,V) satisfies φ, or is amodel of φ, if one of the following conditions
holds:

• φ = Qa(x) and w[V(x)] = a,

• φ = x < y and V(x) < V(y),

• φ = ¬φ′ and (w,V) ̸|= φ′,

• φ = (φ1 ∨ φ2) and (w,V) |= φ1 or (w,V) |= φ2, and

• φ = ∃x φ, w ̸= ε and (w,V[i/x]) |= φ holds for some i such that 1 ≤ i ≤ |w|.

Two formulas φ1, φ2 are equivalent, denoted φ1 ≡ φ2, if they have the same inter-
pretations and the same models.

Example 8.6. Let Σ = {a, b}. We show that, unsurprisingly, (ab,⊥) |= ∃x ¬Qa(x).
We use definition 8.5 to deduce that (ab,⊥) satisfies ∃x ¬Qa(x) iff b ̸= a, which is
true:

(ab,⊥) |= ∃x ¬Qa(x)
⇐⇒ (ab, {x 7→ 1}) |= ¬Qa(x) or (ab, {x 7→ 2}) |= ¬Qa(x)
⇐⇒ (ab, {x 7→ 1}) ̸|= Qa(x) or (ab, {x 7→ 2}) ̸|= Qa(x)

⇐⇒ (ab)[1] ̸= a or (ab)[2] ̸= a

⇐⇒ a ̸= a or b ̸= a
⇐⇒ true.

Remark 8.7.
• Only interpretations can be models. For example, the question of whether (ε,⊥)

is a model Qa(x) is ill-posed, as (ε,⊥) is not an interpretation of Qa(x).

• If free(φ) ⊆ free(ψ), then every interpretation of ψ is also an interpretation of
φ. Indeed, every interpretation of ψ assigns values to all free variables of ψ, and
so it also assigns values to all free variables of φ.

• Definition 8.5 silently uses three facts:

1. An interpretation of¬φ′ is also an interpretation ofφ′, because free(¬φ′) =
free(φ′).

2. An interpretation of (φ1 ∨ φ2) is also an interpretation of φ1 and φ2,
because free(φ1 ∨ φ2) = free(φ1) ∪ free(φ2).

CHAPTER 8. AUTOMATA AND LOGIC 184

3. If w ̸= ε and (w,V) is an interpretation of ∃x φ, then (w,V[i/x]) is an
interpretation of φ for every i ∈ {1, . . . , |w|}.

Since w ̸= ε, the set i ∈ {1, . . . , |w|} is nonempty, and so it is possible to
assign to x at least one value. For w = ε, the pair (w,⊥) is an interpre-
tation of ∃xQa(x), but there are no interpretations (w,V[i/x]) such that
1 ≤ i ≤ 0.

For the previously introduced abbreviations, it follows from definition 8.5 that

(w,V) |= (φ1 ∧ φ2) iff (w,V) |= φ1 and (w,V) |= φ2, and
(w,V) |= (φ1 → φ2) iff (w,V) ̸|= φ1 or (w,V) |= φ2 .

Let us now consider the abbreviation ∀x φ = ¬∃x ¬φ. We have

(w,V) |= ∀x φ
⇐⇒ (w,V) |= ¬∃x ¬φ
⇐⇒ (w,V) ̸|= ∃x ¬φ
⇐⇒ w = ε or (w,V[i/x]) |= φ for every i ∈ {1, . . . , |w|}.

Remark 8.8. Recall that if (ε,V) is an interpretation of a formula, then the formula
is a sentence and V is the totally undefined valuation (i.e., V = ⊥). By definition 8.5,
(ε,⊥) satisfies no sentences of the form ∃x φ and every sentence of the form ∀x φ.
For example, (ε,⊥) satisfies neither ∃x Qa(x) nor ∃x ∀z Qa(z), but it satisfies both
∀x Qa(x) and ∀x ∃z Qa(z). Intuitively, “there exists a position x in the word such
that φ” is always false for ε, because the empty word has no positions at all, while
“for every position in the word φ holds” is vacuously true for ε.

Using definition 8.5, it is possible to prove many standard equivalence rules,
like ¬¬φ ≡ φ for every φ; (φ1 ∨ (φ2 ∨φ3)) ≡ ((φ1 ∨φ2)∨φ3) for every φ1, φ2, φ3;
∃x ∃y φ ≡ ∃y ∃x φ for every φ; or ∃x (φ1∨φ2) ≡ (∃x φ1∨∃x φ2) for every φ1, φ2.
We implicitly use them to lighten notation. For example, instead of (φ1∨(φ2∨φ3))
or ((φ1 ∨φ2)∨φ3), as we would have to write according to the syntax, we simply
write (φ1 ∨ φ2 ∨ φ3) or even φ1 ∨ φ2 ∨ φ3.

The following lemma is easy to prove by induction on the structure of formulas.
It corresponds to our intuition that bound variables are “internal” variables of a
formula that are “invisible outside of it.”

Lemma 8.9. Let w be a word, and let (w,V) and (w,V ′) be two interpretations of
a formula φ. If V and V ′ assign the same values to all free variables of φ, then either
(w,V) |= φ and (w,V ′) |= φ or (w,V) ̸|= φ and (w,V ′) ̸|= φ. In particular, for every
word w and every sentence φ, either all interpretations (w,V) of φ are models, or
none of them is a model.

Example 8.10. Let w be a word of length at least 2. It is the case that (w, {x 7→ 1})
and (w, {x 7→ 2}) are interpretations of ∃x Qa(x) that assign the same values to all

CHAPTER 8. AUTOMATA AND LOGIC 185

free variables, because ∃x Qa(x) is a sentence. We have

(w, {x 7→ 1}) |= ∃x Qa(x)
⇐⇒ (w, {x 7→ 1}[1/x]) |= Qa(x) or (w, {x 7→ 1}[2/x]) |= Qa(x)

(by def. of (w,V) |= ∃x φ)
⇐⇒ (w, {x 7→ 2}[1/x]) |= Qa(x) or (w, {x 7→ 2}[2/x]) |= Qa(x)

(since {x 7→ 1}[i/x] = {x 7→ i} = {x 7→ 2}[i/x])
⇐⇒ (w, {x 7→ 2}) |= ∃x Qa(x).

The second part of lemma 8.9 justifies the following definition, which takes us
to our final destination: a precise definition of when a given word over Σ satisfies
a given sentence of FO(Σ).

Definition 8.11. Let φ be a sentence of FO(Σ). A word w ∈ Σ∗ satisfies φ or is
a model of φ, denoted w |= φ, if every interpretation (w,V) of φ satisfies φ or,
equivalently (by lemma 8.9), if some interpretation (w,V) of φ satisfies φ.

Example 8.12. Consider the two sentences ∃x Qa(x) and ∀x ∃x Qa(x). Are they
equivalent? This is the kind of question that challenges our intuition. If you accept
definition 8.5, then there is only one right answer. By remark 8.8, we have ε ̸|=
∃xQa(x) and ε |= ∀x ∃xQa(x), and so the two formulas are not equivalent. However,
they are “almost” equivalent: every word w ̸= ε satisfies ∃x Qa(x) iff it satisfies
∀x ∃x Qa(x). This is an easy consequence of lemma 8.9. Indeed,

w |= ∀x ∃x Qa(x)
⇐⇒ (w,⊥) |= ∀x ∃x Qa(x)

(by lemma 8.9 and as ∀x ∃x Qa(x) is a sentence)

⇐⇒ (w,⊥[1/x]) |= ∃x Qa(x) and · · · and (w,⊥[|w|/x]) |= ∃x Qa(x)
(by w ̸= ε and def. of (w,V) |= ∀x φ)

⇐⇒ (w, {x 7→ 1}) |= ∃x Qa(x) and · · · and (w, {x 7→ |w|}) |= ∃x Qa(x)
⇐⇒ w |= ∃x Qa(x)

(by lemma 8.9 and as ∃x Qa(x) is a sentence).

8.3 Macros and Examples

Expressing predicates in first-order logic on words is akin to writing programs in
a low-level language. The language has a very small syntax and is therefore easy
to learn, but expressing even simple predicates may be tedious, is error prone,
and requires writing long formulas. All these problems are palliated by the use
of macros. Formally, a macro is an expression of the form m(x1, . . . , xn) = φ,
where φ is a formula with free variables x1, . . . , xn. Intuitively, macros play the
same role as procedures in programming: they are defined once and can be used
multiple times in other formulas, where they stand for the formula φ. Here are
two examples:

CHAPTER 8. AUTOMATA AND LOGIC 186

• “x is the first position.”

first(x) := ¬∃y y < x

Observe that x is the only free variable of first(x).

• “x is the last position.”
last(x) := ¬∃y x < y

Sometimes we use infix notation for macros and write “x1 m x2” instead of
m(x1, x2). The following examples illustrate this.

• “x and y are the same position.”

x = y := ¬(x < y ∨ y < x)

We could also call this macro equal(x, y).

• “y is the successor position of x,” or “y is the position to the right of x.”

y = x+ 1 := (x < y ∧ ¬∃z (x < z ∧ z < y))

Recall that here the expression y = x+1 is just a name; we could also call the
macro succ(x, y). We prefer y = x+1 because the name can be generalized,
as shown by the next example.

• “y is two positions to the right of x.”

y = x+ 2 := ∃z (z = x+ 1 ∧ y = z + 1)

The macros y = x+ 3, y = x+ 4, and so on are defined similarly.

• “y is at most k positions to the right of x.”

y < x+ k := ∃z (z = x+ k ∧ y < z)

Observe that k is a constant, that is, y < x+ k stands for the infinite family
of macros y < x + 1, y < x + 2, y < x + 3, and so on. Further, remember
that y < x + k is just the name of a formula. For example, unravelling all
macros, we have

(y < x+2) = ∃z (z = x+2∧y < z) = ∃z (∃u (u = x+1∧z = u+1)∧y < z).

In particular, one should not confuse the atomic formula x < y and the
macro x < y+2. The latter is only an abbreviation, for which we could have
chosen any other name.

• “x is to the left of the kth position.”

x < k := ¬∃y x = y + k − 1

• “The length of the word is smaller than k.”

last < k := ∀x (last(x)→ x < k)

CHAPTER 8. AUTOMATA AND LOGIC 187

Example 8.13. Using the macros above, we can express some predicates on words by
rather short sentences:

• “The last letter is a b and before it, there are only as.”

(∃x Qb(x) ∧ ∀x (last(x)→ Qb(x) ∧ ¬last(x)→ Qa(x)))

• “Every a is immediately followed by a b.”

∀x (Qa(x)→ ∃y (y = x+ 1 ∧Qb(y)))

• “Every a is immediately followed by a b, unless it is the last letter.”

∀x (Qa(x)→ ∀y (y = x+ 1→ Qb(y)))

Observe the difference: The previous sentence states that if the letter at position
x is an a, then the word has a successor position y, and the letter at y is a b. This
sentence only states that for every position y, if y happens to be the successor
of x, then the letter at that position is a b. It does not state that the successor
position of x exists.

• “Between every a and every later b there is a c.”

∀x ∀y ((Qa(x) ∧Qb(y) ∧ x < y)→ ∃z (x < z ∧ z < y ∧Qc(z)))

• Finally, we formalize the second predicate from the introduction to the chapter:
“no occurrence of aba.”

¬∃x ∃y ∃z (y = x+ 1 ∧ z = y + 1 ∧Qa(x) ∧Qb(y) ∧Qa(z))

8.4 Expressive Power of FO(Σ)

Now that we have defined which words satisfy which sentences, we can associate
to a sentence the language of all words that satisfy it. Intuitively, this language is
the “meaning” of the sentence.

Definition 8.14. The language of a sentence φ ∈ FO(Σ) is the setL (φ) := {w ∈ Σ∗ |
w |= φ}. We also say that φ expresses L (φ). A language L ⊆ Σ∗ is FO-definable if
L = L (φ) for some formula φ of FO(Σ).

The languages of the predicates from example 8.13 are FO-definable by defini-
tion. Which languages are FO-definable? Are all FO-definable languages regular?
Are all regular languages FO-definable? These are questions concerning the ex-
pressive power of first-order logic on words.

We study which languages are FO-definable when the alphabet Σ contains ex-
actly one letter. We show that in this case, a language is FO-definable iff it is finite
or co-finite. A language is co-finite if its complement is finite. It follows from
this result that all FO-definable languages over a one-letter alphabet are regular.
Indeed, we know that all finite languages are regular and, since the regular lan-
guages are closed under complement, so are all co-finite languages. However, it

CHAPTER 8. AUTOMATA AND LOGIC 188

also follows that even very simple regular languages, like {an : n is even}, are
not FO-definable. Thus, first-order logic on words is not expressive enough as a
declarative language.

Let Σ = {a}. The proof that a language is FO-definable iff it is finite or co-finite
proceeds in three steps (readers not interested in the proof can move directly to
section 8.5):

1. We define a fragment of FO({a}), called QF, standing for quantifier-free. For-
mulas of QF contain no quantifiers, existential or universal, and no occur-
rences of Qa(x).

2. We show that languages over {a} are QF-definable iff they are finite or co-
finite.

3. We prove that languages over {a} are FO-definable iff they are QF-definable.
That is, we show that for every formula of FO({a}), there exists an equivalent
formula of QF.

The fragment QF. Formulas of QF are boolean combinations of some of the
macros introduced in section 8.3:

Definition 8.15. The formulas of QF are the formulas of FO({a}) generated by the
grammar

f ::= x < k | x < y + k | last < k | ¬f | (f ∨ f)| (f ∧ f),

where k ∈ N.

Observe that the sentences of QF are especially simple. They cannot contain
any occurrence of x < k or x < y+ k because, loosely speaking, QF does not have
quantification, and so it cannot bind free occurrences of variables. So, sentences
of QF are boolean combinations of expressions of the form last < k. For example,

φ := ((last < 3 ∧ ¬ last < 2) ∨ ¬ last < 7)

is a sentence of QF. Its language is L
(
aa+ a7a∗

)
, whose complement is the finite

set {ε, a, a3, a4, a5, a6}. So the language of φ is co-finite.

One-letter languages are QF-definable iff they are finite or co-finite. We
prove the following proposition:

Proposition 8.16. A language over a one-letter alphabet is QF-definable iff it is finite
or co-finite.

Proof. ⇒) We show that, for every sentence f of QF, the language L (f) is finite or
co-finite. Let f be a sentence of QF, that is, a boolean combination of formulas of
the form last < k. We proceed by induction on the structure of f . If f = last < k,
then L (f) is finite. If f = ¬f ′, then by induction hypothesis, L (f ′) is finite or
co-finite, and so L (f) = L (f ′) is co-finite or finite, respectively. If f = (f1 ∨ f2),
then by induction hypothesis, L (f1) and L (f2) are finite or co-finite; if L (f1) and

CHAPTER 8. AUTOMATA AND LOGIC 189

L (f2) are finite, then so is L (f), and otherwise, L (f) is co-finite. The case of
f = (f1 ∧ f2) is similar.

⇐) Let Σ = {a}. The empty language is expressed by last < 1. A nonempty finite
language {ak1 , . . . , akn} is expressed by the formula

((¬last < k1 − 1 ∧ last < k1 + 1) ∨ · · · ∨ (¬last < kn − 1 ∧ last < kn + 1)) .

A co-finite language L is expressed by ¬f , where f is the formula for the finite
language L (i.e., where L (f) = L).

One-letter languages are FO-definable iff they are QF-definable. We show
that whenΣ contains only one letter, every first-order formula overΣ has an equiv-
alent formula in the QF-fragment. The main difficulty is that first-order formulas
are closed under quantification (i.e., if φ is a formula so is ∃x φ), but formulas of
QF are not.

Theorem 8.17. Every formula of FO({a}) is equivalent to a formula of QF.

Proof sketch. Let φ be a formula of FO({a}). Observe that, since the alphabet only
contains one letter, every formula of FO({a}) is equivalent to a formula without
occurrences of Qa(x). So, we can assume that φ has no occurrence of Qa(x). We
proceed by induction on the structure of φ. If φ(x, y) = x < y, then φ ≡ x < y+0.
If φ = ¬ψ, then by induction hypothesis, there is a formula f of QF equivalent to
ψ, and so φ ≡ ¬f . The cases φ = (φ1 ∨ φ2) and φ = (φ1 ∧ φ2) are similar.

Consider now the case φ = ∃x ψ. By induction hypothesis, ψ is equivalent to
a formula f of QF. Further, we can assume that f is in disjunctive normal form,
that is, f = (f1 ∨ · · · ∨ fn), where each fi is a conjunction of atomic formulas
of QF or their negations. Repeatedly applying the equivalence ∃x (φ1 ∨ φ2) ≡
(∃x φ1 ∨ ∃x φ2), we obtain

φ ≡ ∃x (f1 ∨ · · · ∨ fn) ≡ (∃x f1 ∨ ∃x f2 ∨ · · · ∨ ∃x fn).

Thus, it suffices to find a formula gi of QF equivalent to ∃x fi for every 1 ≤ i ≤ n,
since then φ ≡ (g1 ∨ · · · ∨ gn).

We sketch how to construct gi with the help of this representative example:

fi = ((x < y + 3) ∧ ¬(x < z + 4) ∧ (z < y + 2) ∧ (y < x+ 1)).

We start by classifying the conjuncts of fi with some occurrence of x into

• lower bounds of the form ¬(x < k), ¬(x < y + k), or y < x+ k; and

• upper bounds of the form x < k, x < y + k, or ¬(y < x+ k).

In our example, the lower bounds are ¬(x < z + 4) and y < x + 1, and the only
upper bound is x < y + 3. The remaining conjunct, z < y + 2, has no occurrence
of x.

CHAPTER 8. AUTOMATA AND LOGIC 190

Assume that the lower bounds of fi are ℓ1, . . . , ℓp, the upper bounds are u1, . . . ,
uq, and the conjuncts with no occurrence of x are e1, . . . , er. Applying standard
logical equivalences, we have

∃x fi ≡ ∃x

 p∧
j=1

ℓj ∧
q∧

k=1

uk ∧
r∧
ℓ=1

eℓ

 ≡ r∧
ℓ=1

eℓ ∧ ∃x

 p∧
j=1

q∧
k=1

(ℓj ∧ uk)

 .

In our example, this yields

∃x fi ≡ z < y + 2 ∧ ∃x
(
(¬ x < z + 4 ∧ x < y + 3) ∧ (y < x+ 1 ∧ x < y + 3)

)
.

Observe that
∧r
ℓ=1 eℓ is already a formula of QF. So it remains to find a formula

of QF equivalent to ∃x
∧p
j=1

∧q
k=1(ℓj ∧ uk). Intuitively, each conjunct ℓj ∧ uk ex-

presses that x must lie in an interval determined by ℓj and uk. The key insight is
that, since we consider all combinations of upper and lower bounds, there exists
an x that simultaneously lies in all intervals iff each interval is nonempty. Let us
see how this works in our example. Since there is one upper bound and two lower
bounds, we have to consider two conjuncts:

• ¬(x < z + 4) ∧ (x < y + 3).

This expresses that xmust lie in the interval [z+4, y+3) (closed on the left,
open on the right). The interval is nonempty iff z+2 ≤ y or, equivalently, if
¬(y < z + 2).

• (y < x+ 1) ∧ (x < y + 3).

This expresses that x must lie in the interval (y − 1, y + 3) (open on both
sides). The interval is always nonempty.

So, in our example, we finally obtain

∃x fi = ∃x ((x < y + 3) ∧ ¬(x < z + 4) ∧ (z < y + 2) ∧ (y < x+ 1))
≡ ((z < y + 2) ∧ ¬(y < z + 2))
=: gi.

As the set of words of even length is neither finite nor co-finite, we have

Corollary 8.18. The language Even = {a2n : n ≥ 0} is not FO-definable.

8.5 Monadic Second-Order Logic on Words

In a nutshell, monadic second-order logic on words extends first-order logic on
words with variables X,Y, Z, . . . ranging over sets of positions, and with a new
kind of atomic formulas of the form x ∈ X, with intended meaning “position x
belongs to the set X of positions.” The logic allows to quantify over both kinds of
variables.

Variables x, y, z, . . . ranging over positions are called first-order variables, and
variables X,Y, Z, . . . ranging over sets of positions are called second-order vari-
ables. One could further introduce variables ranging over sets of sets of positions,

CHAPTER 8. AUTOMATA AND LOGIC 191

called third-order variables, and so on. Further, sets can be seen as unary rela-
tions, and one could have variables for unary, binary, and ternary relations, and
so forth, called monadic, dyadic, and triadic second-order variables, respectively.
Thus, monadic second-order logic is the extension of first-order logic that allows
variables ranging over sets of positions, and no variables ranging over binary rela-
tions, or relations of higher arity.

Before introducing the syntax and semantics of the logic, let us informally argue
that monadic second-order logic can express the language Even of words of even
length. The formula expressing Even states that the set containing exactly all even
positions also contains the last position (if there is one, observe that the empty
word has even length but no positions):

EvenLength := ∀X ∀x ((Even(X) ∧ last(x))→ x ∈ X) .

It remains to define the macro Even(X). To express that X contains exactly the
even positions, we state that a position belongs to X iff it is the second position or
if it is the second successor of another position in X:

second(x) := ∃y (first(y) ∧ x = y + 1),

Even(X) := ∀x (x ∈ X ↔ (second(x) ∨ ∃y (x = y + 2 ∧ y ∈ X))) .

8.6 Syntax and Semantics

We introduce the syntax and semantics of monadic second-order logic on words.
They extend those of first-order logic presented in section 8.2.

8.6.1 Syntax

We add the new atomic formula x ∈ X to the syntax of first-order logic, as well as
quantification over second-order variables.

Definition 8.19. Let V1 = {x, y, z, . . .} and V2 = {X,Y, Z, . . .} be two infinite sets
of first-order and second-order variables. Let Σ = {a, b, c, . . .} be a finite alphabet.
The set MSO(Σ) of monadic second-order formulas over Σ is the set of expressions
generated by the following grammar:

φ ::= Qa(x) | x < y | x ∈ X | ¬φ | φ ∨ φ | ∃x φ | ∃X φ .

The abbreviations φ1 ∧ φ2, φ1 → φ2, and ∀x φ are defined as for FO(Σ). Fur-
thermore, we introduce

x /∈ X := ¬ x ∈ X
∀X φ := ¬∃X ¬φ “φ holds for every set X”

∃x ∈ X φ := ∃x (x ∈ X ∧ φ) “some position x in X satisfies φ”
∀x ∈ X φ := ∀x (x ∈ X → φ) “every position x in X satisfies φ.”

To define the free variables of a formula, we extend the definition of the first-
order case (see [8.4]), with

free(x ∈ X) = {x,X} and free(∃X φ) = free(φ) \ {X}.

A formula φ of MSO(Σ) is a sentence if free(φ) = ∅, that is, if it has neither first-
order nor second-order free variables.

CHAPTER 8. AUTOMATA AND LOGIC 192

8.6.2 Semantics

Interpretations of monadic second-order formulas assign positions to first-order
variables and sets of positions to second-order variables.

Definition 8.20. An interpretation of a formula φ of MSO(Σ) is a triple (w,V1,V2)
where w ∈ Σ∗ and

• V1 : V1 → N is a partial mapping such that V1(x) is defined and satisfies 1 ≤
V1(x) ≤ |w| for every x ∈ free(φ) ∩ V1, and

• V2 : V2 → 2N is a partial mapping such that V2(X) is defined and satisfies
V2(X) ⊆ {1, . . . , |w|} for every X ∈ free(φ) ∩ V2.

We call V1 and V2 valuations.

As in the first-order case, we often write the mappings V1 and V2 extensionally.
For example, the triple (aba, {x 7→ 1}, {X 7→ {1, 3}, Y 7→ ∅}) is an interpretation
of Qa(X), of x ∈ X, and of (x ∈ X ∨ x ∈ Y).

Remark 8.21. Recall that the only interpretation of a sentence (w,V) of FO(Σ) with
w = ε is (ε,⊥). The interpretations of a sentence of MSO(Σ) over the empty word
are the triples (ε,⊥,V2) such that for every second-order variable X, either V2(X) is
undefined or V2(X) = ∅.

Let us formally define when an interpretation (w,V1,V2) of a formula φ sat-
isfies φ. We use the same notations as in definition 8.5. Additionally, given
S ⊆ {1, . . . , |w|}, we let V2[S/X] denote the valuation of V2 that assigns S to
X and the same value as V2 to every other second-order variable (with the con-
vention that {1, . . . , |w|} = ∅ for w = ε).

Definition 8.22. Let φ be a formula of MSO(Σ), and let (w,V1,V2) be an inter-
pretation of φ. We say that (w,V1,V2) satisfies φ, or is a model of φ, if one of the
following conditions holds:

• φ = Qa(x) and w[V1(x)] = a;

• φ = x < y and V1(x) < V1(y);

• φ = x ∈ X and V1(x) ∈ V2(X);

• φ = ¬φ′ and (w,V1,V2) ̸|= φ′;

• φ = (φ1 ∨ φ2) and (w,V1,V2) |= φ1 or (w,V1,V2) |= φ2;

• φ = ∃x φ, w ̸= ε, and (w,V1[i/x],V2) |= φ holds for some i ∈ {1, . . . , |w|};

• φ = ∃X φ and (w,V1,V2[S/X]) |= φ holds for some S ⊆ {1, . . . , |w|}.

We say that two formulas φ1, φ2 are equivalent, denoted φ1 ≡ φ2, if they have the
same models.

Remark 8.23.

CHAPTER 8. AUTOMATA AND LOGIC 193

• Note that the set S from definition 8.22 may be empty. Therefore, for instance,
any interpretation (w,⊥,V2) of ∃X ∀x ¬(x ∈ X) such that V2(X) = ∅ is a
model.

• Recall that every interpretation (ε,V) of a formula ∀x φ of FO(Σ) is a model,
and no interpretation (ε,V) of ∃x φ is a model (remark 8.8). Does this also
hold for all formulas ∀X φ and ∃X φ? The answer is no. For example, let us
show that ε ̸|= ∀X ∃x x ∈ X. From definition 8.22, we get

ε ̸|= ∀X ∃x x ∈ X
⇐⇒ (ε,⊥,⊥) ̸|= ∀X ∃x x ∈ X (by lemma 8.9)
⇐⇒ (ε,⊥, {X 7→ ∅}) ̸|= ∃x x ∈ X (by lemma 8.9)
⇐⇒ true

Analogously, we have ε |= ∀X ∀x x ∈ X. Further, ε |= ∃X ∀x x /∈ X and
ε ̸|= ∃X ∃x x ∈ X.

It is easy to see that lemma 8.9 extends to monadic second-order logic: if two
interpretations (w,V1,V2) and (w,V ′1,V ′2) of a formula assign the same values to
all free variables, then either both satisfy φ or none satisfy the formula. Thus, we
can define the following:

Definition 8.24. Let φ be a sentence of MSO(Σ). A word w ∈ Σ∗ satisfies φ, de-
noted w |= φ, if every interpretation (w,V) of φ satisfies φ or, equivalently, if some
interpretation (w,V) of φ satisfies φ.

The language L (φ) of a sentence φ of MSO(Σ) is the set L (φ) = {w ∈ Σ∗ :
w |= φ}. A language L ⊆ Σ∗ is MSO-definable if L = L (φ) for some formula φ of
MSO(Σ).

8.7 Macros and Examples

As for first-order logic, macros are essential to turn monadic second-order logic
into a flexible language. Here are a few macros expressing standard properties of
sets:

X = ∅ := ∀x x /∈ X
X = Y ∪ Z := ∀x (x ∈ X ↔ (x ∈ Y ∨ x ∈ Z))
X = Y ∩ Z := ∀x (x ∈ X ↔ (x ∈ Y ∧ x ∈ Z))
X = Y ⊎ Z := (X = Y ∪ Z ∧ ∃W (W = Y ∩ Z ∧W = ∅))
|X| = 1 := ∃x∀y ∈ X y = x

|X| = k + 1 := ∃Y ∃Z (X = Y ⊎ Z ∧ |Y | = k ∧ |Z| = 1)

Example 8.25. We use the macros to give sentences of MSO(Σ) for two predicates.

CHAPTER 8. AUTOMATA AND LOGIC 194

Even number of as and even number of bs. This is the first predicate discussed
in the introduction of the chapter. We give a formalization valid for every Σ such that
a, b ∈ Σ. We first define formulas expressing that x is the first (last) position in X,
and that x and y are neighbor positions in X:

Is_first_in(x,X) := x ∈ X ∧ ∀y (y < x→ y /∈ X))

Is_last_in(x,X) := x ∈ X ∧ ∀y (x < y → y /∈ X))

Neighbors(x, y,X) := x ∈ X ∧ y ∈ X ∧ ∀z ((x < z ∧ z ∧ y)→ z /∈ X) .

Now we express that X can be partitioned into two disjoint sets of positions Xo and
Xe, such that the set Xo contains the first, third, fifth, …position of X, the set Xe

contains the second, fourth, sixth, …position of X, and the rightmost position of X
belongs to Xe. This holds iff X has even size.

EvenSize(X) := ∃Xo ∃Xe

X = Xo ⊎Xe

∧ ∀x (Is_first_in(x,X)→ x ∈ Xo)

∧ ∀x ∀y (Neighbors(x, y,X)→ (x ∈ Xo ↔ y ∈ Xe))

∧ ∀x (Is_last_in(x,X)→ x ∈ Xe)

Given a letter σ ∈ Σ, we define

Even_number_of_σ := ∃X ((x ∈ X ↔ Qσ(x)) ∧ EvenSize(X))

The formula we are looking for is

Even_number_of_a ∧ Even_number_of_b.

The formula is longer than the regular expression at the beginning of the chapter, but
it is easier to find for a human. Moreover, it is now trivial to find another formula
for “even number of as, bs and cs,” while finding another regular expression is not.

A formula for c∗(ab)∗d∗. Let Σ = {a, b, c, d}. We construct a formula with lan-
guage L (c∗(ab)∗d∗). The membership predicate for this language can be informally
formulated as follows:

There is a block of consecutive positionsX such that (1) beforeX, there
are only cs; (2) after X, there are only ds; (3) in X, bs and as alternate;
(4) the first letter in X is an a; and (5) the last letter in X is a b.

This predicate is a conjunction of five smaller predicates. We give formulas expressing
each of the conjuncts.

• “X is a block of consecutive positions.”

Intuitively, X is a block of consecutive positions if it does not contain a “hole”
or, equivalently, if all positions between two positions of X also belong to X.

Block(X) :=∀x ∈ X ∀y ∈ X
(x < y → ∀z ((x < z ∧ z < y)→ z ∈ X))

CHAPTER 8. AUTOMATA AND LOGIC 195

• “Before X, there are only cs.”

Before(x,X) := ∀y ∈ X x < y

Before_only_c(X) := ∀x (Before(x,X)→ Qc(x))

• “After X, there are only ds.”

After(x,X) := ∀y ∈ X y < x

After_only_d(X) := ∀x (After(x,X)→ Qd(x))

• “as and bs alternate in X.”

Alternate(X) :=∀x ∈ X ∀y ∈ X(
y = x+ 1→

(
(Qa(x)→ Qb(y)) ∧ (Qb(x)→ Qa(y))

))
• “The first letter in X is an a.”

Is_first_in(x,X) := x ∈ X ∧ ∀y (y < x→ y /∈ X)

First_is_a(X) := ∀x (Is_first_in(x,X)→ Qa(x))

• “The last letter in X is a b.”

Is_last_in(x,X) := x ∈ X ∧ ∀y (x < y → y /∈ X)

Last_is_b(X) := ∀x (Is_last_in(x,X)→ Qb(x))

Putting everything together, we get the formula

∃X
(
Block(X)∧Before_only_c(X) ∧ After_only_d(X) ∧

Alternate(X) ∧ First_is_a(X) ∧ Last_is_b(X)
)
.

Note that the empty word is a model of the formula, because the empty set of positions
satisfies all conjuncts.

8.8 All Regular Languages Are Expressible in MSO(Σ)

We show that, contrary to first-order logic, monadic second-order logic on words
can express all regular languages.

Proposition 8.26. If L ⊆ Σ∗ is regular, then L is expressible in MSO(Σ).

For the proof, we present a generic procedure that, given a regular language
over Σ, represented by a DFA A, constructs a formula φA of MSO(Σ) such that
L (φA) = L (A).

Imagine we are given A. There is an obvious way to express the membership
predicate of L (A): a word belongs to L (A) iff the last state of its run on A is
accepting. Thus, it suffices to find a formula of MSO(Σ) expressing “the last state
of the run of A is accepting.” For this, we introduce the visit record of a word.
The visit record of a word w is a mapping that assigns to each state q the set of
positions of w after which the run reaches q. It is the inverse of the mapping that
assigns to each letter of w the state reached by A after reading it. Formally:

CHAPTER 8. AUTOMATA AND LOGIC 196

Definition 8.27. Let A = (Q,Σ, δ, q0, F) be a DFA, and let w = a1 · · · am be a
nonempty word over Σ. The visit record of w is the mapping Rw : Q → 2{1,...,m}

that assigns to each state q ∈ Q the set of positions defined as follows:

Rw(q) =
{
i ∈ {1, . . . ,m} : δ̂(q0, a1 · · · ai) = q

}
.

Example 8.28. Figure 8.2 shows a DFA, its run on the word w = aabbb, and the visit
record Rw. Observe that each position belongs to the visit record of exactly one state.
In other words, Rw(q0), Rw(q1), and Rw(q2) form a partition of the set of positions
{1, 2, . . . , 5}.

For every nonempty word, “the run of A on the word is accepting” is equiv-
alent to the predicate “the last position of the word belongs to the visit record
of an accepting state.” Let us examine this predicate. Assume the states of A
are {q0, q1, . . . , qn}, and imagine we are able to define a macro expressing the
visit record—that is, a macro VisitRecord(X0, . . . Xn) such that an interpretation
(w,⊥,V2) is a model if and only if V2 assigns toX0, . . . , Xn the visit recordRw(q0),
. . . , Rw(qn). The predicate is then expressed by the sentence

ψA := ∀X0 · · · ∀Xn ∀x

(VisitRecord(X0, . . . , Xn) ∧ last(x))→
∨
qi∈F

x ∈ Xi

and hence, for every nonempty word w, we have w ∈ L (ψA) iff w ∈ L (A). It
remains to take care of the empty word, which has no visit record. Since the
only first-order quantifier of ψA is universal, we have ε |= ψA for every DFA A,
independently of whether ε ∈ L (A) holds or not, and so we cannot define φA :=
ψA. This is easy to fix by defining φA as follows: if ε ∈ L (A), then φA := ψA,
and otherwise, φA := ψA ∧φ, where φ is any sentence satisfied by every word but
ε (e.g., φ = ∃x ¬(x < x)). After this adjustment, we have L (φA) = L (A). For
example 8.28, we get

φA := ∀X0∀X1∀X2 ∀x((
(VisitRecord(X0, X1, X2) ∧ last(x))→ x ∈ X2

)
∧ ∃x ¬(x < x)

)
.

q0 q1

q2

a

b

a

b

a

b

Run: q0
a−→ q1

a−→ q1
b−→ q2

b−→ q0
b−→ q2

Position: 1 2 3 4 5

Rw(q0) = {4}
Rw(q1) = {1, 2}
Rw(q2) = {3, 5}

Figure 8.2: Example of a run and a visit record.

CHAPTER 8. AUTOMATA AND LOGIC 197

It remains to construct the macro VisitRecord(X0, . . . , Xn). For this, note that
the visit record Rw can also be defined inductively: we first define which compo-
nent Rw(q) of the record contains position 1, and then, assuming we know which
component contains position i, we define which component contains position i+1.

Lemma 8.29. LetA = (Q,Σ, δ, q0, F) be a DFA, and letw = a1 · · · am be a nonempty
word over Σ. The visit record Rw is the unique mapping Q→ 2{1,...,m} satisfying the
following properties for every q, q′ ∈ Q and every 1 ≤ i < m:

(a) 1 ∈ Rw(q) iff q = δ(q0, a1), and

(b) if i ∈ Rw(q) then i+ 1 ∈ Rw(q′) iff q′ = δ(q, ai).

The proof of the lemma follows immediately from definition 8.27. For exam-
ple 8.28, we get

1 ∈ Rw(q) iff q = δ(q0, a) = q1

2 ∈ Rw(q) iff q = δ(q1, a) = q1

3 ∈ Rw(q) iff q = δ(q1, b) = q2
...

Intuitively, conditions ((a)) and ((b)) of lemma 8.29 state that the initial po-
sition belongs to the right component of the visit record and that the visit record
“respects” the transition relation of A. We give macros Init(X0, . . . , Xn) and
Respect(X0, . . . , Xn) expressing these predicates, where we assume the states of
A to be {q0, q1, . . . , qn}. Given 0 ≤ i ≤ n, let us define the following auxiliary
macro expressing that position x belongs to Xj iff j = i:

InXi(x) :=

x ∈ Xi ∧
∧
j ̸=i

x /∈ Xj

 .

For condition ((a)), we take

Init(X0, . . . , Xn) := ∀x
∧
a∈Σ

(
(first(x) ∧Qa(x))→ InXδ(0,a)(x)

)
,

where we abuse language, and write δ(0, a) for the index of the state δ(q0, a).
In words, Init(X0, . . . , Xn) expresses that if the letter at position 1 is an a, then
position 1 belongs to Xδ(0,a) and to no other set.

Example 8.30. For the DFA of figure 8.2 with states {q0, q1, q2}, we get

Init(X0, X1, X2) =∀x
(
(first(x) ∧Qa(x))→ InX1(x)

)
∧
(
(first(x) ∧Qb(x))→ InX2(x)

)
.

For condition ((b)), we define

Respect(X0, . . . , Xn) := ∀x ∀y

y = x+ 1→
∧
a∈Σ,

i∈{0,...,n}

(Qa(x) ∧ x ∈ Xi)→ InXδ(i,a)(y)

 .

CHAPTER 8. AUTOMATA AND LOGIC 198

The formula expresses that if a position x belongs to Xi, and the letter at this
position is an a, then its successor position x + 1 belongs to Xδ(i,a), and to no
other set.

Example 8.31. For the DFA of figure 8.2, this yields:

Respect(X0, X1, X2) = ∀x ∀yy = x+ 1→

(Qa(x) ∧ x ∈ X0) → InX1(y)
∧(Qb(x) ∧ x ∈ X0) → InX2(y)
∧(Qa(x) ∧ x ∈ X1) → InX1(y)
∧(Qb(x) ∧ x ∈ X1) → InX2(y)
∧(Qa(x) ∧ x ∈ X2) → InX1(y)
∧(Qb(x) ∧ x ∈ X2) → InX0(y)

 .

Finally, we are done by setting

VisitRecord(X0, . . . Xn) := Init(X0, . . . , Xn) ∧ Respect(X0, . . . , Xn).

8.9 All Languages Expressible in MSO(Σ) Are Regular

It remains to prove that MSO-definable languages are regular—that is, for every
sentence φ ∈ MSO(Σ), the language L (φ) is regular. The proof is by induction
on the structure of φ. Since definition 8.11 only defines L (φ) for sentences, we
must overcome the obstacle that the subformulas of a sentence are not necessarily
sentences.

For this, we define the language of a formula for every formula, sentence or
not, in an appropriate way. Recall that the interpretations of a formula φ are
triples (w,V1,V2) where V1 assigns positions to the free first-order variables of φ
and possibly to others, and V2 assigns sets of positions to the free second-order
variables of φ and possibly to others. For example, if Σ = {a, b} and free(φ) =
{x, y,X, Y }, then two possible interpretations are(

aab,

{
x 7→ 1
y 7→ 3

}
,

{
X 7→ {2, 3}
Y 7→ {1, 2}

})
and

(
ba,

{
x 7→ 2
y 7→ 1

}
,

{
X 7→ ∅
Y 7→ {1}

})
.

Given an interpretation (w,V1,V2), we encode each assignment of the form
x 7→ k or X 7→ {k1, . . . , kℓ} as a bitstring of the same length as w: the string
for x 7→ k contains exactly a 1 at position k and 0s everywhere else; the string
for X 7→ {k1, . . . , kℓ} contains 1s at positions k1, . . . , kℓ and 0s everywhere else.
After fixing an order on the variables, an interpretation (w,V1,V2) can then be
encoded as a tuple (w, v1, . . . , vn), where n is the number of variables, w ∈ Σ∗, and
v1 · · · vn ∈ {0, 1}∗. In particular, for the two interpretations above, we respectively
get the encodings

w :
x :
y :
X :
Y :

a
1
0
0
1

a
0
0
1
1

b
0
1
1
0

and

w :
x :
y :
X :
Y :

b
0
1
0
1

a
1
0
0
0

.

CHAPTER 8. AUTOMATA AND LOGIC 199

As all of w, v1, . . . , vn have the same length, we can encode the tuple (w, v1,
. . . , vn) as a word over the alphabet Σ × {0, 1}n. The encodings above yield the
words

a
1
0
0
1

a
0
0
1
1

b
0
1
1
0

 and

b
0
1
0
1

a
1
0
0
0

 over the alphabet Σ× {0, 1}4.

We can define the language of φ as the set of encodings of the models of φ.
However, since an interpretation must assign values to all free variables of a for-
mula but can assign values to others, a formula may have models encoded over
alphabets Σ×{0, 1}k for arbitrarily large values of k. For example, both (ab,⊥,⊥)
and (a, {y 7→ 1}, {Y 7→ {1, 2}) are models of the formula ∃x Qa(x), but the first
is encoded as a word over {a, b}, while the second is encoded as a word over
{a, b} × {0, 1}2.

This problem has a simple solution: consider only the minimal interpretations
of the formula that assign values to exactly the free variables of the formula and
to no others. Since, by lemma 8.9, the values assigned to bound variables do
not influence whether an interpretation is a model or not, we do not lose any
information, and all minimal interpretations are encoded as words over the same
alphabet.

We still need to fix the encoding of the interpretations (w,V1,V2) such that
w = ε. Recall that, since we cannot assign values to first-order variables, only
formulas without free first-order variables can have such interpretations, and they
are of the form (ε,⊥, {X1 7→ ∅, . . . , Xk 7→ ∅}). We encode all these interpretations
by the empty word.

Definition 8.32. Let φ be a formula with sets {x1, . . . , xk1} and {X1, . . . , Xk2}
of free first-order and second-order variables, respectively, where k1, k2 ≥ 0. Let
(w,V1,V2) be a minimal interpretation of φ. The encoding enc(w,V1,V2) of (w,V1,
V2) is the word over alphabet Σ× {0, 1}k1+k2 defined as follows:

• if w = ε, then enc(w,V1,V2) = ε;

• if w ̸= ε, then enc(w,V1,V2) = (w, v1, . . . , vk1 , u1, . . . , uk2), where

◦ for every 1 ≤ i ≤ k1 and 1 ≤ j ≤ |w|: vi[j] = 1 iff V1(xi) = j; and
◦ for every 1 ≤ i ≤ k2, 1 ≤ j ≤ |w|: ui[j] = 1 iff j ∈ V2(Xi).

The language of φ, denoted L (φ), is the set of encodings of all minimal models of φ.

We have thus associated to every formula φ a language L (φ) over alphabet
Σ × {0, 1}n, where n ≥ 0 is the number of free variables of φ. We prove by
induction on the structure of φ that L (φ) is regular. We do so by exhibiting an NFA
accepting L (φ). For simplicity, in the rest of the section, we assume Σ = {a, b}.
The extension to larger alphabets is straightforward. Recall that free(φ) denotes
the set of free variables of φ.

CHAPTER 8. AUTOMATA AND LOGIC 200

Case φ = Qa(x). We have free(φ) = {x}, and hence the minimal models of φ
are encoded as words over Σ × {0, 1}. By definition 8.22, the language L (φ) is
given by

L (φ) =

[
a1
β1

]
· · ·
· · ·

[
ak
βk

]
:

k ≥ 1;
a1 . . . ak ∈ Σk, β1 . . . βk ∈ {0, 1}k; and
βi = 1 for a single index i ∈ {1, . . . , k}
such that ai = a.

Observe that k ≥ 1 because, by definition, no triple (ε,V1,V2) is an interpretation
of Qa(x). The language L (φ) is recognized by this automaton:

[
a
1

]
[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

]

Case φ = x < y. We have free(φ) = {x, y}, and hence the minimal models of φ
are encoded as words over Σ×{0, 1}2. By definition Definition 8.22, the language
L (φ) is given by

L (φ) =

a1β1
γ1

 · · ·· · ·
· · ·

akβk
γk

 :

k ≥ 1;
a1 . . . ak ∈ Σk, β1 . . . βk, γ1 . . . γk ∈ {0, 1}k;
βi = 1 for a single index i ∈ {1, . . . , k};
γj = 1 for a single index j ∈ {1, . . . , k}; and
i < j.

It is recognized by this automaton:

a1
0

 ,
b1
0

 a0
1

 ,
b0
1

a0
0

 ,
b0
0

 a0
0

 ,
b0
0

 a0
0

 ,
b0
0

Case φ = x ∈X. We have free(φ) = {x,X}, and hence the minimal interpreta-
tions of φ are encoded as words over Σ×{0, 1}2. By definition 8.22, the language
L (φ) is given by

L (φ) =

a1β1
γ1

 · · ·· · ·
· · ·

akβk
γk

 :

k ≥ 1;
a1 . . . ak ∈ Σk, β1 . . . βk, γ1 . . . γk ∈ {0, 1}k;
βi = 1 for a single index i ∈ {1, . . . , k}; and
βi = 1 implies γi = 1 for all i ∈ {1, . . . , k}.

It is recognized by

CHAPTER 8. AUTOMATA AND LOGIC 201

a1
1

 ,
b1
1

a0
0

 ,
b0
0

 ,
a0
1

 ,
b0
1

 a0
0

 ,
b0
0

 ,
a0
1

 ,
b0
1

Case φ = ¬ψ. We have free(φ) = free(ψ), and by induction hypothesis, there
exists an automaton Aψ such that L (Aψ) = L (ψ).

By definition 8.22, L (φ) is the set of encodings of the minimal interpretations
of ψ that do not satisfy ψ. Observe that, in general, L (φ) is not equal to L (ψ), as
one might first think. Consider, for example, the instance φ = ¬ψ = ¬Qa(x). The
word [

a
1

] [
a
1

] [
a
1

]
belongs neither to L (ψ) nor L (φ), because it is not the encoding of any inter-
pretation: the bitstring for x contains more than one 1. What holds is L (φ) =
L (ψ) ∩ Enc(ψ), where Enc(ψ) is the language of the encodings of all minimal in-
terpretations of ψ, whether they are models of ψ or not. We construct a DFA Aenc

ψ

recognizing Enc(ψ), after which we can take Aφ = Aψ ∩Aenc
ψ .

Assume ψ has k1 and k2 free first-order and second-order variables, respec-
tively. By definition 8.20, which defines the interpretations of a formula ψ, and
definition 8.32, which defines their encodings, we have that a word w over Σ ×
{0, 1}k1+k2 belongs to Enc(ψ) if

• w = ε and k1 = 0, or

• w ̸= ε, and each of the bitstrings obtained by projecting w onto the sec-
ond, third, …, (k1 + 1)th component of the alphabet contains exactly one
occurrence of the letter 1.

We define a DFA Aenc
ψ recognizing Enc(ψ). For clarity, it is convenient to sepa-

rate the definition into the cases k1 > 0, that is, ψ has at least one free first-order
variable, and k1 = 0. Recall that if k1 > 0, then ψ has no interpretations on the
empty word, but if k1 = 0, then the triple (ε,⊥, {X1 7→ ∅, . . . , Xk2 7→ ∅) is a
minimal interpretation. If k1 > 0, then Aenc

ψ is defined as follows:

• The states are all the strings of {0, 1}k1 , plus a trap state.

The intended meaning of a state, say state 101 for the case k1 = 3, is “the
automaton has already read the 1s in the first and the third bitstrings, but not yet
read the 1 of the second.”

• The initial state is 0k1 .

Initially, the automaton has not read any 1 for any first-order variable.

• Transitions are defined according to the intended meaning of the states.

CHAPTER 8. AUTOMATA AND LOGIC 202

For example, if the automaton is in state 100 and reads the letter [a, 0, 0, 1],
then the automaton moves to state 101, indicating that it has now also read the 1
in the third bitstring. However, if the automaton reads the letter [a, 1, 1, 0], then it
moves to the nonaccepting trap state, because the first bitstring contains at least
two 1s, and so the word does not encode an interpretation. All transitions leaving
the trap state lead to the trap state.

• The only final state is 1k1 .

At this point, the 1s in all bitstrings have been read.
If k1 = 0, then Aenc

ψ has a single state, which is both initial and final, and, for
every letter of Σ × {0, 1}k2 , the corresponding transition leads from this state to
itself.

Example 8.33. The formula x < y has two free first-order variables. The states of
Aenc
x<y are {00, 01, 10, 11}. The automaton is depicted in figure 8.3.

Since an interpretation can assign the same position to x and y, we have two
transitions leading from 00 to 11. While such interpretations are not models of x < y,
their encodings must be recognized by Aenc

ψ .

Remark 8.34.
• Aenc

ψ only depends on free(ψ). For example, Aenc
Qa(x)

= Aenc
∃y x<y.

• The number of states of Aenc
ψ grows exponentially in the number of free vari-

ables of ψ. This makes negations expensive, even when the automaton Aψ is
deterministic.

00 01

10 11

a1
0

 ,
b1
0

a0
1

 ,
b0
1

a1
1

 ,
b1
1

 a0
1

 ,
b0
1

a1
0

 ,
b1
0

a0
0

 ,
b0
0

 a0
0

 ,
b0
0

a0
0

 ,
b0
0

 a0
0

 ,
b0
0

Figure 8.3: Automaton Aenc

x<y.

CHAPTER 8. AUTOMATA AND LOGIC 203

Case φ = (φ1 ∨ φ2). We have free(φ) = free(φ1) ∪ free(φ2), and by induc-
tion hypothesis, there are automata Aφi , Aφ2 such that L (Aφ1) = L (φ1) and
L (Aφ2

) = L (φ2).
If free(φ1) = free(φ2), then we can take Aφ = Aφ1

∪ Aφ2
. But, this needs

not be the case. If free(φ1) ̸= free(φ2), then L (φ1) and L (φ2) are languages
over different alphabets Σ1 and Σ2, or over the same alphabet but with different
intended meanings. Thus, we cannot just compute their union. For example, if
φ1 = Qa(x) and φ2 = Qb(y), then both L (φ1) and L (φ2) are languages over
Σ × {0, 1}, but in (aba, 100) ∈ L (φ1), the bitstring 100 encodes the position of x,
whereas in (aba, 010) ∈ L (φ2), the bitstring 010 encodes the position of y.

This problem is solved by extending L (φ1) and L (φ2) to languages L1 and
L2 over Σ × {0, 1}2. In our example, L1 contains the encodings of all interpre-
tations (w, {x 7→ n1, y 7→ n2}) such that the projection (w, {x 7→ n1}) belongs to
L (Qa(x)), and similarly, L2 contains the encodings of all interpretations such that
(w, {y 7→ n2}) belongs to L (Qb(y)).

Let us transform the two-state automaton AQa(x) recognizing L (Qa(x)), that
is, the automaton

[
a
1

]
[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

]

into an automatonA1 recognizing L1. For this, it suffices to “split” every transition
of AQa(x) labeled by [a, β] ∈ Σ×{0, 1} into two transitions, labeled by [a, β, 0] and
[a, β, 1]. This yields the automaton

a1
0

 ,
a1
1

a0
0

 ,
a0
1

 ,
b0
0

 ,
b0
1

 a0
0

 ,
a0
1

 ,
b0
0

 ,
b0
1

After constructing A2 in a similar manner, we take Aφ = A1 ∪A2.
We can use the same procedure to construct an automaton for the case φ =

φ1 ∧ φ2. We only need to modify the very last step and set Aφ = A1 ∩A2.

Case φ=∃x ψ. We have free(φ) = free(ψ) \ {x}, and by induction hypothesis,
there is an automaton Aψ such that L (Aψ) = L (ψ). We define A∃x ψ as the
result of the projection operation, where we project onto all variables but x. The
operation simply corresponds to removing in each letter of each transition of Aψ
the component for variable x. For example, the automaton A∃x Qa(x) is obtained
by removing the second component in all labels of the automaton for AQa(x):

CHAPTER 8. AUTOMATA AND LOGIC 204

[
a
1

]
[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

]

AQa(x)

a

a, b a, b

A∃x Qa(x)

Observe that the automaton for ∃x Qa(x) is nondeterministic even though
AQa(x) is a DFA, because the projection maps [a, 0] and [a, 1] to the same letter.

Case φ=∃X φ. We proceed exactly as in the previous case.

Size ofAφ. The procedure for constructingAφ proceeds bottom-up on the syntax
tree of φ. It first constructs automata for the atomic formulas in the leaves of the
tree and then proceeds upward: given automata for the children of a node in the
tree, it constructs an automaton for the node itself.

The automaton for a node labeled by a negation can be exponentially larger
than the automaton for its only child. This yields an upper bound for the size of
Aφ equal to a tower of exponentials, where the height of the tower is the largest
number of negations in any path from the root of the tree to one of its leaves. It can
be shown that this very large upper bound is essentially tight: there are formulas
φ for which the smallest automaton recognizing L (φ) reaches the upper bound.
In other words, monadic second-order logic on words allows us to express some
regular languages in an extremely succinct form.

We conclude the section with an example illustrating all of the parts of the
inductive procedure.

Example 8.35. Consider the language a∗b ⊆ Σ∗ over Σ = {a, b}, recognized by this
NFA:

b

a

We derive the NFA by giving a formula φ such that L (φ) = L (a∗b) and then
transforming φ into an automaton. (We shall see that the procedure is quite labori-
ous.) The formula states that the last letter is a b and all other letters are as:

φ = ∃x (last(x) ∧Qb(x)) ∧ ∀x (¬last(x)→ Qa(x)).

We first replace the abbreviations in φ by their definitions, yielding

ψ = ∃x (last(x) ∧Qb(x)) ∧ ¬∃x (¬last(x) ∧ ¬Qa(x)).

We transform ψ into an NFA by constructing automata for larger and larger subfor-
mulas of ψ, starting with the atomic formulas. For readability, we let [ψ′] denote the
automaton for a subformula ψ′, instead of Aψ′ .

CHAPTER 8. AUTOMATA AND LOGIC 205

An automaton for last(x). Wefirst compute an automaton for last(x) := ¬∃y (x <
y). Recall that the automaton [x < y] for x < y is

a1
0

 ,
b1
0

 a0
1

 ,
b0
1

a0
0

 ,
b0
0

 a0
0

 ,
b0
0

 a0
0

 ,
b0
0

[x < y]

Applying the projection operation, we get an automaton for ∃y (x < y):

[
a
1

]
,

[
b
1

] [
a
0

]
,

[
b
0

]
[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

]

[∃y (x < y)]

It remains to compute the automaton for ¬∃y (x < y). Recall that computing the
automaton for the negation of a formula requires more than complementing the au-
tomaton. First, we need an automaton recognizing the set Enc(∃y (x < y)) of encod-
ings of the minimal interpretations of ∃y (x < y). Since x is a free variable of the
formula, we get

[
a
1

]
,

[
b
1

]
[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

]

Aenc
∃y (x<y)

Second, we determinize and complement the automaton for ∃y (x < y):

[
a
1

]
,

[
b
1

]
Σ× {0, 1}

[
a
0

]
,

[
b
0

]
Σ× {0, 1}

Finally, we compute the intersection of the last two automata, which yields

[
a
1

]
,

[
b
1

] [
a
0

]
,

[
b
0

]
[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

]

The last state is useless and can be removed, finally yielding the following NFA for
last(x):

CHAPTER 8. AUTOMATA AND LOGIC 206

[
a
1

]
,

[
b
1

]
[
a
0

]
,

[
b
0

]

[last(x)]

An automaton for ∃x (last(x) ∧ Qb(x)). Next, we compute an automaton for
∃x (last(x) ∧Qb(x)), the first conjunct of ψ. We start with an NFA for Qb(x):

[
b
1

]
[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

]

[Qb(x)]

The automaton for ∃x (last(x) ∧ Qb(x)) is the result of intersecting [Qb(x)] and
[last(x)] and projecting onto the first component. This yields

b

a, b

[∃x (last(x) ∧Qb(x))]

An automaton for ¬∃x (¬last(x)∧¬Qa(x)). Now we compute an automaton
for ¬∃x (¬last(x) ∧ ¬Qa(x)), the second conjunct of ψ. We first obtain an automa-
ton for ¬Qa(x) by intersecting the complement of [Qa(x)] and the automaton for
Enc(Qa(x)). The automaton for Qa(x) is

[
a
1

]
[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

]

[Qa(x)]

After determinization and complementation, we get

[
a
1

]

[
b
1

] [
a
1

]
,

[
b
1

]

[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

]

Σ× {0, 1}

CHAPTER 8. AUTOMATA AND LOGIC 207

For the automaton recognizing Enc(Qa(x)), note that

Enc(Qa(x)) = Enc(∃y (x < y)),

because both formulas have the same free variables and so the same interpretations.
But we have already computed an automaton recognizing Enc(∃y (x < y)), and so

[
a
1

]
,

[
b
1

]
[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

]

Aenc
Qa(x)

The intersection of the last two automata yields a three-state automaton for ¬Qa(x),
but after eliminating a useless state, we get

[
b
1

]
[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

]

[¬Qa(x)]

Note that this is the same automaton we obtained for Qb(x), which is fine, because
over alphabet {a, b}, the formulas Qb(x) and ¬Qa(x) are equivalent.

To compute an automaton for ¬last(x), we observe that ¬last(x) is equivalent to
∃y (x < y), for which we have already computed an NFA, and so

[
a
1

]
,

[
b
1

] [
a
0

]
,

[
b
0

]
[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

]

[¬last(x)]

Intersecting the automata for ¬last(x) and ¬Qa(x), and subsequently projecting onto
the first component, we obtain an automaton for the sentence ∃x (¬last(x)∧¬Qa(x)):

b a, b

a, b a, b a, b

[∃x (¬last(x) ∧ ¬Qa(x))]

Determinizing, complementing, and removing a useless state yields the following NFA
for ¬∃x (¬last(x) ∧ ¬Qa(x)):

b

a

[¬∃x (¬last(x) ∧ ¬Qa(x))]

Summarizing, the automata for the two conjuncts of ψ are

CHAPTER 8. AUTOMATA AND LOGIC 208

b

a, b

and b

a

whose intersection yields a three-state automaton, which after removal of a useless
state becomes

b

a

[∃x (last(x) ∧Qb(x)) ∧ ¬∃x (¬last(x) ∧ ¬Qa(x))]

This ends the derivation.

8.10 Exercises

 Exercise 119. Give formulations in plain English of the languages described
by the following formulas of FO({a, b}), and give a corresponding regular expres-
sion:

(a) ∃x first(x)

(b) ∀x false

(c) [¬∃x∃y (x < y ∧ Qa(x) ∧ Qb(y))] ∧ [∀x (Qb(x) → ∃y x < y ∧ Qa(y))] ∧
[∃x ¬∃y x < y]

 Exercise 120. Let Σ = {a, b}.

(a) Give a formula φn(x, y) from FO(Σ), of size O(n), that holds iff y = x+ 2n.
Note that the abbreviation y = x+k of page 186 has length O(k) and hence
cannot be directly used.

(b) Give a sentence from FO(Σ), of size O(n), for the language Ln = {ww : w ∈
Σ∗ and |w| = 2n}.

(c) Show that the minimal DFA accepting Ln has at least 22
n

states.
Hint: Consider residuals.

⋆ Exercise 121. The nesting depth d(φ) of a formula φ of FO({a}) is defined
inductively as follows:

• d(Qa(x)) = d(x < y) = 0,

• d(¬ψ) = d(ψ),

• d(φ1 ∨ φ2) = max{d(φ1), d(φ2)}, and

• d(∃x ψ) = 1 + d(ψ).

CHAPTER 8. AUTOMATA AND LOGIC 209

Prove that every formula φ from FO({a}) of nesting depth n is equivalent to a
formula f of QF having the same free variables as φ, and such that every constant
k appearing in f satisfies k ≤ 2n. Hint: Modify suitably the proof of theorem 8.17.

 Exercise 122. Consider the extension of FO(Σ) where addition of variables
is allowed. Give a sentence of this logic for palindromes, that is, for language {w ∈
Σ∗ : w = wR}.

 Exercise 123. Let Σ be a finite alphabet. A language L ⊆ Σ∗ is star-free if
it can be expressed by a star-free regular expression, that is, a regular expression
where the Kleene star operation is forbidden, but complementation is allowed. For
example, Σ∗ is star-free since Σ∗ = ∅, but (aa)∗ is not. In this exercise we show
that every star-free language can be expressed by a sentence of FO(Σ).

(a) Give star-free regular expressions and FO(Σ) sentences for the following star-
free languages:

(i) Σ+,
(ii) Σ∗AΣ∗ for some A ⊆ Σ,
(iii) A∗ for some A ⊆ Σ,
(iv) {w ∈ Σ∗ : w does not contain aa}, and
(v) (ab)∗.

(b) Show that finite and co-finite languages are star-free.

(c) Show that for every sentence φ ∈ FO(Σ), there exists a formula φ+(x, y),
with two free variables x and y, such that for every w ∈ Σ+ and for every
1 ≤ i ≤ j ≤ w,

w |= φ+(i, j) iff wiwi+1 · · ·wj |= φ.

(d) Give a polynomial-time algorithm that decides whether ε satisfies a given
sentence of FO(Σ).

(e) Show that any star-free language can be expressed by an FO(Σ) sentence.
Hint: Use (c).

 Exercise 124. Give a formula Odd_card(X) from MSO(Σ) expressing that
the set of positions X has odd cardinality. Hint: Follow the pattern of Even(X).

 Exercise 125. Give formulas of MSO({a, b}) that define the following lan-
guages:

(a) aa∗b∗,

(b) the set of words with an odd number of occurrences of a, and

(c) the set of words such that every two bs with no other b in between are sep-
arated by a block of as of odd length.

CHAPTER 8. AUTOMATA AND LOGIC 210

 Exercise 126. Given a formula φ fromMSO(Σ) and a second-order variable
X not occurring in φ, show how to construct a formula φX withX as an additional
free variable expressing “the projection of the word onto the positions ofX satisfies
φ.” Formally, φX must satisfy the following property: for every interpretation V
of φX , we have (w,V) |= φX iff (w|V(X),V) |= φ, where w|V(X) denotes the result
of deleting from w the letters at all positions that do not belong to V(X).

 Exercise 127.

(a) Given two sentences φ1, φ2 ∈ MSO(Σ), construct a sentence Conc(φ1, φ2)
satisfying L (Conc(φ1, φ2)) = L (φ1) · L (φ2).

(b) Given a sentence φ of MSO(Σ), construct a sentence Star(φ) satisfying

L (Star(φ)) = L (φ)∗ .

(c) Give an algorithm RegtoMSO that takes a regular expression r as input and
constructs a sentence φ of MSO(Σ) such that L (φ) = L (r), without first
constructing an automaton.

Hint: Use exercise 126.

 Exercise 128. Consider the logic PureMSO(Σ) with syntax

φ ::= X ⊆ Qa | X < Y | X ⊆ Y | ¬φ | φ ∨ φ | ∃X φ.

Note that formulas of PureMSO(Σ) do not contain first-order variables. The satis-
faction relation of PureMSO(Σ) is given by

(w,V) |= X ⊆ Qa iff w[p] = a for every p ∈ V(X),
(w,V) |= X < Y iff p < p′ for every p ∈ V(X), p′ ∈ V(Y),
(w,V) |= X ⊆ Y iff V(X) ⊆ V(Y),

with the rest as for MSO(Σ).
Prove that MSO(Σ) and PureMSO(Σ) have the same expressive power for sen-

tences—that is, show that for every sentence ϕ of MSO(Σ), there is an equivalent
sentence ψ of PureMSO(Σ) and vice versa.

 Exercise 129. Recall the syntax of MSO(Σ):

φ := Qa(x) | x < y | x ∈ X | ¬φ | φ ∨ φ | ∃x φ | ∃X φ.

We have introduced y = x+1 (“y is the successor position of x”) as an abbreviation:

(y = x+ 1) := (x < y) ∧ ¬∃z (x < z ∧ z < y).

Consider now the variant MSO′(Σ) in which, instead of an abbreviation, y = x+1
is part of the syntax and replaces x < y. In other words, the syntax of MSO′(Σ) is

φ := Qa(x) | y = x+ 1 | x ∈ X | ¬φ | φ ∨ φ | ∃x φ | ∃X φ.

Prove that MSO′(Σ) has the same expressive power as MSO(Σ).

 Exercise 130.

CHAPTER 8. AUTOMATA AND LOGIC 211

(a) Give a macro Block_between(X, i, j) of MSO(Σ) expressing “X contains the
positions between i and j (inclusively).”

(b) Let 0 ≤ m < n. Give a formula Modm,n of MSO(Σ) such that Modm,n(i, j)
holds whenever |wiwi+1 · · ·wj | ≡ m (mod n)—that is, whenever j − i+1 ≡
m (mod n).

(c) Let 0 ≤ m < n. Give a sentence of MSO(Σ) that defines am(an)∗.

(d) Give a sentence of MSO({a, b}) that defines the language of words such that
every two bs with no other b in between are separated by a block of as of
odd length.

 Exercise 131. Consider a formula φ(X) of MSO(Σ) that does not contain
any occurrence of predicates of the form Qa(x). Given two interpretations that
assign the same set of positions to X, we have that either both interpretations
satisfy φ(X), or none of them does. Thus, we can speak of the sets of natural
numbers satisfying φ(X).

This observation can be used to automatically prove some (very) simple prop-
erties of the natural numbers. Consider, for instance, the following “conjecture”:
every finite set of natural numbers has a minimal element.3 The conjecture holds
iff the formula

Has_min(X) := ∃x ∈ X ∀y ∈ X (x ≤ y)

is satisfied by every interpretation in which X is nonempty. Construct an automa-
ton for Has_min(X), and check that it recognizes all nonempty sets.

 Exercise 132. The encoding of a set is a word that can be seen as the
encoding of a number. We can use this observation to express addition in monadic
second-order logic. More precisely, give a formula Sum(X,Y, Z) that holds iff
nX + nY = nZ , where nX , nY , and nZ are respectively the numbers encoded by
the sets X, Y , and Z using the LSBF-encoding. For instance, the words

X
Y
Z

01
1

11
0

00
1

 and

11
0

11
1

11
1

11
1

10
0

00
1

00
0

00
0

should satisfy the formula since the first encodes 2+3 = 5, and the second encodes
31 + 15 = 46.

3Of course, it also holds for all infinite set, but we cannot prove it using MSO over finite words.

Chapter 9
Application III: Presburger

Arithmetic

Presburger arithmetic is a logical language for expressing properties of numbers
by means of addition and comparison. A typical example of such a property is
“x+2y > 2z and 2x−3z = 4y.” The property is satisfied by some triples (nx, ny, nz)
of natural numbers, like (4, 2, 0) and (8, 1, 4), but not by others, like (6, 0, 4) or
(2, 2, 4). Valuations satisfying the property are called solutions or models.

We show how to construct, for a given formula φ of Presburger arithmetic, an
NFA Aφ recognizing the solutions of φ. We proceed as follows. In section 9.1,
we introduce the syntax and semantics of Presburger arithmetic; in section 9.2,
we construct an NFA recognizing all solutions over the natural numbers; and in
section 9.3, we construct an NFA recognizing all solutions over the integers.

9.1 Syntax and Semantics

Formulas of Presburger arithmetic are constructed out of an infinite set of variables
V = {x, y, z, . . .} and the constants 0 and 1. The syntax of formulas is defined in
three steps. First, the set of terms is inductively defined as follows:

• the symbols 0 and 1 are terms,

• every variable is a term, and

• if t and u are terms, then t+ u is a term.

An atomic formula is an expression t ≤ u, where t and u are terms. The set of
Presburger formulas is inductively defined as follows:

• every atomic formula is a formula, and

• if φ1 and φ2 are formulas, then so are ¬φ1, φ1 ∨ φ2, and ∃x φ1.

212

CHAPTER 9. APPLICATION III: PRESBURGER ARITHMETIC 213

As usual, variables within the scope of an existential quantifier are bounded and
otherwise free. Besides standard abbreviations like ∀, ∧,→, we also introduce

n :=

n times︷ ︸︸ ︷
1 + 1 + . . .+ 1, nx :=

n times︷ ︸︸ ︷
x+ x+ . . .+ x,

t ≥ t′ := t′ ≤ t, t < t′ := t ≤ t′ ∧ ¬(t = t′),

t = t′ := t ≤ t′ ∧ t ≥ t′, t > t′ := t′ < t.

An interpretation is a function V : V → N. An interpretation V is extended
to terms in the natural way: V(0) = 0, V(1) = 1, and V(t + u) = V(t) + V(u).
The satisfaction relation V |= φ for an interpretation V and a formula φ is induc-
tively defined as follows, where V[n/x] denotes the interpretation that assigns the
number n to the variable x and the same numbers as V to all other variables:

V |= t ≤ u iff V(t) ≤ V(u),
V |= ¬φ1 iff V ̸|= φ1,

V |= φ1 ∨ φ2 iff V |= φ1 or V |= φ2,

V |= ∃x φ iff there exists n ≥ 0 such that V[n/x] |= φ.

It is easy to see that whether V satisfies φ or not depends only on the values V
assigns to the free variables of φ (i.e., if two interpretations assign the same values
to the free variables, then either both satisfy the formula, or none does). The
solutions of φ are the projection onto the free variables of φ of the interpretations
that satisfy φ. If we fix a total order on the set V of variables and if a formula φ
has k free variables, then its set of solutions can be represented as a subset of Nk
or as a relation of arity k over the universe N. We call this subset the solution space
of φ and denote it by Sol(φ).

Example 9.1. The solution space of the formula x − 2 ≥ 0 is the set {2, 3, 4, . . .}.
The free variables of the formula ∃x (2x = y ∧ 2y = z) are y and z. The solutions
of the formula are the pairs {(2n, 4n) : n ≥ 0}, where we assume that the first and
second components correspond to the values of y and z, respectively.

Automata encoding natural numbers. We use transducers to represent, com-
pute, and manipulate solution spaces of formulas. As in section 5.1 of chapter 5,
we encode natural numbers as strings over {0, 1} using the least-significant-bit-
first encoding LSBF. If a formula has free variables x1, . . . , xk, then its solutions
are encoded as words over {0, 1}k. For instance, the word

x1
x2
x3

10
0

01
0

10
0

01
0

encodes the solution (5, 10, 0). The language of a formula φ is defined as

L (φ) =
∪

s∈Sol(φ)

LSBF(s),

where LSBF(s) denotes the set of all encodings of the tuple s of natural numbers.
In other words, L (φ) is the encoding of the relation Sol(φ).

CHAPTER 9. APPLICATION III: PRESBURGER ARITHMETIC 214

9.2 An NFA for the Solutions over the Naturals

Given a Presburger formula φ, we construct a transducer Aφ such that L (Aφ) =
L (φ). Recall that Sol(φ) is a relation over N whose arity is given by the number of
free variables ofφ. The last section of chapter 5 implements operations on relations
of arbitrary arity. These operations can be used to compute the solution space of
the negation of a formula, the disjunction of two formulas, and the existential
quantification of two formulas

• The solution space of the negation of a formula with k free variables is the
complement of its solution space with respect to the universe Uk. In general,
when computing the complement of a relation, we have to worry about en-
suring that the NFAs we obtain only accept words that encode some tuple of
elements (i.e., some cleanup may be necessary to ensure that automata do
not accept words encoding nothing). For Presburger arithmetic, this is not
necessary, because in the LSBF encoding, every word encodes some tuple of
numbers.

• The solution space of a disjunction φ1 ∨ φ2, where φ1 and φ2 have the
same free variables, is clearly the union of their solution spaces and can
be computed as Union(Sol(φ1), Sol(φ2)). If φ1 and φ2 have different sets
V1 and V2 of free variables, then some preprocessing is necessary. Define
SolV1∪V2

(φi) as the set of valuations of V1 ∪ V2 whose projection onto Vi be-
longs to Sol(φi). Transducers recognizing SolV1∪V2

(φi) for i ∈ {1, 2} are easy
to compute from transducers recognizing Sol(φi), and the solution space is
Union(SolV1∪V2

(φ1), SolV1∪V2
(φ2)).

• The solution space of a formula ∃xφ, where x is a free variable of φ, is
Projection_I(Sol(φ)), where I contains the indices of all variables with the
exception of the index of x.

It only remains to construct automata recognizing the solution space of atomic
formulas. Consider an expression of the form

φ = a1x1 + . . .+ anxn ≤ b,

where a1, . . . , an, b ∈ Z (not N!). Since we allow negative integers as coefficients,
for every atomic formula, there is an equivalent expression in this form (i.e., an
expression with the same solution space). For example, x ≥ y+ 4 is equivalent to
−x+ y ≤ −4. Letting a = (a1, . . . , an), x = (x1, . . . , xn), and denoting the scalar
product of a and x by a · x, we write φ = a · x ≤ b.

We construct a DFA for Sol(φ). The states of the DFA are integers. We choose
transitions and final states of the DFA so that the following property holds:

State q ∈ Z recognizes the encodings of the tuples c ∈ Nn such that a · c ≤ q.
(9.1)

Given a state q ∈ Z and a letter ζ ∈ {0, 1}n, let us determine the target state q′
of the transition δ(q, ζ) of the DFA. A word w ∈ ({0, 1}n)∗ is accepted from q′ iff
the word ζw is accepted from q. Since we use the LSBF encoding, if c ∈ Nn is the
tuple of natural numbers encoded by w, then the tuple encoded by ζw is 2c + ζ.

CHAPTER 9. APPLICATION III: PRESBURGER ARITHMETIC 215

So c ∈ Nn is accepted from q′ iff 2c+ ζ is accepted from q. Therefore, in order to
satisfy property (9.1), we must choose q′ so that a · c ≤ q′ iff a · (2c + ζ) ≤ q. A
little arithmetic yields

q′ =

⌊
q − a · ζ

2

⌋
,

and hence we define the transition function of the DFA by

δ(q, ζ) =

⌊
q − a · ζ

2

⌋
.

For the final states, we observe that a state is final iff it accepts the empty word
iff it accepts the tuple (0, . . . , 0) ∈ Nn. So, in order to satisfy (9.1), we must make
state q final iff q ≥ 0. As initial state, we choose the integer b. This leads to the
algorithm AFtoDFA(φ) of algorithm 42, where for clarity, the state corresponding
to an integer k ∈ Z is denoted by sk.

Algorithm 42 Conversion of an atomic formula into a DFA recognizing the LSBF
encoding of its solutions.
AFtoDFA(φ)
Input: Atomic formula φ = a · x ≤ b
Output: DFA Aφ = (Q,Σ, δ, q0, F) such that L (Aφ) = L (φ)
1 Q, δ, F ← ∅; q0 ← sb
2 W ← {sb}
3 whileW ̸= ∅ do
4 pick sk fromW

5 add sk to Q
6 if k ≥ 0 then add sk to F
7 for all ζ ∈ {0, 1}n do

8 j ←
⌊
k − a · ζ

2

⌋
9 if sj /∈ Q then add sj toW
10 add (sk, ζ, sj) to δ

Example 9.2. Consider the atomic formula 2x − y ≤ 2. The DFA obtained by ap-
plying AFtoDFA to it is shown in figure 9.1. The initial state is 2. Transitions leaving
state 2 are given by

δ(2, ζ) =

⌊
2− (2,−1) · (ζx, ζy)

2

⌋
=

⌊
2− 2ζx + ζy

2

⌋
,

and hence we have 2 [0,0]−−−→ 1, 2 [0,1]−−−→ 1, 2 [1,0]−−−→ 0, and 2
[1,1]−−−→ 0. States 2, 1, and 0

are final. The DFA accepts, for example, the word[
0
0

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
0
1

]
which encodes x = 12 and y = 50 and, indeed, 24 − 50 ≤ 2. If we remove the last
letter, then the word encodes x = 12 and y = 18 and is not accepted, which indeed
corresponds to 24− 18 ̸≤ 2.

CHAPTER 9. APPLICATION III: PRESBURGER ARITHMETIC 216

2

1

0

−1 −2

[
0
0

]
,

[
0
1

]

[
0
0

]
,

[
1
1

]
[
1
0

]
,

[
1
1

]
[
0
1

]

[
0
1

]
[
0
0

]
,

[
0
1

] [
0
0

]
,

[
1
1

][
1
0

]

[
1
0

]
,

[
1
1

]

[
0
0

]
,

[
0
1

] [
1
0

]
,

[
1
1

]

[
1
0

]

Figure 9.1: DFA for the formula 2x− y ≤ 2.

−4

−2

−1

0 1

[
0
0

]
,

[
0
1

]
,

[
1
0

]
[
1
1

]
[
0
1

]
,

[
1
0

]
,

[
1
1

]

[
0
0

]

[
0
0

]
[
0
1

]
,

[
1
0

]
,

[
1
1

]

[
1
1

]
[
0
0

]
,

[
0
1

]
,

[
1
0

]
[
0
0

]
,

[
0
1

]
,

[
1
0

]

[
1
1

]

Figure 9.2: DFA for the formula x+ y ≥ 4.

Now, consider the formula x + y ≥ 4. We rewrite it as −x − y ≤ −4 and apply
the algorithm. The resulting DFA is shown in figure 9.2. The initial state is −4.
Transitions leaving −4 are given by

δ(−4, ζ) =
⌊
−4− (−1,−1) · (ζx, ζy)

2

⌋
=

⌊
−4 + ζx + ζy

2

⌋
,

and hence we have

−4 [0,0]−−−→−2, −4 [0,1]−−−→−2, −4 [1,0]−−−→−2 and − 4
[1,1]−−−→−1.

Note that the DFA is not minimal, since states 0 and 1 can be merged.

Partial correctness of AFtoDFA is easily proved by showing that for every q ∈ Z
and every wordw ∈ ({0, 1}n)∗, the state q acceptsw iffw encodes c ∈ Nn satisfying
a · c ≤ q. The proof proceeds by induction of |w|.

For |w| = 0, the result follows immediately from the definition of the final
states and, for |w| > 0, from the fact that δ satisfies (9.1) and from the induction
hypothesis. Details are left to the reader. Termination of AFtoDFA also requires a
proof: in principle, the algorithm could keep generating new states forever. We
show that this is not the case.

CHAPTER 9. APPLICATION III: PRESBURGER ARITHMETIC 217

Lemma 9.3. Let φ = a · x ≤ b and let s =
∑k
i=1 |ai|. All states sj added to the

workset during the execution of AFtoDFA(φ) satisfy − |b| − s ≤ j ≤ |b|+ s.

Proof. The property holds for sb, the first state added to the workset. We show
that, at any point in time, if all the states added to the workset so far satisfy the
property, then so does the next one. Let sj be this next state. There exists a state
sk added to the workset in the past, and ζ ∈ {0, 1}n such that j = ⌊ 12 (k − a · ζ)⌋.
Since, by assumption, sk satisfies the property, we have

− |b| − s ≤ k ≤ |b|+ s

and hence ⌊
− |b| − s− a · ζ

2

⌋
≤ j ≤

⌊
|b|+ s− a · ζ

2

⌋
. (9.2)

Now, we manipulate the right and left sides of (9.2). A little arithmetic yields

− |b| − s ≤ − |b| − 2s

2
≤
⌊
− |b| − s− a · ζ

2

⌋
,⌊

|b|+ s− a · ζ
2

⌋
≤ |b|+ 2s

2
≤ |b|+ s,

which together with (9.2) leads to

− |b| − s ≤ j ≤ |b|+ s.

Example 9.4. We compute all natural solutions of the system of linear inequations

2x − y ≤ 2

x + y ≥ 4,

such that both x and y are multiples of 4. This corresponds to computing a DFA for
the Presburger formula

∃z (x = 4z) ∧ ∃w (y = 4w) ∧ (2x− y ≤ 2) ∧ (x+ y ≥ 4).

The minimal DFA for the first two conjuncts can be computed using projections
and intersections, but the result is also easy to guess: it is the DFA of figure 9.3 (where
a trap state has been omitted). The solutions are then represented by the intersection
of the DFAs depicted in figure 9.1, figure 9.2 (after merging states 0 and 1), and
figure 9.3. The result is shown in figure 9.4. (Some states from which no final state
can be reached are omitted.)

q0 q1 q2

[
0
0

] [
0
0

] [
0
0

]
,

[
0
1

]
,

[
1
0

]
,

[
1
1

]

Figure 9.3: DFA for the formula ∃z (x = 4z) ∧ ∃w (y = 4w).

CHAPTER 9. APPLICATION III: PRESBURGER ARITHMETIC 218

9.2.1 Equations

A slight modification of AFtoDFA directly constructs a DFA for the solutions of a·x =
b, without having to intersect DFAs for a · x ≤ b and −a · x ≤ −b. The states of the
DFA are a trap state qt accepting the empty language, plus integers satisfying:

State q ∈ Z recognizes the encodings of the tuples c ∈ Nn such that a · c = q.
(9.3)

For the trap state qt, we take δ(qt, ζ) = qt for every ζ ∈ {0, 1}n. For a state q ∈ Z
and a letter ζ ∈ {0, 1}n, we determine the target state q′ of transition δ(q, ζ). Given
a tuple c ∈ Nn, property (9.3) requires c ∈ L (q′) iff a · c = q′. As in the case of
inequations, we have

c ∈ L (q′) ⇐⇒ 2c+ ζ ∈ L (q)
⇐⇒ a · (2c+ ζ) = q (by property [9.3] for q)

⇐⇒ a · c = q − a · ζ
2

.

If q− a · ζ is odd, then, since a · c is an integer, the equation a · c = (q− a · ζ)/2
has no solution. So, in order to satisfy property (9.3), we must choose q′ satisfying
L (q′) = ∅, and so we take q′ = qt. If q − a · ζ is even, then we must choose q′
satisfying a · c = q′, and hence we take q′ = (q− a · ζ)/2. Therefore, the transition
function of the DFA is given by

δ(q, ζ) =

{
qt if q = qt or q − a · ζ is odd,
(q − a · ζ)/2 if q − a · ζ is even.

For the final states, recall that a state is final iff it accepts the tuple (0, . . . , 0).
So qt is nonfinal and, by property (9.3), q ∈ Z is final iff a · (0 . . . , 0) = q. Hence,
the only final state is q = 0. The result is algorithm 43. The algorithm does not
construct the trap state.

Example 9.5. Consider the formulas x+y ≤ 4 and x+y = 4. The result of applying
AFtoDFA to x + y ≤ 4 is depicted at the top of figure 9.5. Observe the similarities

2,−4, q0 1,−2, q1 0,−1, q2 −1, 0, q2 −2, 0, q2

0, 0, q2

[
0
0

] [
0
0

] [
1
0

]
,

[
1
1

]
[
1
0

]
[
0
0

]
,

[
0
1

]

[
0
1

] [
1
0

]
,

[
1
1

]
[
0
1

]

[
0
0

] [
1
0

]
,

[
1
1

]

Figure 9.4: Intersection of the DFAs of figures 9.1–9.3. States from which no final
state is reachable have been omitted.

CHAPTER 9. APPLICATION III: PRESBURGER ARITHMETIC 219

Algorithm 43 Conversion of an equation into a DFA recognizing the LSBF encod-
ings of its solutions.
EqtoDFA(φ)
Input: Equation φ = (a · x = b)
Output: DFA A = (Q,Σ, δ, q0, F) such that L (A) = L (φ)

(without trap state)
1 Q, δ, F ← ∅; q0 ← sb
2 W ← {sb}
3 whileW ̸= ∅ do
4 pick sk fromW

5 add sk to Q
6 if k = 0 then add sk to F
7 for all ζ ∈ {0, 1}n do
8 if (k − a · ζ) is even then
9 j ← (k − a · ζ)/2
10 if sj /∈ Q then add sj toW
11 add (sk, ζ, sj) to δ

and differences with the DFA for x + y ≥ 4 illustrated in figure 9.2. The bottom of
figure 9.5 shows the result of applying EqtoDFA to x+y = 4. Note that the transitions
are a subset of the transitions of the DFA for x+ y ≤ 4. This example shows that the
DFA is not necessarily minimal, since state −1 can be deleted.

Partial correctness and termination of EqtoDFA are easily proved following sim-
ilar steps to the case of inequations.

9.3 An NFA for the Solutions over the Integers

We construct an NFA recognizing the encodings of the integer solutions (positive or
negative) of a formula. In order to deal with negative numbers, we use two’s com-
plements. A two’s complement encoding of an integer x ∈ Z is any word a0a1 · · · an
over the alphabet {0, 1}, where n ≥ 1, satisfying

x =

n−1∑
i=0

ai · 2i − an · 2n. (9.4)

We call an the sign bit. For example, 110 encodes 1 + 2− 0 = 3, and 111 encodes
1+2−4 = −1. If the word has length 1, then its only bit is the sign bit; in particular,
the word 0 encodes the number 0, and the word 1 encodes the number −1. The
empty word encodes no number. Observe that all of 110, 1100, 11000, . . . encode
3, and all of 1, 11, 111, . . . encode −1. In general, it is easy to see that all words of
the regular expression a0 . . . an−1ana∗n encode the same number: for an = 0, this
is obvious, and for an = 1, both a0 . . . an−11 and a0 . . . an−111m encode the same
number because

−2m+n + 2m−1+n + . . .+ 2n+1 = 2n.

CHAPTER 9. APPLICATION III: PRESBURGER ARITHMETIC 220

4

2

1

0 −1 −2

[
0
0

]
[
0
1

]
,

[
1
0

]
,

[
1
1

]
[
0
0

]
,

[
0
1

]
,

[
1
0

]
[
1
1

] Σ

[
0
0

]
,

[
0
1

]
,

[
1
0

]
[
1
1

]

[
0
0

]

[
0
1

]
,

[
1
0

]
,

[
1
1

]

[
0
1

]
,

[
1
0

]
,

[
1
1

]

[
0
0

]

4

2

1

0 −1

[
0
0

]
[
1
1

]
[
0
1

]
,

[
1
0

]

[
0
1

]
,

[
1
0

]
[
0
0

]
[
1
1

]

[
1
1

]

[
0
0

]

Figure 9.5: DFAs for the formulas x+ y ≤ 4 (top) and x+ y = 4 (bottom).

This property allows us to encode tuples of numbers using padding. Instead of
padding with 0, we pad with the sign bit.

Example 9.6. The triple (12,−3,−14) is encoded by all the words of the regular
expression 01

0

00
1

11
0

11
0

01
1

01
1

∗

The words 01
0

00
1

11
0

11
0

01
1

 and

01
0

00
1

11
0

11
0

01
1

01
1

01
1

encode the triples (x, y, z) and (x′, y′, z′) given by

x = 0 + 0 + 4 + 8− 0 = 12,

y = 1 + 0 + 4 + 8− 16 = −3,
z = 0 + 2 + 0 + 0− 16 =−14,

x′ = 0 + 0 + 4 + 8 + 0 + 0− 0 = 12,

y′ = 1 + 0 + 4 + 8 + 16 + 32− 64 = −3,
z′ = 0 + 2 + 0 + 0 + 16 + 32− 64 =−14.

CHAPTER 9. APPLICATION III: PRESBURGER ARITHMETIC 221

We construct an NFA (no longer a DFA!) recognizing the integer solutions of
an atomic formula a ·x ≤ b. As usual, we take integers for the states, and the NFA
should satisfy:

State q ∈ Z recognizes the encodings of the tuples c ∈ Zn such that a · c ≤ q.
(9.5)

However, integer states are no longer enough, because no state q ∈ Z can be final:
in the two’s complement encoding, the empty word encodes no number, and so,
since q cannot accept the empty word by property (9.5), q must be nonfinal. But
we need at least one final state, and so we add to the NFA a unique final state qf
without any outgoing transitions, accepting only the empty word.

Given a state q ∈ Z and a letter ζ ∈ {0, 1}n, we determine the targets q′ of the
transitions of the NFA of the form q′ ∈ δ(q, ζ), where ζ ∈ {0, 1}n. (There will be
either one or two such transitions.) A word w ∈ ({0, 1}n)∗ is accepted from some
target state q iff ζw is accepted from q. In the two’s complement encoding, there
are two cases:

(1) If w ̸= ε, then ζw encodes the tuple 2c+ζ ∈ Zn, where c is the tuple encoded
by w. (This follows easily from the definition of two’s complements.)

(2) If w = ε, then ζw encodes the tuple −ζ ∈ Zn, because in this case, ζ is the
sign bit.

In case (1), property (9.5) requires a target state q′ such that a · c ≤ q iff
a · (2c+ ζ) ≤ q′. Thus, we take

q′ =

⌊
q − a · ζ

2

⌋
.

In case (2), property (9.5) only requires a target state q′ if a · (−ζ) ≤ q, and if so,
then it requires q′ to be a final state. So, if q + a · ζ ≥ 0, then we add

q
ζ−→ qf

to the set of transitions; in this case, the automaton has two transitions leaving
state q and labeled by ζ. Summarizing, we define the transition relation by

δ(q, ζ) =

{
{⌊(q − a · ζ)/2⌋ , qf} if q + a · ζ ≥ 0,

{⌊(q − a · ζ)/2⌋} otherwise.

Observe that the NFA contains all the states and transitions of the DFA for the
natural solutions of a · x ≤ b, plus possibly other transitions. All integer states are
now nonfinal; the only final state is qf .

Example 9.7. Figure 9.6 shows the NFA recognizing all integer solutions of 2x−y ≤
2. It has all states and transitions of the DFA for the natural solutions, plus some
more (compare with figure 9.1). The final state qf and the transitions leading to
it are colored. Consider, for instance, state −1. In order to determine the letters
ζ ∈ {0, 1}2 for which qf ∈ δ(−1, ζ), we compute q + a · ζ = −1 + 2ζx − ζy for each
(ζx, ζy) ∈ {0, 1}2 and compare the result to 0. We obtain that the letters leading to
qf are (1, 0) and (1, 1).

CHAPTER 9. APPLICATION III: PRESBURGER ARITHMETIC 222

2

1

0

−1 −2 qf

[
0
0

]
,

[
0
1

]
[
1
0

]
,

[
1
1

]

[
0
1

]

[
0
0

]
,

[
1
1

]

[
1
0

]

[
1
0

]
,

[
1
1

]

[
0
0

]
,

[
0
1

] [
0
0

]
,

[
1
1

]
[
1
0

]
[
0
1

]
[
1
0

]
,

[
1
1

]
[
0
0

]
,

[
0
1

]

Σ

[
1
0

]
,

[
1
1

]

[
0
0

]
,

[
1
0

]
,

[
1
1

]

Σ

[
1
0

]

Figure 9.6: NFA for the integer solutions of 2x− y ≤ 2.

9.3.1 Equations

In order to construct an NFA for the integer solutions of an equation a · x = b, we
can proceed as for inequations. The result is again an NFA containing all states
and transitions of the DFA for the natural solutions computed in section 9.2.1,
plus possibly some more. The automaton has an additional final state qf and a
transition

q
ζ−→ qf iff q + a · ζ = 0.

Graphically, we can also obtain the NFA by starting with the NFA for a · x ≤ b and
then removing all transitions

q
ζ−→ q′ such that q′ ̸= (q − a · ζ)/2,

q
ζ−→ qf such that q + a · ζ ̸= 0.

Example 9.8. The NFA for the integer solutions of 2x−y = 2 is depicted in figure 9.7.
Its transitions are a subset of those of the NFA for 2x− y ≤ 2.

The NFA for the integer solutions of an equation has an interesting property.
Since q + a · ζ = 0 holds iff (q + a · ζ)/2 = 2q/2 = q, the NFA has a transition

q
ζ−→ qf iff it also has a self-loop q ζ−→ q.

For instance, state 1 of the NFA of figure 9.7 has a colored transition labeled by
(0, 1) and a self-loop labeled by (0, 1). Using this property, it is easy to see that the
powerset construction does not cause a blowup in the number of states: it only
adds one extra state for each predecessor of the final state.

Example 9.9. The DFA obtained by applying the powerset construction to the NFA
for 2x − y = 2 is shown in figure 9.8 (the trap state has been omitted). Each of the
three predecessors of qf gets “duplicated.”

CHAPTER 9. APPLICATION III: PRESBURGER ARITHMETIC 223

2

1

0

−1 qf

[
0
0

]

[
1
0

]

[
0
1

]

[
1
1

]
[
1
0

]

[
0
0

] [
1
1

]
[
0
1

]

[
0
1

]

[
1
1

]

[
0
0

]

Figure 9.7: NFA for the integer solutions of 2x− y = 2.

2

1

0 −1

[
0
0

]
[
1
0

]

[
0
1

]

[
1
1

]
[
1
0

]

[
0
0

]

[
1
1

]

[
0
1

]

[
0
1

]
[
1
1

]

[
0
0

] [
1
0

] [
1
1

][
0
1

]

Figure 9.8: Minimal DFA for the integer solutions of 2x− y = 2.

Moreover, the DFA obtained by means of the powerset construction isminimal.
This can be proved by showing that any two states recognize different languages.
If exactly one of the states is final, we are done. If both states are nonfinal, say, k
and k′, then they recognize the solutions of a · x = k and a · x = k′, and so their
languages are not only distinct but even disjoint. If both states are final, then they
are the “duplicates” of two nonfinal states k and k′, and their languages are those
of k and k′, plus the empty word. So, again, their languages are distinct.

9.3.2 Algorithms

The procedures for the construction of the NFAs are described in algorithm 44.
Additions to the previous algorithms are shown in gray.

CHAPTER 9. APPLICATION III: PRESBURGER ARITHMETIC 224

Algorithm 44 Converting equations and inequations into NFAs accepting the
two’s complement encoding of the solution space.
IneqZtoNFA(φ)
Input: φ = (a · x ≤ b) over Z
Output: NFA A = (Q,Σ, δ,Q0, F)

such that L (A) = L (φ)
1 Q, δ, F ← ∅; Q0 ← {sb}
2 W ← {sb}
3 whileW ̸= ∅ do
4 pick sk fromW

5 add sk to Q
6 for all ζ ∈ {0, 1}n do
7 j ← ⌊(k − a · ζ)/2⌋
8 if sj /∈ Q then add sj toW
9 add (sk, ζ, sj) to δ
10 if k + a · ζ ≥ 0 then
11 add qf to Q and F
12 add (sk, ζ, qf) to δ

EqZtoNFA(φ)
Input: φ = (a · x = b) over Z
Output: NFA A = (Q,Σ, δ,Q0, F)

such that L (A) = L (φ)
1 Q, δ, F ← ∅; Q0 ← {sb}
2 W ← {sb}
3 whileW ̸= ∅ do
4 pick sk fromW

5 add sk to Q
6 for all ζ ∈ {0, 1}n do
7 if k − a · ζ is even then
8 if k + a · ζ = 0 then
9 add sk to F
10 j ← (k − a · ζ)/2
11 if sj /∈ Q then add sj toW
12 add (sk, ζ, sj) to δ
13 if k + a · ζ ≥ 0 then
14 add qf to Q and F
15 add (sk, ζ, qf) to δ

9.4 Exercises

 Exercise 133. Express the following expressions in Presburger arithmetic:

(a) x = 0 and y = 1 (if 0 and 1 were not part of the syntax),

(b) z = max(x, y) and z = min(x, y).

 Exercise 134. How can one determine algorithmically whether two formu-
las from Presburger arithmetic have the same solutions?

 Exercise 135. Let r ≥ 0 and n ≥ 1. Give a Presburger formula φ such that
J |= φ iff J (x) ≥ J (y) and J (x) − J (y) ≡ r (mod n). Give an automaton that
accepts the solutions of φ for r = 0 and n = 2.

 Exercise 136. Construct an automaton for the Presburger formula ∃y (x =
3y) using the algorithms of the chapter.

⋆ Exercise 137. Algorithm AFtoDFA yields a DFA that recognizes solutions
of a linear inequation encoded using the LSBF encoding. We may also use the
most-significant-bit-first encoding, for example,

MSBF
([

2
3

])
=

[
0
0

]∗ [
1
1

] [
0
1

]
.

CHAPTER 9. APPLICATION III: PRESBURGER ARITHMETIC 225

(a) Construct a DFA for 2x − y ≤ 2, w.r.t. MSBF encodings, by considering the
reversal of the DFA given in figure 9.1 for LSBF encodings.

(b) Rename the states of the DFA obtained in (a) by their minimal state number,
and explicitly introduce a trap state named 3. Compare values 2x− y and q
for tuples [x, y] that lead to a state q. What do you observe?

(c) Adapt algorithm AFtoDFA to the MSBF encoding.
Hint: Design an infinite automaton obtained from a · c = q and make it finite
based on (b).

⋆ Exercise 138. Suppose it is late and you are craving for chicken nuggets.
Since you are stuck in the subway, you have no idea how hungry you will be when
reaching the restaurant. Since nuggets are only sold in boxes of 6, 9, and 20,
you wonder if it will be possible to buy exactly the amount of nuggets you will
be craving for when arriving. You also wonder whether it is always possible to
buy an exact number of nuggets if one is hungry enough. Luckily, you can answer
these questions since you are quite knowledgeable about Presburger arithmetic
and automata theory.

For every finite set S ⊆ N, we say that number n ∈ N is an S-number if n can be
obtained as a linear combination of elements of S. For example, if S = {6, 9, 20},
then 67 is an S-number since 67 = 3 · 6 + 1 · 9 + 2 · 20, but 25 is not. For some
sets S, there are only finitely many numbers that are not S-numbers. When this is
the case, we say that the largest number that is not an S-number is the Frobenius
number of S. For example, 7 is the Frobenius number of {3, 5}, and S = {2, 4} has
no Frobenius number.

To answer your questions, it suffices to come up with algorithms for Frobenius
numbers and to instantiate them with S = {6, 9, 20}.

(a) Give an algorithm that decides, on input n ∈ N and a finite set S ⊆finite N,
whether n is an S-number.

(b) Give an algorithm that decides, on input S ⊆finite N, whether S has a Frobe-
nius number.

(c) Give an algorithm that computes, on input S ⊆finite N, the Frobenius number
of S (assuming it exists).

(d) Show that S = {6, 9, 20} has a Frobenius number, and identify it.

 Exercise 139. Automata are more expressive than Presburger arithmetic.
They can represent

φ(x, y) = “x is the largest power of 2 that divides y,” and
ψ(x, y) = “x is the largest power of 2 smaller or equal to y,”

while Presburger arithmetic can express neitherφ norψ, since, informally, addition
is not powerful enough to achieve exponentiation. Give automata representing φ
and ψ, where numbers are over N and given by LSBF encodings.

 Exercise 140. Converting a Presburger formula over k variables into a DFA

CHAPTER 9. APPLICATION III: PRESBURGER ARITHMETIC 226

yields an alphabet of 2k letters. In order to mitigate this combinatorial explosion,
one can instead label transitions with boolean expressions. For example, [0, 1] can
be written as ¬x∧y, and the set {[1, 0], [1, 1]} can be written as x. Such expressions
can internally be represented, for example, as binary decision diagrams.

(a) Give DFAs for formulas x < y and y < z, using boolean expressions rather
than letters.

(b) Construct a DFA for x < y < z.

Part II

Automata on Infinite Words

227

Chapter 10
Classes of ω-Automata and

Conversions

Automata on infinite words, called ω-automata in this book, were introduced in
the 1960s as an auxiliary tool for proving the decidability of some problems in
mathematical logic. As the name suggests, they are automata whose input is a
word of infinite length. Therefore, the run of an automaton on a word does not
terminate.

An ω-automatonmakes little sense as a language acceptor that decides whether
a word satisfies a property or not: not many people are willing to wait infinitely
long to get an answer to a question! However, ω-automata still make perfect sense
as a data structure, that is, as a finite representation of a (possibly infinite) set of
infinite words.

There are objects that must be represented as infinite words. The example that
first comes to mind are the real numbers. A second example, more relevant for
applications, are program executions. Programs may have nonterminating exe-
cutions, either because of programming errors or because they are designed this
way. Indeed, many programs whose purpose is to keep a system running, like
routines of operating systems, network infrastructures, communication protocols,
and so on, are designed to be in constant operation. Automata on infinite words
can be used to finitely represent the set of executions of such programs. They are
an important tool for the theory and practice of program verification.

In the second part of this book, starting now, we develop the theory of ω-
automata as a data structure for languages of infinite words. This first chapter
introduces ω-regular expressions, a textual notation for defining languages of infi-
nite words, and then proceeds to present different classes of automata on infinite
words, most of themwith the same expressive power as ω-regular expressions, and
conversion algorithms between them.

10.1 ω-Languages and ω-Regular Expressions

Let Σ be an alphabet. An infinite word, also called an ω-word, is an infinite se-
quence a0a1a2 · · · of letters from Σ. A set L ⊆ Σω of ω-words is an infinitary
language or ω-language over Σ. We denote by Σω the set of all ω-words over Σ.

228

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 229

The concatenation of a finite word u = a0 · · · an and an ω-word v = b0b1 · · ·
is the ω-word uv = a0 · · · anb0b1 · · · , sometimes also denoted u · v. (Observe that
the concatenation of two ω-words is not defined.) We extend this definition to
languages. The concatenation of a language L1 and an ω-language L2 is the ω-
language L1L2 = {w1w2 ∈ Σω : w1 ∈ L1, w2 ∈ L2}, also denoted L1 · L2.

The ω-iteration of a language L ⊆ Σ∗ is the ω-language obtained by concate-
nating infinitely many nonempty words of L. In other words, Lω = {w1w2 · · · :
wi ∈ L \ {ε}}.

Remark 10.1. Note that {ε}ω = ∅ω = ∅. Intuitively, it is impossible to construct an
ω-word by concatenating words of length 0 or words taken out of the empty set.

We extend regular expressions to ω-regular expressions, a formalism to define
ω-languages.

Definition 10.2. The ω-regular expressions over an alphabet Σ are defined by the
following grammar, where r ∈ RE(Σ) is an arbitrary regular expression:

s ::= rω | rs1 | s1 + s2.

Sometimes we write r · s1 instead of rs1. The set of all ω-regular expressions over Σ
is denoted by REω(Σ).

The language Lω (s) ⊆ Σω of an ω-regular expression s ∈ REω(Σ) is defined
inductively as follows:

• Lω (rω) = (L (r))ω,

• Lω (rs1) = L (r) · Lω (s1), and

• Lω (s1 + s2) = Lω (s1) ∪ Lω (s2).

A language L is ω-regular if L = Lω (s) for some ω-regular expression s.

As for regular expressions, we often write s instead of Lω (s) if there is no risk
of confusion.

Example 10.3. Here are some examples of ω-regular expressions and their lan-
guages.

• (a+ b)ω denotes the language of all ω-words over {a, b}.

• (a + b)∗bω denotes the language of all ω-words over {a, b} containing only
finitely many a’s.

• (a∗ab + b∗ba)ω denotes the language of all ω-words over {a, b} containing in-
finitely many as and infinitely many bs; an even shorter expression for this
language is ((a+ b)∗ab)ω.

• ((b+ c)∗a(a+ c)∗b(b+ a)∗c)
ω denotes the language of allω-words over {a, b, c}

containing infinitely many as, infinitely many bs, and infinitely many cs. In-
deed, this is the set of all ω-words w satisfying: w contains at least one a; after
every occurrence of a, there is a later occurrence of b; after every occurrence of
b, there is a later occurrence of c; and, after every occurrence of c, there is a
later occurrence of a. This is precisely the language denoted by the ω-regular
expression.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 230

Remark 10.4.

• Since any word w ∈ Σ∗ is also a regular expression, wω is an ω-regular ex-
pression. We have Lω (εω) = ∅. If w ̸= ε, then Lω (wω) = {www · · · }, and
so Lω (wω) is a language containing a single ω-word. Abusing notation, this
word is also denoted wω. Compare with L (a∗), which is a language containing
not one but infinitely many words.

• Recall that the symbol ∅ is part of the syntax of regular expressions and denotes
the language of finite words containing no elements. The symbol is necessary,
because a regular expression r that does not contain any occurrence of ∅ satisfies
L (r) ̸= ∅, and so without the symbol ∅, no regular expression would denote
the empty language. This is no longer the case for ω-regular expressions. The
symbol ∅ is not needed, because Lω (εω) = ∅.

10.2 ω-Automata and the Quest for an ω-Trinity

In chapter 1, we introduced NFAs and DFAs, plus auxiliary automata classes. In
the realm of ω-words, we need to introduce different types of ω-automata, each of
which contains nondeterministic and deterministic automata. Let us introduce a
precise definition of ω-automaton and the idea of an automata type.

Semi-automata and runs. A (nondeterministic) semi-automaton is a tuple S =
(Q,Σ, δ,Q0), where Q, Σ, δ, and Q0 are defined as for NFAs. A semi-automaton
S is deterministic if Q0 is a singleton set, and δ(q, a) is also a singleton set for
every q ∈ Q and a ∈ Σ. Abusing language, we denote a deterministic semi-
automaton by S = (Q,Σ, δ, q0) and write δ(q, a) = q′ instead of δ(q, a) = {q′}. A
run of a semi-automaton S on an ω-word a0a1a2 · · · ∈ Σω is an infinite sequence
ρ = q0

a0−−→ q1
a1−−→· · · such that q0 ∈ Q0, qi ∈ Q and qi+1 ∈ δ(qi, ai) for every

i ∈ N.

Acceptance conditions. Intuitively, runs on ω-words never terminate, and so we
cannot define whether a run is accepting in terms of the state it leads to. Instead,
we define acceptance in terms of the states visited by the run infinitely often. An
acceptance condition divides the subsets of Q into accepting and nonaccepting,
and a run is accepting if the set of states it visits infinitely often is accepting.
Formally, given a run ρ = q0

a0−−→ q1
a1−−→· · · , let

inf(ρ) = {q ∈ Q : qi = q for infinitely many i ∈ N}.

An acceptance condition is a mapping α : 2Q → {0, 1}. A run ρ is accepting or
satisfies the acceptance condition if α(inf(ρ)) = 1.

ω-automata. A (nondeterministic) ω-automaton is a pair A = (S, α), where S is
a semi-automaton, and α is an acceptance condition. We say thatA is deterministic
if S is deterministic. An ω-automaton accepts an ω-word w ∈ Σω if it has an
accepting run on w. The language recognized by an ω-automaton A is the set
Lω (A) = {w ∈ Σω : w is accepted byA}. We sometimes writeA = (Q,Σ, δ,Q0, α)
instead of A = (S, α).

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 231

q0 q1

a

b

b a

Figure 10.1: Example of a semi-automaton.

Example 10.5. Consider the deterministic semi-automaton S of figure 10.1 and the
acceptance condition α defined by α(Q′) = 1 iff q1 ∈ Q′. With this acceptance
condition, a run ρ is accepting iff q1 ∈ inf(ρ). In words, ρ is accepting iff it visits
q1 infinitely often. (Observe that there is no condition on q0. If ρ visits q1 infinitely
often, then it is accepting, regardless of whether it visits q0 finitely or infinitely often.)

The language recognized by the ω-automaton A = (S, α) is the set of all words
over {a, b} containing infinitely many occurrences of a. Indeed, since all transitions
labeled by a lead to q1, the run of A on an ω-word containing infinitely many as visits
q1 infinitely often, and so the word is accepted. Further, since every transition leading
to q1 is labeled by a, every accepting run reads infinitely many as.

Types of ω-automata. Types of ω-automata differ on the types of their accep-
tance conditions. For example, in the next sections, we will examine Büchi condi-
tions. An acceptance condition α is a Büchi condition if there exists a set F ⊆ Q of
states such that α(Q′) = 1 iff Q′ ∩ F ̸= ∅. In words, a run is accepting if it visits
at least one state of F infinitely often.

Example 10.6. Consider again the semi-automaton of example 10.5. The acceptance
condition α defined by α(Q′) = 1 iff q1 ∈ Q′ is a Büchi condition with F = {q1}.
The acceptance condition β given by β(Q′) = 1 iff Q′ = {q1} is not a Büchi condition
(i.e., there is no F ⊆ {q0, q1} such that β(Q′) = 1 iff Q′ ∩ F ̸= ∅). In particular,
the language of (S, β) consists of all words containing finitely many bs, but no Büchi
condition recognizes the same language.

Representing acceptance conditions. Observe that a Büchi condition is com-
pletely determined by the set F . Abusing language, we speak of “the Büchi con-
dition F ” as an abbreviation of “the Büchi condition induced by F .” We also call a
tuple A = (Q,Σ, δ,Q0, F) a Büchi automaton, meaning that A is the automaton
(S, α) where S = (Q,Σ, δ,Q0), and α is the Büchi condition induced by F . We
proceed in the same way for the forthcoming automata types.

10.2.1 The Quest for an ω-Trinity

In chapter 1, we introduced a trinity of formalisms: regular expressions, DFAs,
and NFAs. As depicted in figure 10.2, we proved that all three express exactly the
regular languages, and we described conversion algorithms between them.

In this section, we search for a corresponding ω-trinity for ω-regular languages.
Sections 10.2.2 and 10.2.3 examine two simple types of ω-automata, called Büchi
and co-Büchi automata, and show that they do not form anω-trinity. Section 10.2.4
introduces a more sophisticated automata type, Rabin automata, which does.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 232

RE

Regular
languages

NFA DFA

Figure 10.2: Trinity of regular languages. An arrow fromX to Y means “for every
X there is an equivalent Y .”

10.2.2 Büchi Automata

Büchi automata were introduced by J. R. Büchi in the 1960s.

Definition 10.7. Let S = (Q,Σ, δ,Q0) be a semi-automaton. An acceptance condi-
tion α : 2Q → {0, 1} is a Büchi condition if there exists a set F ⊆ Q of accepting
states such that α(Q′) = 1 iff Q′ ∩ F ̸= ∅.

A nondeterministic Büchi automaton (NBA) is a pair A = (S, F), where F ⊆ Q
is a Büchi condition. We refer to a deterministic NBA as a DBA.

Observe that we maintain the symbol F to denote the set of accepting states.
We also maintain the same graphical representation: accepting states are drawn
as double circles. Looking only at the graphical representation, one cannot tell
whether an automaton is an NFA or an NBA, but the context will make it clear.

Example 10.8. The automaton of example 10.5 is a Büchi automaton with {q1}
as set of accepting states. Figure 10.3 depicts four other Büchi automata over the
alphabet {a, b, c}.

The top-left automaton, which is nondeterministic, recognizes the ω-words con-
taining a finite number of as. Intuitively, the automaton can always stay in the initial
state until it reads the last a, guess (correctly) that it is the last one, and move to the
state on the right immediately after.

The top-right automaton recognizes the ω-words in which, for each occurrence of
a, there is a later occurrence of b. So, for instance, it accepts (ab)ω, cω, or (bc)ω but
not acω or ab(ac)ω.

The bottom-left automaton recognizes the ω-words that contain finitely many
occurrences of a (possibly zero) or infinitely many occurrences of a and infinitely
many occurrences of b.

Finally, the bottom-right automaton recognizes the ω-words in which, between
each occurrence of a and the next occurrence of c, there is at most one occurrence of
b; more precisely, for any two numbers i < j, if the letter at position i is an a and the
first occurrence of c after i is at position j, then there is at most one number i < k < j
such that the letter at position k is b.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 233

b, c

a, b, c b, c

a

b

b, c a, c

b

a, c

b, c

a, b, c b

b, c

a

c

c

b

b, c a a

Figure 10.3: Four Büchi automata.

10.2.2.1 Equivalence of NBAs and ω-Regular Expressions

We show that ω-regular expressions and nondeterministic Büchi automata have
the same expressive power. We present algorithms for converting an ω-regular
expression into an equivalent NBA and vice versa.

From ω-regular expressions to NBAs. We give a procedure that transforms an
ω-regular expression s into an equivalent NBA. Using the results of chapter 1, we
can transform a regular expression r into an NFA in three steps:

1. Transform r into an equivalent regular expression r̂ such that either r̂ = ∅
or r̂ does not contain any occurrence of the symbol ∅. (See the first part of
section 1.4.3.) If r̂ = ∅, then output a one-state NFA with no final states and
no transitions. Otherwise, move to the next step.

2. Transform r̂ into an equivalent NFA-ε. The resulting NFA-ε has a unique
initial state; a unique final state, different from the initial state; no transition
leading to the initial state; and no transition leaving the final state. (See the
second part of section 1.4.3.)

3. Transform the NFA-ε into an equivalent NFA. (See algorithm 2 of section 1.4.2.)

The procedure for translating an ω-regular expression s into an NBA is very similar.

1. Transform s into an equivalent ω-regular expression ŝ that does not contain
any occurrence of the symbol ∅.

2. Transform ŝ into an equivalent NBA-ε. An NBA-ε is a tuple A = (Q,Σ, δ,

Q0, F), where δ : Q × (Σ ∪ {ε}) → P(Q). A run ρ = q0
a0−−→ q1

a1−−→· · · of
A is accepting if inf(ρ) ∩ F ̸= ∅ and ai ∈ Σ for infinitely many i ∈ N (this
ensures that accepting runs only accept ω-words). In particular, any NBA-ε
containing only ε-transitions recognizes the empty language.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 234

3. Transform the NBA-ε into an equivalent NBA, using the same algorithm as
for NFA-ε.

We describe steps 1 and 2.

Step 1. Given a regular expression r, let r̂ denote the equivalent expression men-
tioned above, satisfying that either r̂ = ∅ or r̂ does not contain any occurrence of
∅. We define ŝ inductively as follows:

• Case s = rω. If r̂ = ∅, then ŝ = εω; otherwise, ŝ = (r̂)ω.

• Case s = rs1. If r̂ = ∅, then ŝ = εω; otherwise, ŝ = r̂ ŝ1.

• Case s = s1 + s2. We take ŝ = ŝ1 + ŝ2.

Step 2. We translate ŝ into an equivalent NBA-ε Aŝ with a single initial state
and no transitions leading to it. Since ŝ contains no occurrence of ∅, the algo-
rithm of section 1.4.3 transforms every regular expression r appearing in ŝ into an
equivalent NFA-ε Ar with a unique initial state q0; a unique final state qf , different
from q0; no transition leading to q0; and no transition leaving qf . We proceed by
induction on the structure of ŝ.

• If ŝ = rω, then let Aŝ be the result of adding to Ar a transition (qf , a, q) for
every transition of the form (q0, a, q) with a ∈ Σ ∪ {ε}. (See the diagram at
the top of figure 10.4.)

• If ŝ = rs, then let Aŝ be the result of merging the unique final state of Ar
and the initial state of As (which is unique by induction hypothesis) and
making qf non-accepting. (See the diagram in the middle of figure 10.4.)

• If ŝ = s1 + s2, then let Aŝ be the result of “putting As1 and As2 side by
side”—that is, taking the union of their states, transitions, and initial and
accepting states, assuming without loss of generality that they are disjoint,
and merging their initial states—which, by induction hypothesis, have no
incoming transitions. (See the diagram at the bottom of figure 10.4.)

The complexity is the same as for regular expressions. Indeed, the number of
states of the NBA-ε is linear in the length of the original ω-regular expression, and
then the same algorithm as for NFAs is applied.

From NBAs to ω-regular expressions. Let A = (Q,Σ, δ,Q0, F) be an NBA. We
construct an ω-regular expression sA such that Lω (sA) = Lω (A).

Given states q, q′ ∈ Q, we are interested in a regular expression rq,q′ for the
finite words read by finite runs that start at state q and, after leaving q, visit q′
exactly once; more precisely, a finite word w = a0 a1 . . . ak−1 belongs to L (rq,q′)
if there is a run q0

a0−−→ q1
a1−−→ q2 · · · qk−1

ak−1−−−−→ qk such that q0 = q, qk = q′, and
qi ̸= q′ for every 1 ≤ i ≤ k − 1. We can easily compute rq,q′ as follows: first,
redirect all transitions of A leading to state q′ to a new state q′′; second, make q
the unique initial state and q′′ the unique final state; and third, apply NFA-εtoRE
(algorithm 3 of chapter 1) to the resulting automaton, interpreting it as an NFA.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 235

NFA-ε for r NBA-ε for rω

a1

an
⇝

a1

an

NFA-ε for r

NBA-ε for s

NBA-ε for r · s

⇝

NBA-ε for s1

NBA-ε for s2 NBA-ε for s1 + s2

⇝

Figure 10.4: From ω-regular expressions to Büchi automata.

We use the regular expressions rq,q′ to compute the ω-regular expression sA.
For each initial state q0 ∈ Q0 and each accepting state q ∈ F , let Lq0,q ⊆ Lω (A)
be the set of ω-words accepted by runs of A that start at q0 and visit q infinitely
often. We have Lω (A) =

∪
q0∈Q0,q∈F Lq0,q. Every ω-word w ∈ Lq0,q can be split

into an infinite sequence w0w1w2 · · · of finite nonempty words, where w0 is the
word read by A until it visits q for the first time after leaving q0, and, for every
i > 0, wi is the word read by the automaton between the ith and the (i + 1)th
visits to q. It follows that w0 ∈ L (rq0,q), and wi ∈ L (rq,q) for every i > 0. Thus,
we have Lq0,q = Lω (rq0,q (rq,q)

ω
), and hence we can take

sA :=
∑

q0∈Q0,q∈F
rq0,q (rq,q)

ω
.

Example 10.9. Consider the NBA of figure 10.5.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 236

We compute sA := r0,1(r1,1)
ω + r0,2(r2,2)

ω. Let us abbreviate (a + b + c) to Σ.
Applying NFAtoRE and simplifying, we get

r0,1 = Σ∗b r0,2 =
(
Σ+ bb∗(a+ c)

)∗
(b+ c)

r1,1 = b+ (a+ c)Σ∗b r2,2 = (b+ c)

Substitution in the expression for sA and simplification yields

sA = Σ∗b(b+ (a+ c)Σ∗b)ω +
(
Σ+ bb∗(a+ c)

)∗
(b+ c)(b+ c)ω

≡ (Σ∗b)ω +Σ∗(b+ c)ω.

10.2.2.2 Nonequivalence of NBAs and DBAs

Unfortunately, deterministic Büchi automata do not recognize all ω-regular lan-
guages, and so they do not have the same expressive power as NBAs. We show
that the language of ω-words over {a, b} containing finitely many occurrences of
a, which is recognized by a two-state NBA that “guesses” the last occurrence of a,
is not recognized by any DBA.

Proposition 10.10. The language Lω ((a+ b)∗bω) is not recognized by any DBA.

Proof. Let L = Lω ((a+ b)∗bω). We prove that every DBA accepting all words of L
must also accept words that do not belong to L. Let A = (Q, {a, b}, q0, δ, F) be an
arbitrary DBA such that L ⊆ Lω (A). Define δ̂ : Q × {a, b}∗ → Q by δ̂(q, ε) = q

and δ̂(q, wa) = δ(δ̂(q, w), a). That is, δ̂(q, w) denotes the unique state reached in
A by reading w from state q. Consider the ω-word w0 = bω. Since w0 ∈ L and
L ⊆ Lω (A), the run of A on w0 is accepting, and so δ̂(q0, u0) ∈ F for some finite
prefix u0 of w0. Let w1 = u0ab

ω. We have w1 ∈ L, and so by L ⊆ Lω (A), the
run of A on w1 is accepting, which implies δ̂(q0, u0au1) ∈ F for some finite prefix
u0au1 ofw1. In a similar fashion, we continue constructing finite words ui such that
δ̂(q0, u0au1a · · · aui) ∈ F . Since Q is finite, there are indices 0 ≤ i < j such that
δ̂(q0, u0a · · ·ui) = δ̂(q0, u0a · · ·uia · · ·uj). It follows thatA has an accepting run on
the ω-word

u0a · · ·ui(aui+1 · · · auj)ω.
Since a occurs infinitely often in this ω-word, it does not belong to L. Thus, L ̸=
Lω (A), and we are done.

0 1

2

b

a, c

b, c

a, b, c b

b, c

Figure 10.5: A Büchi automaton.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 237

Since DBA are strictly less expressive than NBA, Büchi automata do not form an
ω-trinity. Indeed, as depicted in figure 10.6, all arrows leading to DBA are missing.
So, the quest for an ω-trinity goes on.

10.2.3 Co-Büchi automata

Recall that a run of a Büchi automaton is accepting if it visits a distinguished set
F of states infinitely often. Intuitively, visiting a state of F is a good thing for
you, like, say, going for a jog, and to be accepted you have to go for a jog again
and again. We introduce co-Büchi automata, where a run is accepting if it visits
the set F only finitely often. The intuition is now the opposite; visiting a state of
F is a bad thing for you, like smoking a cigarette, and to be accepted, you must
eventually quit.

Definition 10.11. Let S = (Q,Σ, δ,Q0) be a semi-automaton. An acceptance con-
dition α : 2Q → {0, 1} is a co-Büchi condition if there exists a set F ⊆ Q of states
such that α(Q′) = 1 iff Q′ ∩ F = ∅. Abusing language, we speak of the co-Büchi
condition F .

A nondeterministic co-Büchi automaton (NCA) is a pair A = (S, F), where
F ⊆ Q is a co-Büchi acceptance condition. We refer to a deterministic NCA as a DCA.

Observe that a run of an NCA is accepting iff it is not accepting as run of an
NBA with the same set F . (This is the reason for the name “co-Büchi.”) Intuitively,
if new research would prove that jogging is actually bad for you, then the runs that
were accepting before would become nonaccepting and vice versa. In particular,
the language recognized by a DCA A = (S, F) is the complement of the language
recognized by the DBA A = (S, F). (Notice that this holds only for deterministic
automata!)

Example 10.12. Consider the automata on the top of figure 10.3, but this time as
co-Büchi automata. A run of the NCA on the top left is accepting iff it stays in the left
state forever. So, the NCA recognizes all ω-words.

A run of the DCA on the top right is accepting iff it eventually stays in the right
state forever. So, the automaton recognizes the set of all ω-words in which there is

ω-RE

ω-Regular
languages

NBA DBA

Figure 10.6: Relations between ω-regular expressions, NBAs, and DBAs. An arrow
from X to Y means “for every X there is an equivalent Y .”

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 238

an occurrence of a with no later occurrence of b. This is indeed the complement of its
language as a DBA—as should be the case, because the automaton is deterministic.

10.2.3.1 Equivalence of NCAs and DCAs

We show that co-Büchi automata can be determinized, i.e., that for every NCA,
there is an equivalent DCA. Recall that for NFAs, this is achieved by means of
the powerset construction (i.e., algorithm 1 of chapter 1). The following example
shows that this approach no longer works.

Example 10.13. Consider the NCA depicted on the left of figure 10.7. It recognizes
the set of all words containing finitely many occurrences of a.

The powerset construction yields the deterministic semi-automaton shown on the
right of figure 10.7. We claim that no accepting condition on this semi-automaton, of
any type, recognizes the same language. Consider the ω-wordsw = aω andw′ = abω,
and let ρ, ρ′ be the runs on w and w′, respectively. Since inf(ρ) and inf(ρ′) are equal
(both are the singleton set containing only the state {q0, q1}), no acceptance condition
can make ρ accepting and ρ′ nonaccepting.

In the rest of the section, we show how to “enhance” the powerset construction.
We fix an NCA A = (Q,Σ, δ,Q0, F) with n states and construct an equivalent DCA
B in three steps:

(a) We define a mapping dag that assigns to each w ∈ Σω a directed acyclic
graph (dag for short), which we denote dag(w).

(b) We define the breakpoints of a dag and prove that an ω-word w is accepted
by A iff dag(w) contains only finitely many breakpoints.

(c) We construct a DCAB that acceptsw iff dag(w) contains finitely many break-
points.

We use the NCA of figure 10.8 as running example.

The mapping dag. Intuitively, dag(w) is the result of “bundling together” all
runs of A on the ω-word w. Figure 10.9 shows the initial parts of dag(abaω) and
dag((ab)ω).

Formally, the directed acyclic graph dag(w) for the ω-word w = a0a1 · · · is a
labeled directed graph whose nodes are elements of Q × N and whose edges are
labeled by letters of Σ. The graph is inductively defined as follows:

q0 q1 {q0} {q0, q1}

a, b

a

b

a

b a, b

Figure 10.7: An NCA (left) and the DCA arising from the powerset construction
(right).

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 239

q r

a

a

b

Figure 10.8: Running example for the determinization procedure.

q, 0 q, 1

r, 1

q, 2 q, 3

r, 3

q, 4

r, 4

a

a

a

a

a

ab

q, 1

r, 1

q, 2 q, 3

r, 3

q, 4q, 0
a

a

a

ab b

Figure 10.9: Fragments of dag(abaω) and dag((ab)ω). For clarity, we write q, i
instead of ⟨q, i⟩.

• dag(w) contains a node ⟨q, 0⟩ for every initial state q ∈ Q0;

• if dag(w) contains a node ⟨q, i⟩ and q′ ∈ δ(q, ai), then dag(w) also contains
a node ⟨q′, i+ 1⟩ and an edge ⟨q, i⟩ ai−−→⟨q′, i+ 1⟩; and

• dag(w) contains no other nodes or edges.

Clearly, q0
σ1−−→ q1

σ2−−→· · · is a run of A iff ⟨q0, 0⟩
σ1−−→⟨q1, 1⟩

σ2−−→· · · is an infi-
nite path of dag(w). So A accepts w iff some infinite path of dag(w) visits states
of F only finitely often.

We partition the nodes of dag(w) into levels, with the ith level containing all
nodes of dag(w) of the form ⟨q, i⟩. One could be tempted to think that the ac-
ceptance condition “some infinite path of dag(w) visits states of F only finitely
often” is equivalent to “only finitely many levels of dag(w) contain states of F ,”
but dag(abaω) shows this is false: even though all paths of dag(abaω) visit states of
F only finitely often, infinitely many levels (in fact, all levels i ≥ 3) contain states
of F . For this reason, we introduce the set of breakpoint levels of the graph dag(w),
inductively defined as follows:

• The 0th level of dag(w) is a breakpoint.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 240

• If level ℓ is a breakpoint, then the next nonempty level ℓ′ > ℓ such that every
path between nodes of ℓ and ℓ′ visits a state of F at level ℓ + 1, or at level
ℓ+ 2, …, or at level ℓ′ is also a breakpoint.

We claim that “some infinite path of dag(w) visits states of F only finitely often”
is equivalent to “the set of breakpoint levels of dag(w) is finite.” The argument uses
a simple version of König’s lemma:

Lemma 10.14. Let v0 be a node of a dag G, and let Reach(v0) be the set of nodes
of G reachable from v0. If Reach(v0) is infinite but every node of Reach(v0) has only
finitely many successors, then G has an infinite path starting at v0.

Proof. For every i ≥ 1, let vi be a successor of vi−1 such that Reach(vi) is infinite.
The conditions of the lemma guarantee that vi exists. Therefore, v0v1v2 · · · is an
infinite path.

Let us now prove the claim. If the set of breakpoints is infinite, then in particular,
dag(w) has infinitely many nodes and, by lemma 10.14, contains at least an infi-
nite path. Moreover, by the definition of a breakpoint, this path visits states of F
infinitely often. If the set of breakpoint levels is finite, let i be the last breakpoint.
If dag(w) is finite, then there are no infinite paths, and we are done. If dag(w) is
infinite, then for every j > i, there is a path πj from level i to level j that does not
visit any state of F . The paths {πj}j>i, put together, form an acyclic subgraph of
dag(w), in which every node has only finitely many successors. By lemma 10.14,
this subgraph contains an infinite path that never visits any state of F , and the
claim is proved.

If we were able to tell that a level is a breakpoint by just examining it, without
inspecting the previous levels, we could construct a DCA as follows: take the set of
all possible levels as states, the possible transitions between levels as transitions,
and the breakpoints as accepting states. The run of this DCA on an ω-word w
would be an encoding of dag(w), and it would be accepting iff dag(w) contains
only finitely many breakpoints, as required by the co-Büchi acceptance condition.
However, since levels are just sets of states, this corresponds to applying the pow-
erset construction used in chapter 1 to determinize NFAs, just with a different
acceptance condition, and we have already seen in example 10.13 that such an
approach cannot work. Intuitively, whether a level is a breakpoint or not cannot
be decided with only the information contained in the level.

The solution is to put additional information in the states. We take for the
states of the DCA pairs [P,O], where O ⊆ P ⊆ Q, with the following intended
meaning: P is the set of states of a level, and q ∈ O iff q is the endpoint of some
path starting at the last breakpoint that has not yet visited any state of F . We call
O the set of owing states—states for which some path “owes” a visit to F . The
breakpoints correspond to the state [P,O] such that O = ∅. To ensure that O has
this intended meaning, we define the DCA B = (Q̃,Σ, δ̃, q̃0, F̃) as follows:

• The initial state q̃0 is the pair [Q0, ∅]. (Intuitively, there is no breakpoint
before level 0, and so no paths from that breakpoint to level 0.)

• The transition relation is given by δ̃([P,O], a) = [P ′, O′], where P ′ = δ(P, a),
and

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 241

– if O ̸= ∅, then O′ = δ(O, a) \ F , and
– if O = ∅ (i.e., if the current level is a breakpoint, and the automaton

must start searching for the next one), then O′ = δ(P, a)\F ; in other
words, all states of the next level that do not belong to F become
owing.

• The states of F̃ are those at which a breakpoint is reached because there are
no owing states, that is, [P,O] ∈ F̃ iff O = ∅.

With this definition, a run is accepting iff it contains finitely many breakpoints.
The procedure for the construction is formalized in algorithm 45.

Algorithm 45 Algorithm to convert an NCA into a DCA.
NCAtoDCA(A)
Input: NCA A = (Q,Σ, δ,Q0, F)
Output: DCA B = (Q̃,Σ, δ̃, q̃0, F̃) with Lω (A) = Lω (B)

1 Q̃, δ̃, F̃ ← ∅; q̃0 ← [Q0, ∅]
2 W ← {q̃0}
3 whileW ̸= ∅ do
4 pick [P,O] fromW ; add [P,O] to Q̃
5 if O = ∅ then add [P,O] to F̃
6 for all a ∈ Σ do
7 P ′ = δ(P, a)

8 if O ̸= ∅ then O′ ← δ(O, a) \ F else O′ ← P ′ \ F
9 add ([P,O], a, [P ′, O′]) to δ̃
10 if [P ′, O′] /∈ Q̃ then add [P ′, Q′] toW

Figure 10.10 shows our running example at the top and the result of applying
NCAtoDCA on the bottom left. The DCA on the bottom right is the result of apply-
ing the powerset construction, which is not equivalent to the NCA at the top. In
particular, it accepts bω, which is rejected by the NCA, because it has no run on it,
and it rejects aω, which is accepted by the NCA.

For the complexity, observe that the number of states of the DCA is bounded
by the number of pairs [P,O] such that O ⊆ P ⊆ Q. For every state q ∈ Q, there
are three mutually exclusive possibilities: q ∈ O, q ∈ P \O, and q ∈ Q \ P . Thus,
if A has n states, then B has at most 3n states.

10.2.3.2 Nonequivalence of NCAs and ω-Regular Expressions

The following proposition shows that, unfortunately, co-Büchi automata do not
recognize all ω-regular languages.1

Proposition 10.15. The language denoted by (b∗a)ω is not recognized by any NCA.
1Every language recognized by a co-Büchi automaton is ω-regular, a fact that will be proved in the

next section for a more general type of ω-automata. Together with proposition 10.15, we obtain that
NCAs are strictly less expressive than NBAs, a counterintuitive fact.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 242

q r

a

a

b

{q}, ∅ {q, r}, {q}

∅, ∅

a

b

b

a

a, b

{q} {q, r}

∅

a

b

b

a

a, b

Figure 10.10: NCA of figure 10.8 (top), output of NCAtoDCA (bottom left), and
result of applying the powerset construction (bottom right).

Proof. Assume some NCA recognizes L = Lω ((b∗a)ω). Since every NCA can be
determinized, some DCA A recognizes L. Look at A as a DBA. The DBA A recog-
nizes the complement of L: indeed, a word w is recognized by the DBA A iff the
run of A on w visits states of F infinitely often iff w is not recognized by the DCA
A. But the complement of L is Lω ((a+ b)∗bω), and so by proposition 10.10, it is
not recognized by any DBA. We have reached a contradiction, which proves the
claim.

So, the trinity diagram for co-Büchi automata, depicted in figure 10.11, is
missing the arrows from the ω-regular expressions and the ω-regular languages
to NCAs and DCAs. The quest for an ω-trinity goes on.

10.2.4 Rabin Automata

The Büchi and co-Büchi conditions require that a distinguished set of states is
visited infinitely and only finitely often, respectively. Rabin conditions generalize
both.

Definition 10.16. Let S = (Q,Σ, δ,Q0) be a semi-automaton. A Rabin pair is a pair
⟨F,G⟩ of sets of states (i.e., F,G ⊆ Q). An acceptance condition α : 2Q → {0, 1} is
a Rabin condition if there exists a set R of Rabin pairs such that α(Q′) = 1 iff
Q′ ∩F ̸= ∅ and Q′ ∩G = ∅ for some ⟨F,G⟩ ∈ R. Abusing language, we speak of the
Rabin condition R.

A nondeterministic Rabin automaton (NRA) is a pair A = (S,R), where R ⊆
2Q × 2Q is a Rabin acceptance condition.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 243

ω-RE

ω-regular
languages

NCA DCA

Figure 10.11: Relations between ω-regular expressions, NCAs, and DCAs. An ar-
row from X to Y means “for every X there is an equivalent Y .”

In words, a run of a Rabin automaton with acceptance conditionR is accepting
if it visits F infinitely often and G finitely often for some Rabin pair ⟨F,G⟩ ∈ R.
Given a semi-automaton with Q as set of states, the following holds:

• A Büchi condition F is equivalent to the Rabin acceptance condition R =
{⟨F, ∅⟩}. Indeed, the condition requiring that states of the empty set are
visited finitely often is vacuously true.

• A co-Büchi acceptance condition G is equivalent to the Rabin acceptance
condition R = {⟨Q,G⟩}. Indeed, the condition that Q is visited infinitely
often is vacuously true, since runs are infinite sequences of states of Q.

10.2.4.1 Equivalence of NRAs and ω-Regular Expressions

We show that for every NBA, there is an equivalent NRA and vice versa. Since
NBAs are as expressive as ω-regular expressions, it follows that NRAs and ω-regular
expressions have the same expressive power.

NBA→ NRA. As argued above, given an NBAA = (Q,Σ, δ,Q0, F), then the NRA
B = (Q,Σ, δ,Q0, {⟨F, ∅⟩}) satisfies Lω (A) = Lω (B).

NRA→ NBA. Let A = (S,R) be an NRA. We consider first the case in which R
contains a single Rabin pair ⟨F,G⟩ and construct an equivalent NBA B. Since an
accepting run ρ ofA satisfies inf(ρ)∩G = ∅, from some point on, ρ only visits states
of Q \ G. So, ρ consists of an initial finite part, say ρ0, that may visit all states,
and an infinite part, say ρ1, that only visits states of Q \G. Further, since ρ visits
F infinitely often, we can assume that the last state of ρ0 belongs to (Q \G) ∩ F .
Thus, we construct the NBA B as follows:

• Put two copies S0 and S1 of S “side by side.” The first copy S0 is a full copy,
containing all states and transitions ofA, and S1 is a partial copy, containing
only the states ofQ\G and the transitions between them (see figure 10.12).
Let q0 denote the copy of state q ∈ Q in S0 and q1 the copy of state q ∈ Q\G
in S1.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 244

Q \G

G

S

q0

r0

S0

q1

r1

S1

Figure 10.12: Sketch of the conversion NRA → NBA, where the given NRA has
only one Rabin pair ⟨F,G⟩. Observe that q0 and r0 belong to F , but they are not
accepting states of the resulting NBA.

• Add transitions that “jump” from S0 to S1. For every transition q0 a−→ r0 of
S0 such that q ∈ (Q \ G) ∩ F and r ∈ Q \ G, add a transition q0

a−→ r1

that “jumps” to r1, the “twin state” of r0 in S1 (dashed colored transitions
in figure 10.12). Intuitively, B simulates ρ by executing the finite prefix ρ0
in A0, then jumping to S1, and executing ρ1 there.

• Choose the Büchi condition of B as FB = {q1 : q ∈ (Q \G) ∩ F} (recall that
F is the first component of the Rabin pair of A). This choice guarantees that
an accepting run of B eventually “jumps” to S1, leaving S0 forever, and thus
ensuring that states ofG are visited only finitely often and that the run visits
F infinitely often after the jump.

Now, consider the general case in which R = {⟨F1, G1⟩, . . . , ⟨Fm, Gm⟩}. We
put m + 1 copies of S side by side. The first copy S0 is a full copy, containing all
states and transitions of A, and Si for 1 ≤ i ≤ m is a partial copy, containing only
the states of Q \Gi and the transitions between them. The set of accepting states
is FB =

∪m
i=1{qi : q ∈ Fi}. For each Si, we define jump transitions from S0 to Si

as before. Since the copies S1, . . . , Sm are disjoint, a run of B is accepting iff it
eventually jumps from S0 to Si for some 1 ≤ i ≤ m and then visits the states of
Fi infinitely often. It follows that Lω (A) = Lω (B).

Example 10.17. Consider the Rabin automaton A = (S,R), where the semi-auto-
maton S is depicted in figure 10.13, and R = {⟨a, b⟩, ⟨b,a⟩}, with a := {qa} and
b := {qb}.

The accepting runs are those visiting a infinitely often and b finitely often or vice
versa. The procedure above converts A into the NBA of figure 10.14.
The NBA consists of a full copy S0 of S, plus two partial copies S1 and S2, having
(copies of) Q \ b = {qa, qc} and Q \ a = {qb, qc} as sets of states, respectively. The
“jumps,” dashed and colored in figure 10.14, connect S0 to S1 and S2. Jumps into
S1 must leave S0 from a, the set of states that must be visited infinitely often in the
first Rabin pair, so only the jump from q0a to q1c is possible. Similarly, the only jump
to S2 goes from q0b to q2c .

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 245

qa qb

qc

c

b

c

a

ca

b

Figure 10.13: Semi-automaton of a Rabin automaton.

q0a q0b

q0c

S0

c

b

c

a

ca

b

q1a

q1c

S1

c

b

a

c

q2b

q2c

S2

c

c

b

c

Figure 10.14: Conversion of A into an NBA.

Complexity. Given an NRA A = (S,F), with n states and m Rabin pairs, each
of the copies S0, S1, . . . , Sm has at most n states, and so the NBA B has at most
n(m+ 1) states.

10.2.4.2 Equivalence of NRAs and DRAs

Rabin automata can be determinized, and so deterministic Rabin automata rec-
ognize all ω-regular languages. The proof of this result goes beyond the scope of
this book and is omitted (see the bibliographical remarks).

Theorem 10.18. An NRA with n states can be effectively transformed into a DRA
with nO(n) states. Moreover, there exists a family {Ln}n≥2 of languages recognizable
by NRAs with O(n) states such that every equivalent DRA has at least n! states.

In particular, the DRA with the semi-automaton shown in figure 10.15 and a
Rabin condition with a single Rabin pair ⟨{r}, {q}⟩ recognizes the language L =
(a+ b)∗bω, which, as shown in proposition 10.10, is not recognized by any DBA.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 246

q r

a b

a

b

Figure 10.15: A semi-automaton.

Theorem 10.18 also shows that determinization of NRAs is strictly more ex-
pensive than determinization of NFAs but only by a logn-factor in the exponent.
Indeed, in the conversion NFA→ DFA, the number of states goes from n to O(2n)
and, in the conversion NRA→ DRA, from n to nO(n) = 2O(n logn).

10.3 Beyond ω-Trinities

The results of section 10.2.4 show that ω-regular expressions, NRAs, and DRAs
constitute an ω-trinity, as depicted in figure 10.16.

Moreover, the blowup induced by the conversions is in all cases comparable to
the blowup for NFAs: the conversions from regular expressions to NFAs and from
ω-regular expressions to NRA are polynomial, and the conversion from NRA to
DRA has single exponential blowup, albeit with exponent O(n logn) instead of n.

However, the finite word trinity also has further properties. In section 3.1 of
chapter 3, we showed that all boolean operations can be easily implemented on
DFAs. In particular:

• DFAs can be complemented in linear time without changing the semi-auto-
maton; it suffices to take another acceptance condition of the same type
(change the set of final states from F to Q \ F , maintaining that a run is
accepting if its last state is final).

• Union and intersection can be implemented uniformly for DFAs using the
pairing operation. More precisely, given two DFAs A1, A2, there exist two
DFAs recognizing L (A1)∪L (A2) and L (A1)∩L (A2) whose semi-automata
are identical and equal to the pairing [A1, A2] (see definition 3.1 in chap-
ter 3). The DFAs only differ on their sets of final states.

Is there an ω-trinity that also satisfies these properties? We examine this ques-
tion. In section 10.3.1, we show that Rabin automata satisfy the property for
union but not for intersection or complement. In sections 10.3.2 and 10.3.3, we
introduce two further automata types, Streett and parity automata, that “restore
the symmetry”: Streett automata satisfy the property for intersection, but not for
union or complement, and parity automata satisfy the property for complemen-
tation, but not for union or intersection. Finally, in section 10.3.4, we conclude
our tour of automata types by introducing Muller automata; they satisfy all three
properties but, as we shall see, at a high price.

Remark 10.19. In the rest of this section, we describe several constructions that
do not necessarily produce automata in normal form, that is, automata such that
every state is reachable from some initial state. In all cases, this can be remedied

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 247

ω-RE

ω-regular
languages

NRA DRA

Figure 10.16: Trinity of ω-regular languages through Rabin automata. An arrow
from X to Y means “for every X there is an equivalent Y .”

by starting from the initial states, constructing iteratively only the successors of the
states constructed so far.

10.3.1 Rabin Automata, Again

We analyze the complexity of union, intersection, and complementation for DRAs.
We show that union can be implemented using pairing, but intersection cannot.
Further, complementation cannot be implemented without changing the semi-
automaton.

Union. Given two DRAs A1 = (S1,F1) and A2 = (S2,F2), we construct a DRA
A1 ∪ A2 such that Lω (A1 ∪A2) = Lω (A1) ∪ Lω (A2). The DRA has the pairing
[S1, S2] as semi-automaton (see definition 3.1 from chapter 3) and the following
set of F of Rabin pairs as acceptance condition:

F = {⟨F1 ×Q2, G1 ×Q2⟩ : ⟨F1, G1⟩ ∈ F1} ∪
{⟨Q1 × F2, Q1 ×G2⟩ : ⟨F2, G2⟩ ∈ F2}.

To see why Lω (A1 ∪A2) = Lω (A1) ∪ Lω (A2) holds, consider the case in
which F1 = {⟨F1, G1⟩} and F2 = {⟨F2, G2⟩}, and so F = {⟨F1 ×Q2, G1 ×Q2⟩,
⟨Q1 × F2, Q1 ×G2⟩} (the general case is analogous). Recall that if the runs of S1

and S2 on an ω-word w = a1a2 · · · are

ρ1 = q01
a1−−→ q11

a2−−→· · · ai−−→ qi1
ai+1−−−→· · ·

ρ2 = q02
a1−−→ q12

a2−−→· · · ai−−→ qi2
ai+1−−−→· · ·

then the run of [S1, S2] on w is

ρ =

[
q01
q02

]
a1−−→
[
q11
q12

]
a2−−→· · · ai−−→

[
qi1
qi2

]
ai+1−−−→· · ·

and vice versa. Let inf(ρ) be the set of states of [S1, S2] that appear infinitely often
in ρ. We get:

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 248

w ∈ Lω (A1) ∪ Lω (A2)

iff inf(ρ1) ∩ F1 ̸= ∅ and inf(ρ1) ∩G1 = ∅
or
inf(ρ2) ∩ F2 ̸= ∅ and inf(ρ2) ∩G2 = ∅

iff inf(ρ) ∩ (F1 ×Q2) ̸= ∅ and inf(ρ) ∩ (G1 ×Q2) = ∅
or
inf(ρ) ∩ (Q1 × F2) ̸= ∅ and inf(ρ) ∩ (Q1 ×G2) = ∅

iff ρ satisfies the Rabin acceptance condition
{⟨F1 ×Q2, G1 ×Q2⟩, ⟨Q1 × F2, Q1 ×G2⟩}

iff w ∈ Lω (A1 ∪A2).

Observe that this last argument fails if we replace “or” by “and.” Indeed, a run
satisfies a Rabin condition {⟨F,G⟩, ⟨F ′, G′⟩} iff it satisfies {⟨F,G⟩} or {⟨F ′, G′⟩},
not {⟨F,G⟩} and {⟨F ′, G′⟩}.

Intersection and complement. It is not difficult to find a DRA A = (S,R) such
that no Rabin condition over the semi-automaton S recognizes Lω (A). For ex-
ample, let S be the semi-automaton of figure 10.20 from example 10.26. It is
easy to give a Rabin condition such that the resulting DRA recognizes the words
containing finitely many as or finitely many bs, but, as shown in the example,
no Rabin condition makes S recognize the words containing infinitely many as
and infinitely many bs. Similarly, one can exhibit DRAs A1 = (S1,R1) and A2 =
(S2,R2) such that no Rabin condition on the semi-automaton [S1, S2] recognizes
Lω (A1) ∩ Lω (A2). It is even the case that the smallest semi-automata for these
languages may be exponentially larger than the original ones. We state these re-
sults without proof (see the bibliographical remarks).2

Proposition 10.20. There exists a family {An, Bn}n≥1 of pairs of DRAs with O(n)
states and O(n) Rabin pairs such that every DRA recognizing Lω (An)∩Lω (Bn) has
Θ(2n) states.

Proposition 10.21. There exists a family {An}n≥1 of DRAs with O(n) states and
O(n) Rabin pairs such that every DRA recognizing Lω (An) has at least n! states.

Thus, DRAs behave “asymmetrically” with respect to union and intersection.
We introduce Streett automata, which also behave “asymmetrically” but exchang-
ing the roles of union and intersection.

10.3.2 Streett Automata

As for Rabin automata, the acceptance condition of Streett automata (NSA) con-
sists of a collection F = {⟨F1, G1⟩, . . . , ⟨Fm, Gm⟩} of Streett pairs.

Definition 10.22. Let S = (Q,Σ, δ,Q0) be a semi-automaton. A Streett pair is a
pair ⟨F,G⟩ of sets of states, that is, F,G ⊆ Q. An acceptance condition α : 2Q →

2Actually, the interested reader can find a proof of proposition 10.21 as proposition 11.10 of chap-
ter 11.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 249

{0, 1} is a Streett condition if there exists a set St of Streett pairs such α(Q′) = 1 iff
Q′ ∩ F = ∅ or Q′ ∩G ̸= ∅ holds for every ⟨F,G⟩ ∈ St.

A nondeterministic Streett automaton (NSA) is a pair A = (S,St), where St ⊆
2Q × 2Q is a Streett acceptance condition.

In words, a run of an NSA is accepting if it visits F finitely often or G infinitely
often for every Streett pair ⟨F,G⟩ ∈ St.

Streett automata could also be called co-Rabin automata. Let us see why. Re-
call that a run of a DBA A is accepting if it is a rejecting run of the DCA A (i.e., of
the same automaton, but with a co-Büchi instead of a Büchi condition) and vice
versa. The same holds for Rabin and Streett automata. Indeed, let F be a set of
pairs of the form ⟨F,G⟩ for F,G ⊆ Q. We have:

ρ is a rejecting run of the DSA A = (S,F)
iff ¬∀⟨F,G⟩ ∈ F : inf(ρ) ∩ F = ∅ or inf(ρ) ∩G ̸= ∅
iff ∃⟨F,G⟩ ∈ F : inf(ρ) ∩ F ̸= ∅ and inf(ρ) ∩G = ∅
iff ρ is an accepting run of the DRA A = (S,F).

In other words, if we let LRω (A) and LSω(A) be the languages of a deterministic
automaton A when F is interpreted as a Rabin and as a Streett condition, respec-
tively, then LSω(A) = LRω (A).

10.3.2.1 Equivalence of NSAs and ω-Regular Expressions

We show that for every NBA, there is an equivalent NSA and vice versa, which
shows that NSAs are equivalent to ω-regular expressions.

NBA→ NSA. Given an NBA A = (S, F), the NSA B = (S, {⟨Q,F ⟩}), where Q is
the set of states of S, satisfies Lω (A) = Lω (B). Indeed, a run of B is accepting iff
inf(ρ)∩Q = ∅ or inf(ρ)∩ F ̸= ∅. Since every run visits at least one state infinitely
often, this is the case iff inf(ρ) ∩ F ̸= ∅.

NSA → NBA. This conversion requires some more work and involves an expo-
nential blowup. LetA = (S,St) be an NSA. For every I ⊆ St, define I = St\I and
FI =

∪
⟨F,G⟩∈I F . Applying the definition of the Streett condition and standard

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 250

rules of propositional logic, we obtain the following for every run ρ of A:

ρ is accepting

⇐⇒
∧

⟨F,G⟩⊆St

(inf(ρ) ∩ F = ∅ ∨ inf(ρ) ∩G ̸= ∅)

⇐⇒
∨
I⊆St

 ∧
⟨F,G⟩∈I

inf(ρ) ∩ F = ∅

 ∧
 ∧
⟨F,G⟩∈I

inf(ρ) ∩G ̸= ∅

⇐⇒

∨
I⊆St

inf(ρ) ∩

 ∪
⟨F,G⟩∈I

F

 = ∅ ∧

 ∧
⟨F,G⟩∈I

inf(ρ) ∩G ̸= ∅

⇐⇒

∨
I⊆St

inf(ρ) ∩ FI = ∅ ∧

 ∧
⟨F,G⟩∈I

inf(ρ) ∩G ̸= ∅

 (10.1)

We consider first the case inwhich the disjunction over the subsets of St consists
of a single disjunct. (More precisely, the case in which all disjuncts, but the one
for a certain subset I, are vacuously false, and so they can be removed from the
condition.) We then consider the general case.

We assume that I = {⟨F0, G0⟩, . . . , ⟨Fk, Gk⟩} for some k ≥ 0; in particular,
I is nonempty. (This can be done without loss of generality: if I = ∅, we can
equivalently set I = {⟨∅, Q⟩}, because every run ρ satisfies inf(ρ)∩∅ = ∅∧ inf(ρ)∩
Q ̸= ∅.) Let LI be the language of all words for which there is a run ρ of A
satisfying (10.1) for I. We construct an NBA B recognizing LI in two steps.

Construction of B, first step. The first step repeats a construction we already
presented in the conversion NRA → NBA. Let us recall it. Every run ρ satisfying
inf(ρ)∩FI = ∅ and inf(ρ)∩G ̸= ∅ for every ⟨F,G⟩ ∈ I reaches a point after which
the run only visits states of Q \ FI . So, ρ consists of an initial finite part, say ρ0,
that may visit all states, followed by an infinite part, say ρ1, that only visits states
of Q \ FI . Further, if I ̸= ∅, then we can assume that the last state visited by ρ0
belongs to G0. We construct a semi-automaton SI as follows:

• Put two copies S0 and S1 of S “side by side” (figure 10.17 illustrates a case
in which I contains three Streett pairs with second components G0, G1, and
G2). The copy S0 is a full copy, containing all states and transitions of S, and
S1 is a partial copy, containing only the states of Q \ FI and the transitions
between them. Let q0 denote the copy of state q ∈ Q in S0 and q1 the copy
of state q ∈ Q \ FI in S1.

• Add transitions that “jump” from S0 to S1. For every transition q a−→ r of S0

such that q ∈ G0 and r ∈ Q \ FI , add a transition q0 a−→ r1. Intuitively, B
simulates ρ by executing the finite prefix ρ0 in S0, then jumping to S

1

, and
executing ρ1 there.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 251

Q \ FI

S

S0

S1

G0

G1

G2

G0

G1

G2

G0

G1

G2

Figure 10.17: First step of the conversion NSA → NBA. The figure illustrates a
special case in which G0, G1, and G2 are pairwise disjoint and included in Q \FI .

Q \ FI

S

S0

S1
0 S1

1 S1
2

G0

G1

G2

G0

G1

G2

G0

G1

G2

G0

G1

G2

G0

G1

G2

Figure 10.18: Second step of the conversion NSA→ NBA, illustrating the replica-
tion of S1.

Construction of B, second step. By definition of the semi-automaton SI , the
language LI contains exactly the words on which SI has a run ρ0ρ1, where ρ0 stays
in S0 and ρ1 is a run of S1 satisfying inf(ρ1) ∩ G ̸= ∅ for every ⟨F,G⟩ ∈ I. Thus,
ρ1 visits all of G0, . . . , Gk infinitely often. The problem is that this condition is not

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 252

of Büchi type. To solve this problem, we replace S1 by another semi-automaton.
Observe that a run ρ1 visits each ofG0, . . . , Gk infinitely often iff the following two
conditions hold:

(a) ρ1 eventually visits G0, and

(b) for all 0 ≤ i < m, every visit of ρ1 to Gi is eventually followed by a later visit
to Gi⊕1, where ⊕ denotes addition modulo k. (Between the visits to Gi and
Gi⊕1, there can be arbitrarily many visits to other sets.)

This suggests replicating S1 into k “copies” S1
0 , . . . , S

1
k−1, but with a modifica-

tion: the NBA “jumps” from the ith to the (i⊕ 1)th copy whenever it visits a state
of Gi (see figure 10.18). More precisely, the transitions of the ith copy that leave
a state of Gi are redirected to the (i ⊕ 1)th copy. This way, visiting the accepting
states of each copy infinitely often is equivalent to visiting the accepting states of
the first copy infinitely often. The jumps from S to S1 are adapted: instead of a
jump q0 a−→ r1, we now have q0 a−→ r10. We take B as the NBA with this structure
and G0

1 as Büchi condition.

Formal definition ofB. Formally, letA = (Q,Σ, δ,Q0,St) be an NSA, let I ⊆ St,
and let FI =

∪
⟨F,G⟩∈I F . Further, assume I = {⟨F0, G0⟩, . . . , ⟨Fk−1, Gk−1⟩}. The

NBA B is defined as follows:

• States: {q0 : q ∈ Q} ∪ {q10 , . . . , q1k−1 : q ∈ Q \ FI}.

• Transitions: The set of transitions contains

– (q0, a, r0) for all (q, a, r) ∈ δ,
– (q0, a, r10) for all (q, a, r) ∈ δ s.t. q ∈ G0 and r ∈ Q \ FI ,
– (q1i , a, r

1
i) for all (q, a, r) ∈ δ s.t. q ∈ (Q \FI) \Gi and r ∈ Q \FI , and

– (q1i , a, r
1
i⊕1) for all (q, a, r) ∈ δ s.t. q ∈ (Q \ FI) ∩Gi and r ∈ Q \ FI .

• Initial states: {q0 : q ∈ Q0}.

• Accepting states: {q10 : q ∈ G0}.

This concludes the description of the construction when the disjunction (10.1)
over the subsets of St only contains one disjunct. Now, consider the general case,
with k such disjuncts for sets I1, . . . , Ik ⊆ St. We proceed again in two steps. In
the first step, we take a full copy S0 of S and partial copies S1, . . . , Sk, one for
each of I1, . . . , Ik, constructed as in the previous case. For each Ij , we add jumps
from S0 to Sj , also as before. In the second step, each of the Sj is replicated, also
as before. The forthcoming example 10.23 describes a case with two disjuncts.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 253

Complexity. If A has n states and m Streett pairs, then the number of states of
BI is bounded by n(m+1). Since there exist 2m sets I ⊆ F , the number of states
of B is O(2mnm).

Example 10.23. Consider again the automaton of example 10.17 with acceptance
condition St = {⟨a, b⟩, ⟨b,a⟩}, where a = {qa} and b = {qb}, but this time inter-
preted as a Streett condition. The automaton accepts the ω-words containing finitely
many as or infinitely many bs, and finitely many bs or infinitely many as, with no
constraint on the number of cs. We construct an equivalent NBA. We have

ρ is accepting

iff (inf(ρ) ∩ a = ∅ ∨ inf(ρ) ∩ b ̸= ∅) ∧ (inf(ρ) ∩ b = ∅ ∨ inf(ρ) ∩ a ̸= ∅)
iff (inf(ρ) ∩ a = ∅ ∧ inf(ρ) ∩ b = ∅) ∨ (inf(ρ) ∩ b ̸= ∅ ∨ inf(ρ) ∩ a ̸= ∅) .

Note that we have removed “(inf(ρ) ∩ a = ∅ ∧ inf(ρ) ∩ a ̸= ∅)” and “(inf(ρ) ∩ b =
∅ ∧ inf(ρ) ∩ b ̸= ∅)” because they are equivalent to false.

Let S be the semi-automaton of the NSA. Intuitively, a run of the NBA stays in the
full copy S0 of S until it “decides” which of the two disjuncts it wants to satisfy, after
which it “jumps” to another copy. Without loss of generality, we request that the run
leaves S0 from the set of states it must visit infinitely often according to the chosen
disjunct; if there is more than one set, then we request it to leave from the first one.
This yields the NBA of figure 10.19.

Consider the first disjunct: (inf(ρ) ∩ a = ∅ ∧ inf(ρ) ∩ b = ∅). A run satisfying
it must eventually only visit qc. So the copy S1 of S only contains state qc. Without
loss of generality, we request that the run leaves S0 from qc, and so the only (colored
dashed) jump leads from q0c to q1c .

Consider now the second disjunct: (inf(ρ)∩ b ̸= ∅ ∧ inf(ρ)∩a ̸= ∅). The disjunct
does not require any state to be visited only finitely often, and so the NBA contains two
full copies S2

0 and S2
1 of S. Intuitively, a run jumps from S0 to S1

0 when it “decides”
to satisfy this disjunct and then stays in S2

0 until it visits b and in S2
1 until it visits a.

Jumps from S0 to S2
0 leave from b; there are two of them, leading from q0b to q2a0 and

q0a q0b

q0c

S0

c

b

c

a

ca

b

q1c S1
0

c

c

q2a0 q2b0

q2c0

S2
0

q2a1 q2b1

q2c1

S2
1

c

a a

c

c

c

b

b

c

a

c

a

b

c

a

c

Figure 10.19: Büchi automaton obtained from a Streett automaton.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 254

q2c0 (colored dashed transitions). Transitions of S2
0 leaving from b “land” in S2

1 , and
transitions of S2

1 leaving from a “land” in S2
0 (colored dotted transitions).

Intersection. As mentioned at the beginning of the section, a run of a DRA is
accepting iff it is a rejecting run of the DSA with the same semi-automaton and
acceptance condition, but of Streett type. It follows immediately that the con-
struction shown in the previous section for union of DRAs is also a construction
for intersection of DSAs. Let us see why. Given an automaton A = (S,F), let
LR(A) and LS(A) be its language as a Rabin and Streett automaton, respec-
tively (i.e., interpreting the pairs of F as Rabin pairs, or as Streett pairs, respec-
tively). Further, given two automata A1, A2, let A1 ∪ A2 be the automaton de-
fined in the previous section using the pairing construction. There, we proved
LR(A1∪A2) = LR(A1)∪LR(A2). Now, we prove LS(A1∪A2) = LS(A1)∩LS(A2):

LS(A1 ∪A2) = LR(A1 ∪A2) (as A1 and A2 are deterministic)

= LR(A1) ∪ LR(A2) (by the previous section)

= LR(A1) ∩ LR(A2) (by De Morgan’s law)

= LS(A1) ∩ LS(A2) (as A1 and A2 are deterministic).

Union and complement. In the previous section, we saw that given two DRAs
with O(n) states, the smallest DRA for the union of their languages can have
Θ(2n) states, and that given a DRA with O(n) states, the smallest DRA recog-
nizing its complement language can have n! states (proposition 10.20 and propo-
sition 10.21). Using that a run of a DRA is accepting iff it is a rejecting run of
the DSA with the same semi-automaton and acceptance condition, we obtain the
same bounds for union and complementation of Streett automata.

10.3.3 Parity Automata

We now present an automata type for which complementation can be imple-
mented without changing the semi-automaton, at the price of an exponential
blowup for both union and intersection.

The acceptance condition of parity automata is a chain of sets of states.

Definition 10.24. Let S = (Q,Σ, δ,Q0) be a semi-automaton. An acceptance con-
dition α : 2Q → {0, 1} is a parity condition if there exists a sequence P = (F1, F2,
. . . , F2m) of sets of states, where F1 ⊆ F2 ⊆ · · · ⊆ F2m = Q, such that α(Q′) = 1
iff the smallest index i satisfying Q′ ∩ Fi ̸= ∅ is even. (Observe that i exists because
F2m = Q.) Abusing language, we speak of the parity condition P.

A nondeterministic parity automaton (NPA) is a pair A = (S,P), where P ⊆
(2Q)∗ is a parity acceptance condition.

At first sight, the parity condition looks very different from the Rabin or Streett
conditions. We show that this is not the case. Note first that we can reformulate a
parity condition (F1, F2, . . . , F2m) as follows: a run ρ is accepting iff

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 255

inf(ρ) ∩ F1 = ∅ and inf(ρ) ∩ F2 ̸= ∅,
or inf(ρ) ∩ (F1 ∪ F2 ∪ F3) = ∅ and inf(ρ) ∩ F4 ̸= ∅,
or · · ·
or inf(ρ) ∩ (F1 ∪ · · · ∪ F2m−1) = ∅ and inf(ρ) ∩ F2m ̸= ∅.

Since F1 ⊆ F2 ⊆ · · ·F2m, the condition is equivalent to the following: a run ρ is
accepting iff

inf(ρ) ∩ F1 = ∅ and inf(ρ) ∩ F2 ̸= ∅,
or inf(ρ) ∩ F3 = ∅ and inf(ρ) ∩ F4 ̸= ∅,
or · · ·
or inf(ρ) ∩ F2m−1 = ∅ and inf(ρ) ∩ F2m ̸= ∅,

and so the parity condition (F1, F2, . . . , F2m) is equivalent to the Rabin condition

{⟨F2m, F2m−1⟩, . . . , ⟨F3, F2⟩, ⟨F2, F1⟩}.

Therefore, the parity condition is a special case of the Rabin condition in which the
sets appearing in the Rabin pairs form a nonincreasing chain with respect to set
inclusion, starting at the set Q. Interestingly, the parity condition is also a special
case of the Streett condition. It is not difficult to prove (see exercise 154) that the
parity condition (F1, F2, · · · , F2m) is also equivalent to the Streett condition

{⟨∅, F1⟩, ⟨F2, F3⟩, . . . , ⟨F2m−2, F2m−1⟩}.

10.3.3.1 Equivalence of NPAs and ω-Regular Expressions

It is very easy to give conversions NBA→NPA→NRA, which prove the equivalence
of NPAs and ω-regular expressions.

NBA→ NPA. An NBA with states Q and accepting states F recognizes the same
language as the same semi-automaton with parity condition (∅, F,Q,Q). Indeed,
for every run ρ of a semi-automaton:

ρ satisfies the parity condition (∅, F,Q,Q)
⇐⇒ (inf(ρ) ∩ ∅ = ∅ ∧ inf(ρ) ∩ F ̸= ∅) ∨ (inf(ρ) ∩Q = ∅ ∧ inf(ρ) ∩Q ̸= ∅)
⇐⇒ inf(ρ) ∩ F ̸= ∅
⇐⇒ ρ satisfies the Büchi condition F.

NPA→ NRA. By the observation above on the relation between parity and Rabin
conditions, an NPA with acceptance condition (F1, F2, . . . , F2m) recognizes the
same language as the same automaton with Rabin condition {⟨F2m, F2m−1⟩, . . . ,
⟨F3, F2⟩, ⟨F2, F1⟩}, and we are done.

Together, the two conversions NBA → NPA and NPA → NRA show that the
languages recognizable by NPAs are exactly the ω-regular languages and that ω-
regular expressions can be translated into NPAs and vice versa with polynomial
blowup.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 256

qa qb

qc

a b

c

b

c

a

ca

b

Figure 10.20: Example of a semi-automaton.

10.3.3.2 Equivalence of NPAs and DPAs

It is possible to modify the determinization of the theorem 10.18 procedure so that
it yields a DPA instead of a DRA. Again, the proof is beyond the scope of the book.

Theorem 10.25. An NPA with n states can be effectively transformed into a DPA
with nO(n) states and an acceptance condition with O(n) sets.

10.3.3.3 Boolean Operations for DPAs

It can be shown that union and intersection of DPAs both involve an exponential
blowup, that is, the smallest DPA for the union or the intersection of two DPAS with
O(n) states may have Ω(2n) states. However, complementation can be very ele-
gantly implemented without changing the semi-automaton as follows. LetA(S,P)
be a DPA with P = (F1, F2, . . . , F2m). Consider the DPA A = (S,P), where

P = (G1, G2, . . . , G2m+2) := (∅, F1, F2, . . . , F2m, F2m).

(That is, G1 := ∅, G2 := F1, and so on.) Let ρ be a run of A. We have

ρ is a rejecting run of A
iff the minimal index i such that inf(ρ) ∩ Fi ̸= ∅ is not even
iff the minimal index i such that inf(ρ) ∩ Fi ̸= ∅ is odd
iff the minimal index j such that inf(ρ) ∩Gj ≠ ∅ is even
iff ρ is an accepting run of A.

Therefore, Lω
(
A
)
= Lω (A).

Example 10.26. Consider the semi-automaton S depicted in figure 10.20. We ex-
amine several languages over Σ and determine for each of them if there exist Rabin,
Streett, or parity conditions that, added to S, yield Rabin, Streett, or parity automata
recognizing the language. We use the following notation: Q = {qa, qb, qc}, a = {qa},
b = {qb}, and ab = {qa, qb}.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 257

Words containing infinitely many as. Semi-automaton S recognizes this lan-
guage with the Rabin condition {⟨a, ∅⟩}, the Streett condition {⟨Q,a⟩}, and the par-
ity condition (∅,a, Q,Q).

Words containing infinitely many as or infinitely many bs. Semi-automaton
S recognizes this language with the Rabin condition {⟨ab, ∅⟩}, the Streett condition
{⟨Q,ab⟩}, and the parity condition (∅,ab, Q,Q).

Words containing infinitely many as and infinitely many bs. Semi-automaton
S recognizes this language with the Streett condition {⟨Q,a⟩, ⟨Q, b⟩}. However, no
Rabin condition allows S to recognize it. To see why, assume the contrary, and let
ρ be an accepting run for (ab)ω. We have inf(ρ) = ab. Since ρ is accepting, the
Rabin condition contains at least one Rabin pair ⟨F,G⟩ such that F ∩ ab ̸= ∅ and
G ∩ ab = ∅. But then S accepts no word at all (case F = ∅) or it accepts aω (case
qa ∈ F) or it accepts bω (case qb ∈ F), which in all cases leads to a contradiction.
Finally, since the parity condition is a special case of the Rabin condition, no parity
condition allows S to recognize the language.

Words containing finitely many as or finitely many bs. This language is the
complement of the previous one. Since S is deterministic, it recognizes a language
with a Rabin (Streett) condition if it recognizes its complement with a Streett (Rabin)
condition. So, S recognizes this language with the Rabin condition {⟨Q,a⟩, ⟨Q, b⟩},
and there is no Streett condition recognizing it. Further, since the parity condition is
a special case of the Streett condition, no parity condition allows S to recognize the
language.

10.3.4 Muller Automata

We have found three different ω-trinities: the Rabin, Streett, and parity trinities.
In each of them, one of the three fundamental boolean operations (union, intersec-
tion, and complement) can be implemented essentially as for DFAs, but the other
two cannot and involve exponential blowups in the number of states. Is there an
ω-automaton type in which all three boolean operations can be implemented as
for DFAs, with polynomial blowups in the number of states?

The answer is “yes, but.” Muller automata, the automata type presented below,
allow us to implement complementation without changing the semi-automaton
and to implement both union and intersection by means of pairing. However, this
comes at the price of an exponential blowup, not in the number of states but in the
size of the acceptance condition. Let us explain this.

In a DFA, the size of an automaton (i.e., the number of bits required to encode
it) is determined by the cardinalities of the set of states and the alphabet. Indeed,
a DFA with n states over an alphabet withm letters has exactly nm transitions and
at most n final states. Therefore, the size of the DFA is Θ(nm). This is no longer
the case for DRAs, DSAs, or DPAs. Indeed, the acceptance condition of a DRA with
n states can contain up to 4n Rabin pairs, and hence the size of the automaton
can be dominated by the size of the acceptance condition. So, the question of
whether all three boolean operations can be implemented “as for DFAs” can be
given both a positive and a negative answer: yes, if we are only interested in the

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 258

semi-automaton and the number of states of the resulting automata; no, if we also
take into account the size of the acceptance condition.

To introduce Muller automata, consider again example 10.26. We showed
there that no Rabin automaton with the semi-automaton of figure 10.20 recog-
nizes the language of the words containing infinitely many as and infinitely many
bs. The reason is that the condition “both qa and qb are visited infinitely often”
cannot be expressed using Rabin pairs, although it can be expressed using Streett
pairs. Muller automata solve this problem in a radical way, by allowing all possible
acceptance conditions.

Definition 10.27. Let S = (Q,Σ, δ,Q0) be a semi-automaton. A nondeterminis-
tic Muller automaton (NMA) is a pair A = (S, α), where α : 2Q → {0, 1} is an
acceptance condition.

We represent an acceptance condition α by its associated Muller set, defined as
the set M := {Q′ ⊆ Q : α(Q′) = 1}. Abusing language, we speak of the Muller
acceptance conditionM and of the NMA A = (S,M).

Example 10.28. Consider the semi-automaton S of example 10.26 depicted in fig-
ure 10.20. Let us give Muller conditions recognizing all four languages of the example.

Words containing infinitely many as. Semi-automaton S recognizes this lan-
guage with the Muller condition

{ {qa}, {qa, qb}, {qa, qc}, {qa, qb, qc} }.

(All sets containing qa.)

Words containing infinitely many as or infinitely many bs. Semi-automaton
S recognizes this language with the Muller condition

{ {qa}, {qb}, {qa, qc}, {qb, qc}, {qa, qb, qc} }.

(All sets containing qa or qb.)

Words containing infinitely many as and infinitely many bs. Semi-automaton
S recognizes this language with the Muller condition

{ {qa, qb}, {qa, qb, qc} }.

(All sets containing qa and qb.)

Words containing finitely many as or finitely many bs. Semi-automaton S rec-
ognizes this language with the Muller condition

{ {qa}, {qb}, {qc}, {qa, qc}, {qb, qc} }.

(All sets not containing qa or not containing qb.)

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 259

10.3.4.1 Equivalence of NMAs and ω-Regular Expressions

We give translations NBA→ NMA→ NBA, which shows that NMAs are as expres-
sive as ω-regular expressions.

NBA → NMA. Given an NBA A = (S, F) where S = (Q,Σ, δ,Q0) and a set of
states R ⊆ Q, let B = (S,M) be the NMA such that R ∈ M iff R ∩ F ̸= ∅—that
is, M contains all subsets of Q that intersect F . We show that, for every word
w ∈ Σω, we have w ∈ Lω (A) iff w ∈ Lω (B):

w ∈ Lω (A)
iff inf(ρ) ∩ F ̸= ∅ for some run ρ of A on w
iff inf(ρ) ∈M for some run ρ of B on w (by definition ofM)

w ∈ Lω (B).

While B has the same number of states and transitions as A, the cardinality of
M is 2|Q|−2|Q\F |, which in the worst case is exponential in the number of states of
A and B. For example, a Büchi automaton with states Q = {q0, . . . , qn} and Büchi
condition {qn} is transformed into an NMA with a Muller set {F ⊆ Q : qn ∈ F} of
cardinality 2n.

NMA → NBA. We present a translation NMA→ NSA→ NBA. Since we already
have a translation NSA→ NBA, it suffices to present a translation NMA→ NSA.

Let A = (S,M) be an NMA withM = {F1, . . . , Fm}. We construct an equiva-
lent NSA B. By definition of the Muller condition, we have Lω (A) = ∪mi=1Lω (Ai),
where Ai is the NMA Ai = (S, {Fi}). So it suffices to translate each Ai into an
equivalent NSA Bi and then define B as the result of putting all these NSAs “side
by side.” To construct Bi, it suffices to convert the Muller condition {Fi} into an
equivalent Streett condition St as follows:

ρ is an accepting run of Ai = (S, {Fi}), where S = (Q,Σ, δ,Q0)

⇐⇒ inf(ρ) = Fi

⇐⇒ inf(ρ) ∩Q \ Fi = ∅ ∧
∧
q∈Fi

inf(ρ) ∩ {q} ̸= ∅

⇐⇒
(
inf(ρ) ∩Q \ Fi = ∅ ∨ inf(ρ) ∩ ∅ ≠ ∅

)
∧∧

q∈Fi

(
inf(ρ) ∩Q = ∅ ∨ inf(ρ) ∩ {q} ̸= ∅

)
⇐⇒ ρ is an accepting run of the NSA Bi = (S,St), where

St = { ⟨Q \ Fi, ∅⟩ } ∪ { ⟨Q, {q}⟩ : q ∈ Fi }.

Complexity. Let n = |Q| and m = |M|. Each of the NSAs B1, . . . , Bm has n
states and an acceptance condition containing at most n+1 Streett pairs. Each of
the equivalent NBAs has O(2nnm) states, and after putting them side by side, we
finally obtain an NBA with O(2nnm2) states.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 260

10.3.4.2 Equivalence of NMAs and DMAs

We can show that NMAs can be determinized by proving that for every DRA there
is an equivalent DMA. Indeed, we can then combine the translations NMA→ NBA
→ NRA→ DRA→ DMA, where NRA→ DRA follows from theorem 10.18. There
exist direct algorithms, but they are beyond the scope of this book.

DRA → DMA. The conversion is very similar to NBA → NMA. Given a DRA
A = (S,R), we construct the DMA B = (S,M), where a set R ⊆ Q belongs toM
iff there exists ⟨F,G⟩ ∈ R such that R ∩ F ̸= ∅ and R ∩G = ∅. We have

ρ is an accepting run of A
iff inf(ρ) ∩ F ̸= ∅ and inf(ρ) ∩G = ∅ for some ⟨F,G⟩ ∈ R
iff inf(ρ) ∈M
iff ρ is an accepting run of B.

10.3.4.3 Boolean Operations on DMAs

Complement. We can easily complement a DMA A = (S,M) while preserving
the type and the semi-automaton. Indeed, the DMA A = (S, 2Q \ M) satisfies
Lω
(
A
)
= Lω (A): for every word w, we have w ∈ Lω (A) iff the run ρ of A on w

is accepting iff inf(ρ) ∈M iff inf(ρ) /∈ 2Q \M iff ρ is not an accepting run of A iff
w /∈ Lω

(
A
)
.

Union and intersection. Let A1 = (S1,M1) and A2 = (S2,M2) be DMAs with
sets of states Q1 and Q2, respectively. Given R ⊆ Q1 ×Q2, let

R|1 = {q1 ∈ Q1 : ∃q2 ∈ Q2 (q1, q2) ∈ R},
R|2 = {q2 ∈ Q2 : ∃q1 ∈ Q1 (q1, q2) ∈ R},

be the projections of R onto Q1 and Q2, respectively. Let us see that the DMAs
A1 ∪ A2 and A1 ∩ A2 having the pairing [S1, S2] as semi-automaton and Muller
conditions

M∪ = {R ⊆ Q1 ×Q2 : R|1 ∈M1 or R|2 ∈M2},
M∩ = {R ⊆ Q1 ×Q2 : R|1 ∈M1 and R|2 ∈M2},

recognize Lω (A1) ∪ Lω (A2) and Lω (A1) ∩ Lω (A2), respectively.
Let w be an arbitrary word, and let ρ1, ρ2, and ρ be the runs of S1, S2, and

[S1, S2] on w, respectively. We have inf(ρ)|i = inf(ρi) for both i ∈ {1, 2}. So, we
obtain for A1 ∪A2:

w ∈ Lω (A1) ∪ Lω (A2)

⇐⇒ inf(ρ1) ∈M1 or inf(ρ2) ∈M2 (by def. of the Muller condition)
⇐⇒ inf(ρ)|1 ∈M1 or inf(ρ)|2 ∈M2 (by inf(ρ)|i = inf(ρi))
⇐⇒ inf(ρ) ∈M∪ (by def. ofM∪)
⇐⇒ w ∈ Lω (A1 ∪A2) (by def. of A1 ∪A2).

The result for A1 ∩A2 is analogous.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 261

q0 q1 q2 · · · qn

q̂1 q̂2 · · · q̂n

a a a a

b b b b b b

#

Figure 10.21: A DMA recognizing the language of the ω-regular expression(
(a(bb)∗)n#

)ω. The acceptance condition consists of all subsets of {q0, q̂1, . . . , q̂n}
that contain q0.

10.3.4.4 Size of the Acceptance Condition

Recall that the conversion NBA → NMA described in section 10.3.4.1 causes an
exponential blowup in the size of the acceptance condition. A Büchi automaton
with (by definition) one set of accepting states may be translated into a Muller
automaton with exponentially many sets of accepting states.

We show that the exponential blowup is not a feature of the specific conversion
we have presented; any other conversion will have the same problem. In fact,
we prove this for any conversion from ω-regular expression to NMAs. (Observe
that, since the conversion ω-regular expression → NBA only causes a polynomial
blowup in size, any conversion NBA→ NMAmust then cause an exponential one.)

Consider, for every n ≥ 1, the ω-regular expression sn = ((a(bb)∗)n#)ω over
the alphabet {a, b,#}. Words of Lω (sn) are of the form w1#w1#w2#w3# · · · ,
where every wi contains exactly n occurrences of a separated by possibly different
but even numbers of bs. The ω-language Lω (sn) is recognized by the DMA shown
in figure 10.21. It only has 2n+1 states but a very large acceptance condition, con-
taining all 2n sets of the form {q0, . . . , qn} ∪R, where R ⊆ {q̂1, . . . , q̂n}. The next
proposition shows that every NMA recognizing this language has an acceptance
condition of at least this size.

Proposition 10.29. Let Σ = {a, b,#}. For all n ≥ 1, the acceptance condition of
any NMA recognizing the language of the ω-regular expression sn =

(
(a(bb)∗)n#

)ω
contains at least 2n sets of states.

Proof. Fix an arbitrary n ≥ 1, and let A be the DMA of figure 10.21, with set of
states Q. It is easy to see that A recognizes L (sn), and so it suffices to show that
the acceptance condition of any NMA equivalent to A, contains at least 2n sets of
states. Before proceeding, we make the following claim:

Claim 1. Let Lω (q) denote the language recognized by A with q ∈ Q as initial
state. For every two distinct states q, q′ of A, we have Lω (q) ∩ Lω (q′) = ∅.

Proof Let u ∈ Lω (q) and u′ ∈ Lω (q′). We prove u ̸= u′. Since every accepting
run visits q0 infinitely often, u and u′ contain infinitely many occurrences of #.
Consider three cases:

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 262

• q = q0 and q′ ̸= q0. Then u contains exactly n occurrences of a before the
first occurrence of #, but u′ contains fewer.

• q ∈ {qi, q̂i} and q′ ∈ {qj , q̂j} for i ̸= j. Then u contains exactly n − i
occurrences of a before the first occurrence of #, and u′ contains n− j.

• {q, q′} = {qi, q̂i} for some i. Let ku be the number of occurrences of b in u
before the first occurrence of #. Define ku′ analogously. Then ku and ku′

have different parity.

LetB be an NMA equivalent toAwith set of statesR; further, let Lω (r) denote the
language recognized by B with r ∈ R as initial state. Without loss of generality,
we assume that Lω (r) ̸= ∅ for every r ∈ R (if Lω (r) = ∅, then r can be removed).
We make two claims:

Claim 2. For every r ∈ R, there is a unique state q ∈ Q such thatLω (r) = Lω (q).

Proof Let r ∈ R. Since A and B are equivalent, we have Lω (r) ⊆
∪
q∈Q Lω (q).

So, by claim 1, it suffices to show that some state q ∈ Q satisfies Lω (r) ⊆ Lω (q).
Let w be any finite word leading from some initial state r0 of B to r, and let q be
the unique state of A such that q0

w−−→ q. We prove Lω (r) ⊆ Lω (q).

u ∈ Lω (r)
⇒ B has an accepting run ρu = r

u−→ from r

⇒ B has an accepting run ρ = r0
w−−→ r

u−→ from r0 (because inf(ρ) =
inf(ρu))

⇒ wu ∈ Lω (B) (because r0 is an initial state)
⇒ wu ∈ Lω (A) (because A and B are equivalent)
⇒ A has an accepting run ρ′ = q0

w−−→ q
u−→· · ·

⇒ A has an accepting ρ′u = q
u−→· · · from q (because inf(ρ′u) = inf(ρ′))

⇒ u ∈ Lω (q).

Before stating the third claim, we need a definition. For every 1 ≤ i ≤ n, let
Ri = {r ∈ R : Lω (r) = Lω (q̂i)}. Observe that, by claim 2, Ri ̸= ∅ for every
1 ≤ i ≤ n, and by claim 1, Ri ∩Rj ̸= ∅ for every i ̸= j.

Claim 3. Let q0
u−→ q

v−→· · · and r0
u−→ r

v−→· · · be accepting runs of A and B on
a word uv. For every 1 ≤ i ≤ n, we have q = q̂i iff r ∈ Ri.

Proof Since the suffixes q v−→· · · and r v−→· · · visit the same states infinitely often
as the runs themselves, we have v ∈ Lω (q) ∩ Lω (r). Claim 1 and claim 2 yield
Lω (q) = Lω (r). If q = q̂i, then r ∈ Ri by the definition of Ri. If r ∈ Ri, then
q = q̂i by the definition of Ri and claim 2.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 263

Table 10.1: Summary of the results of this chapter. The first column lists au-
tomata types, and the other columns indicate which types satisfy each property.
An underlined Y indicates that the type enjoys the property, and moreover, the
underlying conversion or algorithm only requires polynomial time.

Automaton Type Expr. Det. Union Inters. Comp.

NFA/DFA Y Y Y Y Y
NBA/DBA (Büchi) Y N Y N N
NCA/DCA (Co-Büchi) N Y N Y N
NRA/DRA (Rabin) Y Y Y N N
NSA/DSA (Streett) Y Y N Y N
NPA/DPA (Parity) Y Y N N Y
NMA/DMA (Muller) Y Y Y Y Y

Proof of the proposition. For every H ⊆ {1, . . . , n}, consider the word

wH =
(
a(bb)k1a(bb)k2a · · · (bb)kn#

)ω
where ki = 1 if i ∈ H, and ki = 0 otherwise. For example, if n = 4 andH = {1, 3},
then wH = (abbaabba#)ω. Let ρAH and ρBH be accepting runs of A and B on wH .
We have q̂i ∈ inf(ρAH) iff i ∈ H. By claim 3, ρBH visits Ri infinitely often iff i ∈ H,
and so inf(ρHB) ∩ Ri ̸= ∅ iff i ∈ H. It follows inf(ρHB) ̸= inf(ρH

′

B) for every two
distinct subsets H,H ′ ⊆ {1, . . . , n}, and thus |M| ≥ 2n.

10.4 Summary

In chapter 1 and chapter 3, we have shown that automata on finite words and reg-
ular expressions form a trinity and that all boolean operations can be implemented
in linear or quadratic time with deterministic automata as data structure. The fact
that a single type of automata simultaneously enjoys all of these properties is often
taken for granted. It should not be. It is a remarkable fact, which, as we have seen
in this chapter, does not hold anymore for automata on infinite words.

Table 10.1 summarizes the contents of the chapter. The first column lists au-
tomata types. The next two columns indicate which of the properties of an ω-
trinity hold, and the last three columns indicate which of the properties concern-
ing boolean operations hold. More precisely, the meaning of each column is as
follows:

• Expr. Every ω-regular expression (for the row NFA/DFA, every regular ex-
pression) can be converted into an automaton of this type.

• Det. For every nondeterministic automaton of this type, there is an equiva-
lent deterministic automaton of the same type.

• Union. Union of deterministic automata of this type can be implemented
using the pairing construction.

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 264

• Inters. Intersection of deterministic automata of this type can be imple-
mented using the pairing construction.

• Comp. Complementation of deterministic automata of this type can be im-
plemented without changing the semi-automaton or the type of the accep-
tance condition.

The entries of the table are as follows: N (the property does not hold), Y (the
property holds, but the underlying conversion or algorithm requires exponential
time), and Y (the property holds and the underlying conversion or algorithm only
requires polynomial time). In particular, Y indicates that the resulting automaton
has polynomial size in the input.

The consequence of these results is that for each application, one must choose
the adequate type of ω-automaton. Our main application in this book is auto-
matic verification, and for this purpose, in the next chapter, we choose generalized
Büchi automata, a type of ω-automata whose acceptance condition lies between
the Büchi and Streett conditions.

10.5 Exercises

 Exercise 141. Construct Büchi automata and ω-regular expressions, as
small as possible, recognizing the following ω-languages over the alphabet {a, b, c}.
Recall that inf(w) is the set of letters of {a, b, c} that occur infinitely often in w.

(a) {w ∈ {a, b, c}ω : {a, b} ⊇ inf(w)},

(b) {w ∈ {a, b, c}ω : {a, b} = inf(w)},

(c) {w ∈ {a, b, c}ω : {a, b} ⊆ inf(w)}.

 Exercise 142. Construct Büchi automata and ω-regular expressions, as
small as possible, recognizing the following ω-languages over the alphabet {a, b, c}.
Recall that inf(w) is the set of letters of {a, b, c} that occur infinitely often in w.

(a) {w ∈ {a, b, c}ω : {a, b, c} = inf(w)},

(b) {w ∈ {a, b, c}ω : if a ∈ inf(w) then {b, c} ⊆ inf(w)}.

 Exercise 143. Give deterministic Büchi automata for the following ω-
languages over Σ = {a, b, c}:

(a) {w ∈ Σω : w contains at least one c},

(b) {w ∈ Σω : every a in w is immediately followed by a b},

(c) {w ∈ Σω : between two successive as in w there are at least two bs}.

 Exercise 144. Prove or disprove the following statements:

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 265

(a) For every Büchi automaton A, there exists an NBA B with a single initial
state and such that Lω (A) = Lω (B).

(b) For every Büchi automaton A, there exists an NBA B with a single accepting
state and such that Lω (A) = Lω (B).

 Exercise 145. Recall that every finite set of finite words is a regular language.
Prove that this does not hold for infinite words. More precisely:

(a) Prove that every nonempty ω-regular language contains an ultimately peri-
odic ω-word (i.e., an ω-word of the form uvω for some finite words u ∈ Σ∗

and v ∈ Σ+).

(b) Give an ω-word w such that {w} is not an ω-regular language. Hint:
Use (a).

 Exercise 146. Consider the class of nondeterministic automata over ω-words
with the following acceptance condition: an infinite run is accepting iff it visits an
accepting state at least once. Show that no such automaton accepts the language
of all words over {a, b} containing infinitely many a and infinitely many b.

 Exercise 147. The limit of a language L ⊆ Σ∗ is the ω-language lim(L),
defined as follows: w ∈ lim(L) iff infinitely many prefixes of w are words of L
(e.g., the limit of (ab)∗ is {(ab)ω}).

(a) Determine the limit of the following regular languages over {a, b}:

(i) (a+ b)∗a,
(ii) the set of words containing an even number of a,
(iii) a∗b.

(b) Prove the following: An ω-language is recognizable by a deterministic Büchi
automaton iff it is the limit of a regular language.

(c) Exhibit a nonregular language whose limit is ω-regular.

(d) Exhibit a nonregular language whose limit is not ω-regular.

 Exercise 148. Let L1 = (ab)ω and let L2 be the ω-language of all ω-words
over {a, b} containing infinitely many a and infinitely many b.

(a) Exhibit three different DBAs with three states recognizing L1.

(b) Exhibit six different DBAs with three states recognizing L2.

(c) Show that no DBA with at most two states recognizes L1 or L2.

 Exercise 149. Find ω-regular expressions for the following languages:

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 266

(a) {w ∈ {a, b}ω : k is even for each subword bakb of w},

(b) {w ∈ {a, b}ω : w has no occurrence of bab}.

 Exercise 150. In definition 2.20, we introduced the quotient A/P of an NFA
A with respect to a partition P of its states. In lemma 2.22, we proved L (A) =
L (A/Pℓ) for the language partition Pℓ that puts two states q1, q2 in same the block
iff LA(q1) = LA(q2). Let B = (Q,Σ, δ,Q0, F) be an NBA. Given a partition P of
Q, define the quotient B/P of B with respect to P as for an NFA.

(a) Let Pℓ be the partition of Q that puts two states q1, q2 of B in same block
iff Lω,B(q1) = Lω,B(q2), where Lω,B(q) denotes the ω-language containing
the words accepted by B with q has initial state. Does Lω (B) = Lω (B/Pℓ)
always hold?

(b) Let CSR be the coarsest stable refinement of the equivalence relation with
equivalence classes {F,Q \ F}. Does Lω (A) = Lω (A/CSR) always hold?

 Exercise 151. Let L be an ω-language over alphabet Σ, and let w ∈ Σ∗. The
w-residual of L is the ω-language Lw = {w′ ∈ Σω : ww′ ∈ L}. An ω-language L′
is a residual of L if L′ = Lw for some word w ∈ Σ∗. We show that the theorem
stating that a language of finite words is regular iff it has finitely many residuals
does not extend to ω-regular languages.

(a) Prove this statement: If L is an ω-regular language, then it has finitely many
residuals.

(b) Disprove this statement: Every ω-language with finitely many residuals is
ω-regular.

Hint: Consider a nonultimately periodic ω-word w and its language Tailw of
infinite tails.

 Exercise 152. The solution to exercise 150(2) shows that the reduction al-
gorithm for NFAs that computes the partition CSR of a given NFA A and constructs
the quotient A/CSR can also be applied to NBAs. Generalize the algorithm so that
it works for NGAs.

 Exercise 153. Let L = {w ∈ {a, b}ω : w contains finitely many a}.

(a) Give a deterministic Rabin automaton for L.

(b) Give an NBA for L and try to “determinize” it by using the NFA to DFA pow-
erset construction. What is the language accepted by the resulting DBA?

(c) What ω-language is accepted by the following Muller automaton with accep-
tance condition {{q0}, {q1}, {q2}}? And with acceptance condition {{q0, q1},
{q1, q2}, {q2, q0}}?

CHAPTER 10. CLASSES OF ω-AUTOMATA AND CONVERSIONS 267

q2

q0 q1

a b

c

a, b, c

a, b, ca, b, c

(d) Show that any Büchi automaton that accepts the ω-language of (c), under
the first acceptance condition, has more than three states.

(e) For every m,n ∈ N>0, let Lm,n be the ω-language over alphabet {a, b} de-
scribed by the ω-regular expression (a+ b)∗((ambb)ω + (anbb)ω).

(i) Describe a family of Büchi automata accepting the family ofω-languages
{Lm,n}m,n∈N>0

.
(ii) Show that there exists c ∈ N such that for allm,n ∈ N>0, the language

Lm,n is accepted by a Rabin automaton with at most max(m,n) + c
states.

(iii) Modify your construction in (ii) to obtain Muller automata instead of
Rabin automata.

(iv) Convert the Rabin automaton for Lm,n obtained in (ii) into a Büchi
automaton.

 Exercise 154. Show that a parity condition (F1, F2, . . . , F2m) is equivalent
to the Streett condition {⟨∅, F1⟩, ⟨F2, F3⟩, . . . , ⟨F2m−2, F2m−1⟩}.

Chapter 11
Boolean Operations:

Implementations

In chapters 3 and 5 of part I of the book, we implemented the list of operations
on sets of objects and relations between objects shown in table 0.1 of chapter 0.
The implementation assumes that objects are encoded as finite words and uses
automata on finite words as data structure. In this chapter and in chapter 12, we
undertake the same task, but assuming that objects are encoded as ω-words and
using automata on infinite words as data structure.

The list of table 0.1 is split into three parts: operations on sets, tests on sets,
and operations on relations. In this chapter, we deal with the operations on sets:
union, intersection, and complement. Chapter 12 will deal with the tests on sets.
There is no chapter devoted to the operations on relations, because their imple-
mentation, at least in a first approximation, does not require new ideas beyond
those of chapter 5.

In chapter 10, we have already implemented union, intersection, and comple-
ment using deterministic Muller automata (DMA) as data structure. However, all
three operations have worst-case exponential blow up (see table 10.1). The con-
versions of the chapter also allow us to use deterministic Rabin, Streett, or parity
automata as data structure, but in each case, two out of the three operations still
have exponential blow up.

We can do better by going from deterministic to nondeterministic automata.
We present an implementation based on nondeterministic generalized Büchi au-
tomata (NGA), an automata type whose acceptance condition can be seen as a
generalization of the Büchi condition—hence the name—or as a special case of
the Streett condition. In particular, the implementation directly constructs a com-
plement NGA without determinizing the original NGA first.

The chapter is divided into four sections. In section 11.1, we introduce NGAs
and give a simple NGA → NBA conversion. In section 11.2, we show that union
and intersection can be elegantly implemented on NGAs, as in the case of finite
words. More precisely, given two NGAs with n1 and n2 states, we can construct
union and intersection NGAs with O(n1 +n2) and O(n1n2) states, respectively. In
section 11.3, we undertake the much harder task of implementing complementa-
tion. The complementation procedure is indirect, in the sense that we present a

268

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 269

direct complementation procedure for NBAs and use the NGA→ NBA conversion
to lift it to a procedure for NGAs.

11.1 Generalized Büchi Automata

Recall that Büchi automata have one set of accepting states, which accepting runs
must visit infinitely often. Generalized Büchi automata have a collection of sets of
accepting states, and accepting runs must visit each set in the collection infinitely
often.

Definition 11.1. Let S = (Q,Σ, δ,Q0) be a semi-automaton. An acceptance con-
dition on S is a generalized Büchi condition if there exists a set G ⊆ 2Q of sets of
states such that a run ρ is accepting iff it visits every set of G infinitely often (i.e., iff
inf(ρ) ∩ F ̸= ∅ for every F ∈ G).

A nondeterministic generalized Büchi automaton (NGA) is a tuple A = (Q,Σ,
δ,Q0, F), where F ⊆ Q is a generalized Büchi condition.

Example 11.2. Consider the structure S from example 10.26, which is recalled in
figure 11.1.

With the generalized Büchi condition {{qa}, {qb}}, the language of S is the set
of words containing infinitely many as and infinitely many bs. With the generalized
Büchi condition {{qa, qb}}, which is also a standard Büchi condition, S recognizes
the set of words containing infinitely many as or infinitely many bs.

Observe that Büchi automata correspond to generalized Büchi automata whose
acceptance condition contains a single set of accepting states. However, we can
also see NGAs as a special class of nondeterministic Streett automata. Recall that
a Streett acceptance condition is a set S of Streett pairs ⟨F,G⟩ such that a run ρ
is accepting iff for every ⟨F,G⟩ ∈ S, the run visits F finitely often or G infinitely
often, that is, if inf(ρ) ∩ F = ∅ or inf(ρ) ∩ G ̸= ∅ holds for every ⟨F,G⟩ ∈ S. It
follows that a generalized Büchi condition G = {F0, . . . , Fm−1} is equivalent to the
Streett condition S = {⟨Q,F0⟩, . . . , ⟨Q,Fm−1⟩}. Indeed, since no run can visit Q
finitely often, because runs are infinite by definition, the condition that a run visits

qa qb

qc

a b

c

b

c

a

ca

b

Figure 11.1: Example of a semi-automaton.

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 270

Q finitely often or Fi infinitely often, corresponding to the Streett pair ⟨Q,Fi⟩, is
equivalent to requiring only that the run visits Fi infinitely often.

In section 10.3.2.1, we described a conversion NSA → NBA. Since NGAs are
a special case of Streett automata, the conversion can also be applied to them.
However, in this special case, the conversion becomesmuch simpler. LetA = (S,G)
be a NGA with G = {F0, . . . , Fm−1}. As observed in section 10.3.2.1, a run ρ
of S visits each set of G infinitely often iff it eventually visits F0, and for every
0 ≤ i ≤ m− 1, every visit of ρ to Fi is eventually followed by a later visit to Fi⊕1,
where ⊕ denotes addition modulo m. So, the NBA contains replicas S0, . . . , Sm−1
of S, with the modification that transitions of Si leaving the replica qi of a state
q ∈ Fi are redirected to Si⊕1. The Büchi acceptance condition is {q0 : q ∈ F0},
that is, a state is accepting if it is the replica in S0 of one of the states of F0.
Algorithm 46 describes the procedure in detail.

Algorithm 46 Conversion from NGA to NBA.
NGAtoNBA(A)
Input: NGA A = (Q,Σ, Q0, δ,G), where G = {F0, . . . , Fm−1}
Output: NBA A′ = (Q′,Σ, δ′, Q′0, F

′)

1 Q′, δ′, F ′ ← ∅; Q′0 ← {q0 : q ∈ Q0}
2 W ← Q′0
3 whileW ̸= ∅ do
4 pick qi fromW

5 add qi to Q′

6 if q ∈ F0 and i = 0 then add q0 to F ′

7 for all a ∈ Σ, r ∈ δ(q, a) do
8 if q /∈ Fi then
9 if ri /∈ Q′ then add ri toW
10 add (qi, a, ri) to δ′

11 else /* q ∈ Fi */
12 if ri⊕1 /∈ Q′ then add ri⊕1 toW
13 add (qi, a, ri⊕1) to δ′

14 return (Q′,Σ, δ′, Q′0, F
′)

11.2 Union and Intersection

Let A1 = (S1,G1) and A2 = (S2,G2) be two NGAs, where S1 = (Q1,Σ, δ1, Q01),
S2 = (Q2,Σ, δ2, Q02), G1 = {F 1

1 , . . . , F
m1
1 }, and G2 = {F 1

2 , . . . , F
m2
2 }. Assume

without loss of generality that Q1 and Q2 are disjoint sets.

Union. Let S1∪S2 be the result of putting S1 and S2 side by side, that is, S1∪S2 =
(Q1 ∪Q2,Σ, δ1 ∪ δ2, Q01 ∪Q02). Let m = max{m1,m2}, and assume without loss
of generality that m = m1. For every 1 ≤ i ≤ m, let

F i =

{
F i1 ∪ F i2 if i ≤ m2,
F i1 ∪Q2 otherwise,

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 271

and define G = {F 1, . . . , Fm}. We show that the NGA A1 ∪ A2 = (S1 ∪ S2,G)
satisfies Lω (A1 ∪A2) = Lω (A1) ∪ Lω (A2).

Note that, since Q1 and Q2 are disjoint, a run of S1 ∪ S2 is either a run of S1

or a run of S2. If ρ is a run of S1, then it never visits any state of Q2, and so

ρ is an accepting run of A1 ∪A2

⇐⇒
m∧
i=1

inf(ρ) ∩ F i ̸= ∅ (by def. of G)

⇐⇒
m∧
i=1

inf(ρ) ∩ F i1 ̸= ∅ (as ρ does not visit Q2)

⇐⇒ ρ is an accepting run of A1 (by def. of G1).

Similarly, if ρ is a run of A2, then it never visits any state of Q1, and so ρ is an
accepting run of A1 ∪ A2 iff it is an accepting run of A2. It follows that ρ is an
accepting run of A1 ∪A2 iff it is an accepting run of A1 or an accepting run of A2,
and we are done.

Intersection. Let [S1, S2] be the pairing of S1 and S2—that is, the semi-automaton
[S1, S2] = (Q1 ×Q2,Σ, δ,Q01 ×Q02), where δ([q1, q2], a) = δ(q1, a)× δ(q2, a). De-
fine

G = {F 1
1 ×Q2, . . . , F

m1
1 ×Q2} ∪ {Q1 × F 1

2 , . . . , Q1 × Fm2
2 }.

Note that G containsm1 +m2 sets. We show that the NGA A1 ∩A2 = ([S1, S2],G)
satisfies Lω (A1 ∩A2) = Lω (A1) ∩ Lω (A2).

If ρ is a run of [S1, S2], then its projections ρ1 and ρ2 onto Q1 and Q2 are runs
of S1 and S2 satisfying inf(ρ)|1 = inf(ρ1) and inf(ρ)|2 = inf(ρ2), where inf(ρ)|i is
the projection of inf(ρ) onto Qi. Thus, we have

ρ is an accepting run of A1 ∩A2

⇐⇒
m1∧
i=1

inf(ρ) ∩ (F i1 ×Q2) ̸= ∅ and
m2∧
i=1

inf(ρ) ∩ (Q1 × F i2) ̸= ∅

(by definition of G)

⇐⇒
m1∧
i=1

inf(ρ)|1 ∩ F i1 ̸= ∅ and
m2∧
i=1

inf(ρ)|2 ∩ F i2 ̸= ∅

(by definition of projection)

⇐⇒
m1∧
i=1

inf(ρ1) ∩ F i1 ̸= ∅ and
m2∧
i=1

inf(ρ2) ∩ F i2 ̸= ∅

(since inf(ρ)|1 = inf(ρ1) and inf(ρ)|2 = inf(ρ2))

⇐⇒ ρ1 is an accepting run of A1 and ρ2 is an accepting run of A2.

Algorithm 47 describes the algorithmic implementation that only constructs
the states of the pairing reachable from the initial states.

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 272

Algorithm 47 NGA intersection.
IntersNGA(A1, A2)

Input: NGAs A1 = (Q1,Σ, δ1, Q01,G1), A2 = (Q2,Σ, δ2, Q02,G2), where
G1 = {F 1

1 , . . . , F
m1
1 }, G2 = {F 1

2 , . . . , F
m2
2 }

Output: NGA A1 ∩A2 = (Q,Σ, δ,Q0,G), where G = {F 1, . . . , Fm1+m2},
satisfying Lω (A1 ∩A2) = Lω (A1) ∩ Lω (A2)

1 Q, δ, F ← ∅; Q0 ← Q01 ×Q02

2 W ← Q0

3 whileW ̸= ∅ do
4 pick [q1, q2] fromW

5 add [q1, q2] to Q
6 for all i = 1 to m1 do
7 if q1 ∈ F i1 then add [q1, q2] to F i

8 for all i = 1 to m2 do
9 if q2 ∈ F i2 then add [q1, q2] to Fm1+i

10 for all a ∈ Σ do
11 for all q′1 ∈ δ1(q1, a), q′2 ∈ δ2(q2, a) do
12 if [q′1, q′2] /∈ Q then add [q′1, q

′
2] toW

13 add ([q1, q2], a, [q
′
1, q
′
2]) to δ

q0 q1

b

c

a

r0 r1

a

a

b, c b

Figure 11.2: Two NGAs.

Example 11.3. Consider again the first two Büchi automata of example 10.8 as
depicted in figure 11.2, but this time as NGAs with one set of accepting states: F 1

1 =
{q1} for the automaton on the left and F 1

2 = {r1} for the one on the right.
For union, the construction yields an NGA whose semi-automaton is the result

of putting the two semi-automata above “side by side,” with acceptance condition
{F 1

1 ∪ F 1
2 } = {{q1, r1}}. For intersection, we obtain the NGA of figure 11.3, with

acceptance condition {F 1, F 2}, where F 1 = F 1
1 ×Q2 = {[q1, r0], [q1, r1]} and F 2 =

Q1 × F 1
2 = {[q0, r1], [q1, r1]}. The result is no longer an NBA.

Since accepting runs must visit both F 1 and F 2 infinitely often, they are the runs
that travel back an forth infinitely between [q0, r1] and [q1, r0] (no infinite run ever
visits [q1, r1]). In particular, state [q1, r1] can be removed without changing the lan-
guage. Compare with the result we would obtain if the two automata were NFAs.
In that case, the resulting NFA would have the same semi-automaton, but the only
accepting state would be [q1, r1].

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 273

F 1

F 2

q0, r0 q0, r1

q1, r0 q1, r1

a

b

a

bc

Figure 11.3: Intersection of the two NGAs from figure 11.2.

A special case. Note that A1 ∩A2 is not necessarily an NBA, even when A1 and
A2 are NBAs. We do obtain an NBA if, additionally, G1 = {F 1

1 } = {Q1}—that is,
when A1 is an NBA in which every state is accepting. Indeed, according to the
definition above, in this case, we get

G = {F 1
1 ×Q2} ∪ {Q1 × F 1

2 } = {Q1 ×Q2, Q1 × F 1
2 },

and since every run of A1 ∩ A2 visits states of Q1 × Q2 infinitely often, we can
replace G by the Büchi condition Q1 × F 1

2 . Observe that this is exactly the result
we obtain when we consider A1 and A2 as NFAs. In other words, in this special
case, we can compute an automaton for the intersection by means of the same
algorithm we used for automata on finite words. While this case seems to be very
special, it will be relevant in the application to verification in chapter 13.

11.3 Complement

Recall that an NFA is complemented by first converting it into an equivalent DFA
and then exchanging the final and nonfinal states of the DFA. For NGAs, this
approach cannot work, because not every NGA has an equivalent DGA. To see
why, observe that the conversion NGA → NBA shown in section 11.1 preserves
determinism—that is, it is also a conversion DGA → DBA. Therefore, if for every
NGA there is an equivalent DGA, then we can produce the chain of conversions
NBA → NGA → DGA → DBA, contradicting the fact that not every NBA has an
equivalent DBA (proposition 10.10).

We can complement NGAs using the results of chapter 10 for Muller automata.
Indeed, we can use a chain of conversions NGA → NMA → DMA to transform
an NGA A into an equivalent DMA B, which can be converted into a DMA B
recognizing Lω (A), which can be converted into an equivalent NGA A using the
conversion DMA→NBA. However, this requires to use determinization procedures
for ω-automata, like those announced, but not presented, in theorem 10.18 or
theorem 10.25. These constructions are more involved than the ones presented so
far in this book. More important, they are difficult to handle algorithmically; in
particular they often produce many redundant states that can be removed without
changing the language. Naive implementations spend much time exploring and

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 274

constructing such states, which makes them very inefficient. Therefore, efficient
implementations must design heuristics to detect and remove redundant states as
early as possible, and this is difficult to do.

In this chapter, we follow a different approach. We describe a construction for
the direct complementation of NBAs, bypassing the determinization step.1 In or-
der to complement an NGA, we first transform it into an NBA using the conversion
of section 11.1 and then apply the complementation procedure for NBAs.

The complementation procedure for NBAs builds upon section 10.2.3, in which
we presented a determinization procedure for NCAs. We assume that the reader
is familiar with it. Given an NCA A, the procedure introduced a mapping dag that
assigns to each word w a directed acyclic graph dag(w) “bundling” all runs of A
on w, in the sense that the runs of A on w correspond to the paths of the dag. The
procedure then constructed a DCA B satisfying for every word w

A accepts w
iff some path of dag(w) visits accepting states of A finitely often
iff the run of w in B visits accepting states of B finitely often
iff B accepts w.

We present the complementation procedure for NBA in a similar way. Fix an
NBA A = (S, F), where S = (Q,Σ, δ,Q0) is a semi-automaton with n states. Our
goal is to build another NBA A such that for every word w

A rejects w
iff no path of dag(w) visits accepting states of A infinitely often
iff some run of w in A visits accepting states of A infinitely often
iff A accepts w.

In a first step, we introduce the notion of odd ranking of an ω-word. For the
moment, it suffices to say that a ranking ofw is the result of decorating the nodes of
dag(w)with numbers, thatwmay have multiple rankings, and that an odd ranking
is a ranking in which certain nodes have odd rank. The definition of ranking will
ensure that

A rejects w
iff no path of dag(w) visits accepting states of A infinitely often
iff dag(w) has an odd ranking.

In the second step, we reuse the construction we applied to determinize NCAs,
but this time to construct an NBA A. Intuitively, the runs of A on a word w corre-
spond to the rankings of dag(w), and the odd rankings correspond to the accepting
runs. This yields

dag(w) has an odd ranking
iff A has an accepting run on w
iff A accepts w.

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 275

q r

a

a

b

Figure 11.4: Running example for the complementation procedure.

q0, 0 q0, 1

q1, 1

q0, 2 q0, 3

q1, 3

q0, 4

q1, 4

4 0 1 1 1

2 0 0

a

a

a

a

a

ab

q0, 1

q1, 1

q0, 2 q0, 3

q1, 3

q0, 4q0, 0

1 1 0 0 0

0 0

a

a

a

ab b

Figure 11.5: Two rankings of the running example.

11.3.1 Rankings and Level Rankings

In the rest of the chapter, we use the NBA of figure 11.4 as running example.
Recall that the directly acyclic graph dag(w) of w ∈ Σω is the result of bundling

together the runs of A on w (see section 10.2.3). Figure 11.5 depicts the initial
fragments of dag(abaω) and dag((ab)ω) (ignore the numbers on top of the states
for the moment).

A ranking of dag(w) is a mapping Rw that associates to each node of dag(w) a
natural number in the range [0, 2n], called a rank, satisfying two properties:

(a) the rank of a node is greater than or equal to the rank of its children, and

(b) the ranks of accepting nodes are even.

By (a), the ranks of the nodes along an infinite path form a nonincreasing
sequence, and so there is a node such that all its infinitely many successors in the
path have the same rank; we call this number the stable rank of the path.

Example 11.4. Figure 11.5 shows two possible rankings for the dags dag(abaω) and
dag((ab)ω) of our running example. For each node ⟨q, i⟩, the rank Rw(⟨q, i⟩) is the

1Which, since not every NBA has an equivalent DBA, does not even exist!

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 276

number on top of the node. Both dags have a single infinite path, with stable ranks 1
and 0, respectively.

Recall that the ith level of dag(w) is the set of nodes of the form ⟨q, i⟩. A
ranking Rw of dag(w) can be decomposed into an infinite sequence lr1, lr2, . . . of
level rankings, where the level ranking lri is defined as follows: lri(q) = Rw(⟨q, i⟩)
if ⟨q, i⟩ is a node of dag(w), and lri(q) = ⊥ otherwise. Further, for two level
rankings lr and lr′ and a letter a ∈ Σ, we write lr a7→ lr′ to denote, intuitively,
that lr′ can be the a-successor of lr in a ranking. Formally, we have lr a7→ lr′ if the
following holds for every state q′:

• lr′(q′) ̸= ⊥ iff lr(q) ̸= ⊥ for some q such that q a−→ q′.
(Informally: the states of lr′ are the a-successors of the states of lr.)

• lr(q) ≥ lr′(q′) for every q such that lr(q) ̸= ⊥ and q a−→ q′.
(Informally: the rank of a state of lr is at least as large as the rank of its
a-successors in lr′.)

Example 11.5. If we represent a level ranking lr of our running example by the
vector [

lr(q0)
lr(q1)

]
,

then the rankings of example 11.4 correspond to the sequences[
4
⊥

] [
0
2

] [
1
⊥

] [
1
0

]ω
[

1
⊥

] [
1
0

]([
0
⊥

] [
0
0

])ω
and we have [

4
⊥

]
a7→
[

0
2

]
b7→
[

1
⊥

](
a7→
[

1
0

])ω
[

0
⊥

]
a7→
[

1
0

](
b7→
[

0
⊥

]
a7→
[

0
0

])ω
.

We prove the following fundamental property of rankings, which requires to
introduce odd rankings.

Definition 11.6. For every word w, a ranking of dag(w) is odd if

1. every infinite path of dag(w) visits nodes of odd rank infinitely often, and

2. the initial nodes ⟨q0, 0⟩ for q0 ∈ Q0 have rank 2n.

For example, the top ranking of figure 11.5 is an odd ranking, because its only
infinite path visits infinitely often nodes of rank 1. The ranking at the bottom is
not odd, because only the first node of its unique infinite path has an odd ranking,
and the rank of the initial node is not 4. The following proposition characterizes
the words rejected by A as those whose dag admits an odd ranking.

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 277

Proposition 11.7. Let n be the number of states of A. For every word w ∈ Σω, w is
rejected by A iff dag(w) has an odd ranking.

Proof. ⇐) Assume that dag(w) has an odd ranking. Then every infinite path of
dag(w) has odd stable rank, and so it only contains finitely many nodes with even
rank. Since all accepting nodes have even ranks, no path of dag(w) visits accepting
nodes infinitely often. So w is rejected by A.
⇒) Assume that w is rejected by A. We construct a ranking that is almost

odd, defined as a ranking that satisfies property 1 of definition 11.6, and such
that every initial node ⟨q0, 0⟩ has rank at most 2n. This suffices, because we can
then increase the ranks of the initial nodes to 2n, if necessary, since this change
preserves all properties of a ranking.

Given two directed acyclic graphs (dags) D and D′, let D′ ⊆ D denote that
D′ can be obtained from D through deletion of some nodes and all their adjacent
edges. We proceed in two steps. First we assign ranks to nodes, and then we prove
that the assignment satisfies all properties of an odd ranking.

Assigning ranks to nodes. We define a function f that assigns to each node ⟨q, l⟩
of dag(w) a natural number f(q, l). We first inductively define an infinite chain
D0 ⊇ D1 ⊇ D2 ⊇ · · · of dags and define f(q, l) as the number i such that ⟨q, l⟩
belongs to Di but not to Di+1.

We say that a node of a (possibly finite) dag D ⊆ dag(w) is

• crosshatched iff it has only finitely many descendants;

• hatched iff it has infinitely many descendants, but none of them (including
the node itself) is accepting; and

• solid otherwise.

In particular, hatched nodes are not accepting. Observe also that the children of
a crosshatched node are crosshatched, and the children of a hatched node are
crosshatched or hatched. Now we define the following (see figure 11.6 for an
example):

• D0 = dag(w),

• D2i+1 is the result of deleting all the crosshatched nodes of D2i, and

• D2i+2 is the result of deleting all the hatched nodes of D2i+1.

Proving that f is an odd ranking. As mentioned above, it suffices to prove that
f is almost an odd ranking. The proof is divided into four parts:

(1) f assigns all nodes a number in the range [0, 2n].

(2) If ⟨q′, l′⟩ is a child of ⟨q, l⟩, then f(q′, l′) ≤ f(q, l).

(3) If ⟨q, l⟩ is an accepting node, then f(q, l) is even.

(4) Every infinite path of dag(w) visits nodes ⟨q, l⟩ such that f(q, l) is odd in-
finitely often.

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 278

q0, 0 q0, 1

q1, 1

q0, 2 q0, 3

q1, 3

q0, 4

q1, 4

D0:
a

a

a

a

a

ab

q0, 0

q1, 1

q0, 2 q0, 3 q0, 4

D1:

a

a a

b

q0, 0

q1, 1

D2:

a

Figure 11.6: Initial fragments of the dagsD0,D1, andD2 for dag(abaω). The map
f assigns to dag(abaω) the ranking shown at the top of example 11.4, with the
exception that f assigns rank 2 to ⟨q0, 0⟩. However, increasing the rank of ⟨q0, 2⟩
to 4 preserves all properties of an odd ranking.

Part 1 f assigns all nodes a number in the range [0, 2n].
We prove that the dag D2n+1 is empty, which implies that f assigns all nodes of
dag(w) a number in the range [0, 2n] by the definition of f . By the definition of
D2n+1, it suffices to show that D2n is finite. For this we proceed as follows: we
prove by induction on i that for every i ≥ 0, the levels of D2i eventually have at
most (n− i) nodes; formally, there exists ℓi ≥ 0 such that for every ℓ ≥ ℓi, the ℓth
level of D2i contains at most (n− i) nodes. Taking i = n, we obtain that the levels
of D2n eventually contain 0 nodes, and so that D2n is finite.
Base case i = 0. Since for every state q, a level contains at most one node of the
form ⟨q, ℓ⟩, every level of dag(w) = D0 contains at most n nodes.
Induction step i > 0. Assume now that the hypothesis holds for i; we prove it for
i + 1. Consider the dag D2i. If D2i is finite, then D2i+1 is empty. Thus, D2i+2

is empty as well, and we are done. So, assume that D2i is infinite. We make the

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 279

following claim:

Claim 1: D2i+1 contains some hatched node.

Proof of claim 1: Assume that no node in D2i+1 is hatched. We show that dag(w)
contains a path that visits accepting nodes infinitely often, contradicting the as-
sumption that A rejects w. It suffices to prove that every node of D2i+1 has a
descendant, different from itself, that is accepting. Let ⟨q, ℓ⟩ be an arbitrary node
of D2i+1. Since D2i+1 is obtained by removing all crosshatched nodes from D2i,
the node has at least one child. Since, by assumption, the child is not hatched, the
child has an accepting descendant, and we are done.

Let ⟨q, ℓ⟩ be a hatched node in D2i+1, which exists by claim 1. We prove that
the levels of D2i+2 eventually contain at most n − (i + 1) nodes. By induction
hypothesis, we know that the levels of D2i eventually contain at most n− i nodes.
Therefore, it suffices to show that the levels of D2i+2 eventually contain at least
one node less than the same level of D2i. We do this. Since ⟨q, ℓ⟩ is a node
of D2i+1, it is not crosshatched in D2i. Thus, ⟨q, l⟩ has infinitely many descen-
dants in D2i. By König’s lemma (lemma 10.14), D2i contains an infinite path
π = ⟨q, ℓ⟩⟨q1, ℓ+ 1⟩⟨q2, ℓ+ 2⟩ We claim the following:

Claim 2: No node of π is in D2i+2.

Proof of claim 2: Since all nodes of π have infinitely many descendants, none of
them is crosshatched in D2i, and so π also exists in D2i+1. Since ⟨q, ℓ⟩ is hatched
and, by definition, the children of a hatched node are crosshatched or hatched, π
is a hatched path. So every node of π is deleted from D2i+1 to obtain D2i+2, and
the claim is proved.

By the claim, every level after the ℓth level has at least one node less in D2i+2

than in D2i, and we are done.

Part 2 If ⟨q′, l′⟩ is a child of ⟨q, l⟩, then f(q′, l′) ≤ f(q, l).
This follows from the definition of f and from the fact that the children of a
crosshatched node in D2i are crosshatched, and the children of a hatched node
in D2i+1 are hatched.

Part 3 If ⟨q, l⟩ is an accepting node, then f(q, l) is even.
If f(q, l) is odd, then ⟨q, l⟩ is hatched atD2i+1 for some i, and so q is not accepting.

Part 4 Every infinite path of dag(w) visits nodes ⟨q, l⟩ such that f(q, l) is odd
infinitely often.
It suffices to prove that the stable rank of every infinite path of dag(w) is odd. Since
w is rejected by A, every infinite path of A visits the accepting states of A finitely
often. Take an arbitrary infinite path of dag(w), and let ⟨q, l⟩ be the first node of the
path that is assigned the stable rank. Since ⟨q, l⟩ has infinitely many descendants
(it belongs to an infinite path), it cannot have received its rank because it was a
crosshatched node of a dag D2i. So, it received its rank because it was a hatched
node of a dag D2i+1. Thus, ⟨q, l⟩ is assigned rank 2i+ 1, which is odd.

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 280

11.3.2 The Complement NBA A

Given an NBA A = (Q,Σ, δ,Q0, F), we construct an NBA A such that for every
word w:

(a) A run of A on w is a ranking of dag(w) with ranks in the range [0, 2n] and
vice versa.

(b) An accepting run of A on w is an odd ranking of dag(w) and vice versa.

Such an automaton satisfies for every word w:

A rejects w
⇐⇒ dag(w) has an odd ranking (by proposition 11.7)

⇐⇒ A has an accepting run on w

⇐⇒ A accepts w.

Thus, it recognizes the complement of the language of A.
Using the representation of a ranking as an infinite sequence of level rankings,

it is easy to construct a semi-automaton satisfying (a):

• The states are the level rankings with ranks in the range [0, 2n], that is, the
mappings lr : Q → [0, 2n] ∪ {⊥} such that lr(q) is even for every accepting
state q.

• The (unique) initial state is the level ranking lr0 given by lr0(q) = 2n if
q ∈ Q0, and lr(q) = ⊥ otherwise.

• The transitions are the triples (lr, a, lr′), where lr and lr′ are level rankings,
a ∈ Σ, and lr a7→ lr′ holds.

If we could define a Büchi acceptance condition on this semi-automaton such
that the resulting NBA also satisfies condition (b), we would be done. However, we
cannot decide if a ranking is odd or not if the only information we have is which
level rankings are visited infinitely often. Fortunately, we already solved a very
similar problem in section 10.2.3.1 of chapter 10, when we used the breakpoint
construction to determinize NCAs. Let us briefly recall what we did.

Breakpoint construction. In section 10.2.3.1, we introduced the set of break-
point levels—or just breakpoints—of a dag dag(w):

• The 0th level of dag(w) is a breakpoint.

• If level ℓ of dag(w) is a breakpoint, then the next level ℓ′ > ℓ such that every
path between nodes of ℓ and ℓ′ (excluding nodes of ℓ and including nodes
of ℓ′) visits an accepting state is also a breakpoint.

We then proved the following:

some path of dag(w) visits accepting states finitely often
iff the set of breakpoints of dag(w) is finite,

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 281

which is logically equivalent to

every path of dag(w) visits accepting states infinitely often
iff the set of breakpoints of dag(w) is infinite.

Finally, we defined the states of the DCA as the pairs [P,O], where P is the set
of states of a level, and O contains the states of P that owe a visit to the accepting
states (see section 10.2.3.1 for the formal definition); further, the accepting states
are the breakpoints, defined as the pairs where O = ∅.

Adapting the breakpoint construction for NCA→ DCA. We redefine the set of
breakpoints of dag(w):

• The 0th level of dag(w) is a breakpoint.

• If level ℓ is a breakpoint, then the next level ℓ′ > ℓ such that every path
between nodes of ℓ and ℓ′ (excluding nodes of ℓ and including nodes of ℓ′)
visits a node of odd rank is also a breakpoint.

That is, we replace the visits to accepting nodes in the previous definition by visits
to the nodes of odd rank. The same proof as in section 10.2.3.1 now yields the
following:

every path of dag(w) visits nodes of odd rank infinitely often
iff the set of breakpoints of dag(w) is infinite.

Finally, we define the states of A as the pairs [lr, O], where lr is a level ranking,
and O is the set of nodes of the ranking that owe a visit to a node of odd rank. The
accepting states are the breakpoints (i.e., the pairs [lr, O] with O = ∅). Let us give
a precise definition and summarize the correctness proof.

Formal definition of A. Let A = (Q,Σ, δ,Q0, F) be an NBA. The NBA A is
defined as follows:

States: The states are pairs [lr, O], where lr is a level ranking with ranks in the
range [0; 2n], and O ⊆ Q is a set of owing states.

Transitions: The transitions are triples [lr, O]
a−→[lr′, O′] such that lr a7→ lr′ and

O′ =

{
{q ∈ δ(O, a) : lr′(q) is even} if O ̸= ∅,
{q ∈ Q : lr′(q) is even} if O = ∅.

Initial states: The only initial state is the pair [lr0, ∅].
Accepting states: A state [lr, O] is accepting if O = ∅.

The proof that A recognizes Lω (A) follows from chaining these three facts:

• A run of A on w is accepting iff the ranking of dag(w) encoded by the run
contains infinitely many breakpoints.
This follows immediately from the fact that the accepting states of A are the
breakpoints.

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 282

• A ranking of dag(w) contains infinitely many breakpoints iff it is odd.
In section 10.2.3, we proved that the set of breakpoints of dag(w) is infinite iff
every path of dag(w) visits accepting states infinitely often. Exactly the same
proof yields now: the set of breakpoints of a ranking of dag(w) is infinite iff
every path of the ranking visits accepting states of A infinitely often (i.e., iff
the ranking is odd).

• dag(w) has an odd ranking iff A rejects w.
This is the fundamental property of rankings.

The pseudocode for the complementation algorithm, constructing only the
reachable states, is described in algorithm 48. In the pseudocode, we let lr0 de-
note the level ranking given by lr(q) = 2|Q| if q ∈ Q0 and lr(q) = ⊥ otherwise.
Further, lr a7→ lr′ denotes that for every q′ ∈ Q, (1) lr′(q′) ̸= ⊥ iff lr(q) ̸= ⊥ for
some q such that q a−→ q′, and (2) if lr′(q′) ̸= ⊥, then lr(q) ≥ lr′(q′) for every q
such that lr(q) ̸= ⊥ and q a−→ q′.

Algorithm 48 Algorithm to complement an NBA.
CompNBA(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: NBA A = (Q,Σ, δ, q0, F) with Lω

(
A
)
= Lω (A)

1 Q, δ, F ← ∅
2 q0 ← [lr0, ∅]
3 W ← {[lr0, ∅]}
4 whileW ̸= ∅ do
5 pick [lr, O] fromW ; add [lr, O] to Q
6 if O = ∅ then add [lr, O] to F
7 for all a ∈ Σ, lr′ s.t. lr a7→ lr′ do
8 if O ̸= ∅ then O′ ← {q ∈ δ(O, a) : lr′(q) is even}
9 else O′ ← {q ∈ Q : lr′(q) is even }
10 add ([lr, O], a, [lr′, O′]) to δ
11 if [lr′, O′] /∈ Q then add [lr′, O′] toW
12 return (Q,Σ, δ, q0, F)

Complexity. Let n be the number of states of A. Recall that level rankings are
mappings lr : Q → {⊥} ∪ [0, 2n]. So there at most (2n + 2)n level rankings, and
so A has at most (2n + 2)n · 2n ∈ nO(n) states. In order to compare this with the
complexity of complementation for NFAs, observe that nO(n) = 2O(n logn) and that,
given an NFA with n states, the complementation algorithm yields an automaton
with at most 2n states. Thus, for NBAs, we get an extra logn factor in the exponent.

Example 11.8. We construct the complements A1 and A2 of the only two NBAs over
alphabet {a} having one state and one transition (depicted in figure 11.7).
We have Lω (A1) = {aω} and Lω (A2) = ∅. The construction yields the automata of
figure 11.8.

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 283

We explain why, beginning with A1. A state of A1 is a pair ⟨lr, O⟩, where lr is
the rank of the state q (since there is only one state, we can identify lr and lr(q)).
The initial state is ⟨2, ∅⟩. Let us compute the successors of ⟨2, ∅⟩ under the letter a.
Let ⟨lr′, O′⟩ be a successor. Since δ(q, a) = {q}, we have lr′ ̸= ⊥, and since q is
accepting, we have lr′ ̸= 1. So, either lr′ = 0 or lr′ = 2. In both cases, the visit to a
node of odd rank is still “owed,” which implies O′ = {q}. So, the successors of ⟨2, ∅⟩
are ⟨2, {q}⟩ and ⟨0, {q}⟩. Let us now compute the successors of ⟨0, {q}⟩. Let ⟨lr′, O′⟩
be a successor. We have lr′ ̸= ⊥ and lr′ ̸= 1 as before, but now, since ranks cannot
increase along a path, we also have lr′ ̸= 2. Thus, lr′ = 0, and since the visit to the
node of odd rank is still “owed,” the only successor of ⟨0, {q}⟩ is ⟨0, {q}⟩. Similarly,
the successors of ⟨2, {q}⟩ are ⟨2, {q}⟩ and ⟨0, {q}⟩. Since ⟨2, ∅⟩ is the only accepting
state, A1 recognizes the empty ω-language.

Let us now construct A2. The difference with A1 is that, since q is no longer
accepting, it can also have odd rank 1. So, ⟨2, ∅⟩ has three successors: ⟨2, {q}⟩, ⟨1, ∅⟩,
and ⟨0, {q}⟩. The successors of ⟨1, ∅⟩ are ⟨1, ∅⟩ and ⟨0, {q}⟩. The accepting states are
⟨2, ∅⟩ and ⟨1, ∅⟩, and A2 recognizes aω.

11.3.3 A Lower Bound on the Size of A

We exhibit a family {Ln}n≥1 of ω-languages such that Ln is accepted by a Büchi
automaton An with n+ 1 states and any Büchi automaton accepting the comple-
ment of Ln has at least n! ∈ 2Θ(n logn) states.

Let Σn = {1, . . . , n,#}. We associate to a word w ∈ Σωn a directed graph Gw.
The nodes of Gw are the numbers {1, . . . , n}, and there is an edge from node i to
node j iff the finite word ij occurs infinitely often in w.

Example 11.9. Consider the words w = (12#1#2)ω and v = (12#)ω over Σ2 =
{1, 2,#}.

• Gw contains two nodes, 1 and 2, and two edges, 1→ 2 and 2→ 1.

• Gv has the same nodes but only one edge, 1→ 2.

Let Ln be the language of words w ∈ Σωn such that Gw has at least one cycle.
For example, for the words of example 11.9, we have w ∈ L2 and v /∈ L2. Let Ln
denote the complement of Ln (i.e., the set of words w such that Gw is acyclic).

In the rest of the section, we prove the following proposition:

Proposition 11.10. For all n ≥ 1, the language Ln is recognized by an NBA with
n+ 1 states, and every NBA recognizing Ln has at least n! states.

q q

A1: A2:

a a

Figure 11.7: Two NBAs with a single state and transition.

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 284

2
∅

0
{q}

2
{q}

A1:
a

a

a

a

a

2
∅

0
{q}

2
{q}

1
∅

A2:
a

a

a

a

a

a

a
a

a

Figure 11.8: Complement of the NBAs from figure 11.7.

An NBA for Ln. Let An be the NBA with states {1,2, . . . ,n, ch}, initial states
{1, . . . ,n}, accepting state ch, and the following transitions:

• i σ−→ i for every 1 ≤ i ≤ n and every σ ∈ Σn, and

• i i−→ ch and ch j−→ j for every 1 ≤ i, j ≤ n. (Intuitively, ch is an “interchange
station” that allows one to move from i to j by reading ij.)

ch

1

25

4 3

1 1
2

2

3

34

4

5

5

1, . . . , 5,#

1, . . . , 5,#

1, . . . , 5,#1, . . . , 5,#

1, . . . , 5,#

Figure 11.9: The Büchi automaton A5.

Figure 11.9 depicts A5. We prove that An recognizes Ln in two steps.

(1) If w ∈ Ln, then An accepts w.

Choose a cycle i0i2 · · · ik−1i0 of Gw. We construct an accepting run of An by pick-
ing i0 as the initial state and iteratively applying the following rule, where j⊕ 1 is
an abbreviation for (j + 1) mod k:

If the current state is ij, stay in ij until the next occurrence of ij ij⊕1 in
w, and then take

ij
ij−−→ ch

ij⊕1−−−→ ij⊕1
to move from ij to ij⊕1.

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 285

By definition of Gw, state ch is visited infinitely often, and so w is accepted.

Example 11.11. Consider again the word w = (12#1#2)ω of example 11.9. The
graph Gw has the cycle 1→ 2→ 1. The accepting run of A2 on w is

1 1−→ ch 2−→2 #−→2 1−→2 #−→2 2−→ ch 1−→1 1−→ ch 2−→2 · · · .

(2) If An accepts w, then w ∈ Ln.

We show that every node i of Gw has at least one outgoing edge i → j, which
proves that Gw contains a cycle. Let ρ be an accepting run of An on w. Since ρ is
accepting, it cannot stay in any of the states 1, . . . ,n forever, and hence for each
i ∈ inf(ρ), there is j ∈ inf(ρ) such that the sequence i ch j of states occurs infinitely
often in ρ. Since the only path of An matching this sequence of states is

i i−→ ch j−→ j,

the finite word ij occurs infinitely often in w, and so i→ j is an edge of Gw.

Every NBA recognizing Ln has at least n! states. We need some preliminaries.
Let τ = ⟨τ1, . . . , τn⟩ denote a permutation of ⟨1, . . . , n⟩. We make two observa-
tions:

(a) (τ#)ω ∈ Ln for every permutation τ .
Indeed, the graph G((τ #)ω) is just the path τ1−→ τ2−→· · ·−→ τn, which is
acyclic.

(b) If a word w contains infinitely many occurrences of two different permuta-
tions τ and τ ′ of ⟨1, . . . , n⟩, then w ∈ Ln.
Since τ and τ ′ are different, there are i, j ∈ {1, . . . , n} such that i precedes j
in τ and j precedes i in τ ′. Since w contains infinitely many occurrences of
τ , the graph Gw has a path from i to j. Since it also contains infinitely many
occurrences of τ ′, the graph also has a path from j to i. Hence, Gw contains
a cycle, which implies w ∈ Ln.

Now, let A be a Büchi automaton recognizing Ln, and let τ , τ ′ be two arbitrary
permutations of 1, . . . , n. By (a), there exist runs ρ and ρ′ ofA accepting (τ #)ω and
(τ ′ #)ω, respectively. We prove that the intersection of inf(ρ) and inf(ρ′) is empty.
This implies that A has at least as many accepting states as there are permutations
of 1, . . . , n, which proves the proposition. We proceed by contradiction. Assume
q ∈ inf(ρ)∩ inf(ρ′). We construct an accepting run ρ′′ by concatenating finite paths
ρ and ρ′ as follows:

(0) Starting from the initial state of ρ, follow ρ until it reaches q.

(1) Starting from q, follow ρ′ until it returns to q for the first time, after having
visited some accepting state and having read the word τ ′ at least once in
between.

(2) Starting from q, follow ρ until it returns to q for the first time, after having
visited some accepting state and having read the word τ at least once in
between.

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 286

(3) Go to (1).

The word accepted by ρ′′ contains infinitely many occurrences of both τ and τ ′.
By (b), this word belongs to Ln, contradicting Lω (A) = Ln.

11.4 Exercises

 Exercise 155. Consider the two Büchi automata (NBAs) below. Interpret
them as generalized Büchi automata (NGAs), construct their intersection, and con-
vert the resulting NGA into an NBA.

p q r

A:

b

a

c

a

b

s t

B:

a

a, c

b

 Exercise 156. Let Lσ = {w ∈ {a, b, c}ω : w contains infinitely many σ’s}.
Give deterministic Büchi automata for languages La, Lb, and Lc; construct the
intersection of these automata interpreted as NGAs; and convert the resulting NGA
as a Büchi automaton.

 Exercise 157. Give Büchi automata for the following ω-languages:

(i) L1 = {w ∈ {a, b}ω : w contains infinitely many as},

(ii) L2 = {w ∈ {a, b}ω : w contains finitely many bs}, and

(iii) L3 = {w ∈ {a, b}ω : each occurrence of a in w is followed by a b}.

Construct the intersection of these automata interpreted as NGAs, and convert the
resulting NGA as a Büchi automaton.

 Exercise 158. An ω-automaton has acceptance on transitions if the accep-
tance condition specifies which transitions must appear infinitely often in a run.
All classes of ω-automata (Büchi, Rabin, etc.) can be defined with acceptance on
transitions rather than states.

Give minimal deterministic automata, for the language of words over {a, b}
containing infinitelymany a and infinitelymany b, of the following kinds: (a) Büchi
(with state-based accepting condition), (b) generalized Büchi (with state-based
accepting condition), (c) Büchi with acceptance on transitions, and (d) generalized
Büchi with acceptance on transitions.

 Exercise 159. Consider the following Büchi automaton over Σ = {a, b}:

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 287

q0 q1

a, b b

b

(a) Sketch dag(ababω) and dag((ab)ω).

(b) Let rw be the ranking of dag(w) defined by

rw(q, i) =

1 if q = q0 and ⟨q0, i⟩ appears in dag(w),
0 if q = q1 and ⟨q1, i⟩ appears in dag(w),
⊥ otherwise.

Are rababω and r(ab)ω odd rankings?

(c) Show that rw is an odd ranking if and only if w ̸∈ Lω (B).

(d) Build a Büchi automaton accepting Lω (B) using the construction seen in the
chapter.

Hint: By (c), it is sufficient to use {0, 1} as ranks.

 Exercise 160. Design algorithms for the following decision problems:

(a) Given finite words u, v, x, y ∈ Σ∗, decide whether the ω-words uvω and xyω
are equal.

(b) Given a Büchi automaton A and finite words u, v, decide whether A accepts
the ω-word uvω.

Assume that you can algorithmically test whether the language of a given Büchi
automaton is empty or not (we will cover such procedures in chapter 12).

 Exercise 161. Show that, for every DBA A with n states, there is an NBA
B with 2n states such that Lω (B) = Lω (A). Explain why your construction does
not work for NBAs.

⋆ Exercise 162. A Büchi automaton A = (Q,Σ, δ,Q0, F) is weak if no
strongly connected component (SCC) of A contains both accepting and nonac-
cepting states—that is, every SCC C ⊆ Q satisfies either C ⊆ F or C ⊆ Q \ F .

(a) Prove that a Büchi automaton A is weak iff for every run ρ either inf(ρ) ⊆ F
or inf(ρ) ⊆ Q \ F .

(b) Prove that the algorithms for union, intersection, and complementation of
DFAs are correct for weak DBAs. More precisely, show that the algorithms
return weak DBAs recognizing respectively the union, intersection, and com-
plement of the languages of the input automata.

CHAPTER 11. BOOLEAN OPERATIONS: IMPLEMENTATIONS 288

 Exercise 163. Give algorithms that directly complement deterministic
Muller and parity automata, without going through Büchi automata.

 Exercise 164. Let A = (Q,Σ, q0, δ, {⟨F0, G0⟩, . . . , ⟨Fm−1, Gm−1⟩}) be a
deterministic automaton. What is the relation between the languages recognized
by A seen as a deterministic Rabin automaton and seen as a deterministic Streett
automaton?

⋆ Exercise 165. Consider Büchi automata with universal accepting condition
(UBA): an ω-word w is accepted if every run of the automaton on w is accepting,
that is, if every run of the automaton on w visits accepting states infinitely often.

Recall that automata on finite words with existential and universal accepting
conditions recognize the same languages (see exercise 21). Prove that this does
not hold for automata on ω-words by showing that, for every UBA, there is a DBA
that recognizes the same language. This implies that the ω-languages recognized
by UBAs are a proper subset of ω-regular languages.

Hint: On input w, the DBA checks that every path of dag(w) visits some final state
infinitely often. The states of the DBA are pairs (Q′, O) of sets of the UBA where
O ⊆ Q′ is a set of “owing” states. Loosely speaking, the transition relation is defined
to satisfy the following property: after reading a prefix w′ of w, the DBA is at the
state (Q′, O) given by

• Q′ is the set of states reached by the runs of the UBA on w′;

• O is the subset of states of Q′ that “owe” a visit to a final state of the UBA (see
the construction for the complement of a Büchi automaton).

Chapter 12
Emptiness Check: Implementations

After implementing boolean operations on NGAs in chapter 11, we present an
implementation of the tests on sets of objects shown in table 0.1 of chapter 0. The
list contains four sets: membership, emptiness, containment, and equivalence. We
only consider emptiness, as all other tests can be reduced to it:

• The membership test Member(x,X) takes as input an object x and a set of
objects X, encoded, respectively, as an ω-word and an ω-regular language
over some alphabet Σ. However, the test is only well defined after we fix
a finite representation for ω-words, which for cardinality reasons only can
represent a countable subset of Σω. We can limit the test to ω-words w for
which there exists an ω-regular expression s such that Lω (s) = {w}. In this
case, the membership test can be reduced to the emptiness set by converting
s into an ω-automaton, computing its intersection with the ω-automaton for
the ω-regular language encoding X, and conducting an emptiness test on
the result.

• As seen in chapter 3, testing the inclusion L1 ⊆ L2 reduces to testing the
emptiness of L1∩L2, and testing the equivalence L1 = L2 reduces to testing
the inclusions L1 ⊆ L2 and L2 ⊆ L1.

We present efficient algorithms for checking whether a given NGA A = (Q,Σ,
δ,Q0,G) recognizes the empty language. Since transition labels are irrelevant for
checking emptiness, in this chapter, we redefine δ as a set of pairs of states:

δ := {(q, q′) ∈ Q×Q : (q, a, q′) ∈ δ for some a ∈ Σ}

We assume that initially, the algorithms only know the set Q0 of initial states
of A. Further, the algorithms can query δ—that is, they can submit a state q to an
oracle that returns δ(q) and the collection of sets F ∈ G such that q ∈ F . So, the
algorithms must determine if A recognizes the empty language while exploring
it, and only “forward” exploration is possible. In particular, the algorithms can
contain loops of the form “for q′ ∈ δ(q) do · · · ” but no loops of the form “for q′ ∈
δ−1(q) do · · · ”; computing the predecessors of a state is not a primitive operation.
We say that these algorithms operate on-the-fly.

289

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 290

Example 12.1. To illustrate the notion of an on-the-fly algorithm, consider the prob-
lem of deciding whether an NFA, not necessarily in normal form, recognizes the empty
language. An NFA recognizes a nonempty language iff some final state is reachable
from some initial state. In principle, this can be checked by means of a forward search
that explores the NFA from the initial states, looking for final states, or by a back-
ward search that explores the NFA backward from the final states, looking for initial
states. The first algorithm works on-the-fly: it can be implemented even if initially
only Q0 is known and δ can be queried. The second one does not work on-the-fly.

To understand the advantage of on-the-fly algorithms, consider the problem
of deciding whether the intersection of the languages of two NGAs, say A1 and
A2, is empty. We can first use IntersNGA (algorithm 47) to construct an NGA A
recognizing Lω (A1) ∩ Lω (A2) and then apply the emptiness algorithm to it, but
this requires to construct the complete automaton A. We can do better by observ-
ing that IntersNGA constructs A in a “forward manner” too, starting at the initial
states and iteratively constructing the successors of the states [q1, q2] constructed
so far. This allows us to link the intersection and emptiness algorithms: a query
δ([q1, q2]) to the oracle of the on-the-fly emptiness algorithm is answered by the
intersection algorithm, which computes the successors of [q1, q2] in A according
to IntersNGA. The composite algorithm may be able to determine that A has a
nonempty language after having constructed only a small part of it.

On-the-fly emptiness algorithms are needed for the on-the-fly approach to au-
tomatic verification described in section 7.4.2 of chapter 7, where the reader can
find a more detailed discussion.

We need a few graph-theoretical notions. If (q, r) ∈ δ, then r is a successor of
q and q is a predecessor of r. A path is a sequence q0, q1, . . . , qn of states such that
qi+1 is a successor of qi for every i ∈ {0, . . . , n−1}; we say that the path leads from
q0 to qn. Note that a path may consist of only one state; in this case, the path is
empty and leads from a state to itself. A cycle is a nonempty path that leads from
a state to itself. We write q ⇝ r to denote that there is a path from q to r.

Clearly,A is nonempty iff it has an accepting lasso—that is, a path q0q1 . . . qn−1qn
such that qn = qi for some i ∈ {0, . . . , n − 1} and {qi, qi+1, . . . , qn−1} ∩ F ̸=
∅ for every F ∈ G. The lasso consists of a path q0 . . . qi, followed by a cycle
qiqi+1 . . . qn−1qi. We are interested in emptiness checks that on input A report
EMPTY or NONEMPTY (sometimes abbreviated to EMP and NEMP) and in the
latter case return an accepting lasso as a witness of nonemptiness.

The chapter is divided into two sections, which present algorithms based on
depth-first search (DFS) and breadth-first search (BFS) of the NGA, respectively. In
all algorithms, we first consider the special case in which the automaton is an NBA.
Emptiness of GAs can then be checked by applying the conversion NGA→NBA, but
for all algorithms except one, we present a more efficient alternative that sidesteps
the conversion.

12.1 Emptiness Algorithms Based on Depth-First Search

Wepresent two emptiness algorithms that exploreA using depth-first search (DFS).
We start with a brief description of DFS and some of its properties.

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 291

A DFS ofA is the result of conducting DFSs from each initial state ofA. Assume
one of these DFSs starts at an initial state q0. If the current state q still has unex-
plored outgoing transitions, then one of them is selected. If the transition leads to
a not yet discovered state r, then r becomes the current state. If all of q’s outgo-
ing transitions have been explored, then the search “backtracks” to the state from
which q was discovered (i.e., this state becomes the current state). The process
continues until q0 becomes the current state again and all its outgoing transitions
have been explored. Algorithm 49 provides a pseudocode implementation (ignore
algorithm DFS_Tree for the moment).

Observe that DFS is nondeterministic, since we do not fix the order in which
the states of δ(q) are examined by the for loop. Since, by hypothesis, every state
of an automaton is reachable from the initial state, we always have S = Q after
termination. Moreover, after termination, every state q ̸= q0 has a distinguished
input transition—the one that led to the discovery of q during the search. It is well
known that the graph with states as nodes and these distinguished transitions as
edges is a tree with root q0, called a DFS-tree. If some path of the DFS-tree leads
from q to r, then we say that q is an ascendant of r, and r is a descendant of q (in
the tree).

It is easy to modify DFS so that it returns a DFS-tree, together with timestamps
for the states. The algorithm, which we call DFS_Tree, is shown below, on the
right of DFS. While timestamps are not necessary for conducting a search, many
algorithms based on depth-first search use them for other purposes.1 Each state q
is assigned two timestamps. The first one, d[q], records the time at which q is first
discovered, and the second, f [q], the time at which the search finishes examining
the outgoing transitions of q. Since we are only interested in the relative order
in which states are discovered and finished, we assume that the timestamps are

1In the rest of the chapter, and in order to present the algorithms in a more compact form, we omit
the instructions for computing the timestamps and just assume they are there.

Algorithm 49 Depth-first search algorithm.
DFS(A)
Input: NGA A = (Q,Σ, δ,Q0, F)

1 S ← ∅
2 for all q0 ∈ Q0 do dfs(q0)

3 proc dfs(q)
4 add q to S
5 for all r ∈ δ(q) do
6 if r /∈ S then dfs(r)
7 return

DFS_Tree(A)
Input: NGA A = (Q,Σ, δ,Q0, F)
Output: Time-stamped tree (S, T, d, f)

1 S ← ∅
2 T ← ∅; t← 0

3 dfs(q0)

4 proc dfs(q)
5 t← t+ 1; d[q]← t

6 add q to S
7 for all r ∈ δ(q) do
8 if r /∈ S then
9 add (q, r) to T ; dfs(r)
10 t← t+ 1; f [q]← t

11 return (S, T, d, f)

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 292

integers ranging between 1 and 2|Q|, that is, we assume that the clock only ticks
when a state is discovered or when the search from a state finishes.

In our analyses, we also assume that at every time point, a state is white, gray,
or black. A state q is white during the interval [0, d[q]), gray during the interval
[d[q], f [q]), and black during the interval [f [q], 2|Q|]. So, loosely speaking, q is
white if it has not been yet discovered, gray if it has already been discovered but
still has unexplored outgoing edges, and black if all its outgoing edges have been
explored. Timestamp 0 refers to the initial moment where the whole graph is
white, that is, no state has been discovered yet. It is easy to see that at all times,
the gray states form a path (the gray path) starting at q0 and ending at the state
being currently explored, that is, at the state q such that dfs(q) is being currently
executed; moreover, this path is always part of the DFS-tree.

Example 12.2. The following picture shows the DFS-tree and the discovery and fin-
ishing times of two possible runs of DFS_Tree on a NBA. Thick colored transitions
belong to the DFS-tree. The interval [d, f) on top of a state gives the discovery time d
and finishing time f . The interval corresponds to the time during which the state is
gray. At time 0, all states are white, and at time 2|Q| = 12, they are all black.

q0 q1 q2 q3 q4

q5

[1, 12) [2, 11) [4, 9) [5, 8) [6, 7)

[3, 10)

q0 q1 q2 q3 q4

q5

[1, 12) [2, 11) [3, 8) [4, 7) [5, 6)

[9, 10)Observe that in the first run, the DFS-tree is just a path. Notice also that the discovery
and finishing times do not completely determine a run. For example, in the first run,
we do not know whether the DFS explored the transition q5 → q0 before q5 → q2 or
the other way round. In the second run, the gray path is q0 at time 1, q0q1q2q3 at
time 4, and q0q1q5 at time 9.

We recall without proof two important properties of depth-first searches. Both
follow easily from the fact that a procedure call suspends the execution of the
caller, which is only resumed after the execution of the callee terminates.

Theorem 12.3 (parenthesis theorem). Let I(q) denote the interval [d[q], f [q]], and
let I(q) ≺ I(r) denote that f [q] < d[r] holds. In a DFS-tree, for any two states q
and r, one of the following four conditions holds:

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 293

• I(q) ⊆ I(r) and q is a descendant of r;

• I(r) ⊆ I(q) and r is a descendant of q;

• I(q) ≺ I(r), and neither q is a descendant of r, nor r is a descendant of q;
and

• I(r) ≺ I(q), and neither r is a descendant of q, nor q is a descendant of r.

Theorem 12.4 (white-path theorem). In a DFS-tree, r is a descendant of q (and
so I(r) ⊆ I(q)) if and only if, at time d[q]− 1, state r can be reached from q along
a path of white states.

Example 12.5. In the first run of example 12.2 for every two states qi and qj , we have
I(qi) ⊆ I(qj) or I(qj) ⊆ I(qi). By the parenthesis theorem, either qi is a descendant
of qj or vice versa, which implies that the DFS-tree is a path, as is indeed the case.

Now, compare the discovery times of q2 and q5 in the first and second runs. In
the first run, we have d[q2] = 4 and d[q5] = 3. So at time 2, the path q5 → q2 is
white. By the white-path theorem, q2 is a descendant of q5 in the DFS-tree, and so,
by the parenthesis theorem, I(q2) ⊆ I(q5). In the second run, we have d[q2] = 3 and
d[q5] = 9. So at time 8 no path from q5 to q2 is white. By the white-path theorem
and the parenthesis theorem, I(q2) ≺ I(q5).

12.1.1 The Nested-DFS Algorithm

LetA be an NBA. To determine ifA is empty, we can search for the accepting states
of A and check if at least one of them belongs to a cycle. A naive implementation
proceeds in two phases, searching for accepting states in the first and for cycles
in the second. The runtime is quadratic: since an automaton with n states and m
transitions has O(n) accepting states, and since searching for a cycle containing a
given state takes time O(n+m), we obtain a bound of O(n2 + nm).

We introduce the nested-DFS algorithm, which runs in time O(n+m). It uses
the first phase not only to discover the reachable accepting states but also to sort
them. The searches of the second phase are conducted according to the order
determined by the sorting. As we shall see, conducting the search in this order
avoids repeated visits to the same state.

The first phase is carried out by a DFS, and the accepting states are sorted by
increasing finishing (not discovery!) time. This is known as the postorder induced
by the DFS. Assume that in the second phase, we have already performed a search
starting from the state q and the search has failed (i.e., no cycle of A contains
q). Suppose we proceed with a search from another state r (which implies f [q] <
f [r]), and this search discovers some state s that had already been discovered by
the search starting at q. We claim that it is not necessary to explore the successors
of s again. More precisely, we claim that s ̸⇝ r, and so it is useless to explore the
successors of s, because the exploration cannot return any cycle containing r. The
proof of the claim is based on the following lemma:

Lemma 12.6. If q ⇝ r and f [q] < f [r] in some DFS-tree, then some cycle of A
contains q.

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 294

Proof. Let π be a path leading from q to r, and let s be the first node of π that is
discovered by the DFS. By definition, we have d[s] ≤ d[q]. We prove that q ̸= s,
q ⇝ s and s⇝ q hold, which implies that some cycle of A contains q.

• q ̸= s. If s = q, then at time d[q]− 1, the path π is white, and so I(r) ⊆ I(q)
by the white-path theorem. This contradicts f [q] < f [r].

• q ⇝ s. Obvious, because s belongs to π.

• s ⇝ q. Since d[s] ≤ d[q] and s ̸= q, we have d[s] < d[q]. By the parenthesis
theorem, we either have I(q) ⊆ I(s) or I(s) ≺ I(q). We show that the latter
is impossible. By minimality of s, at time d[s] − 1, the subpath of π leading
from s to r is white. Hence, by the white-path theorem, we have I(r) ⊆ I(s).
But I(r) ⊆ I(s) and I(s) ≺ I(q) contradict f [q] < f [r], and so I(s) ≺ I(q)
does not hold. It follows I(q) ⊆ I(s), and hence q is a descendant of s, by
the parenthesis theorem. This implies s⇝ q.

Example 12.7. The NBA of example 12.2 contains a path from q1 to q0. More-
over, the depicted DFS-trees satisfy f [q1] = 11 < 12 = f [q0]. As guaranteed by
lemma 12.6, some cycle contains q1, namely, the cycle q1q5q0.

To prove our previous claim, we assume that s ⇝ r holds, and derive a con-
tradiction. Since s was previously discovered by the search starting at q, we have
q ⇝ s, and so q ⇝ r. Since f [q] < f [r], by lemma 12.6, some cycle of A contains
q, contradicting the assumption that the search from q failed.

Hence, during the second phase, we only need to explore a transition at most
once—namely, when its source state is discovered for the first time. This guaran-
tees the correctness of this algorithm:

• Perform a DFS from each initial state ofA, and output the accepting states in
postorder.2 Let q1, . . . , qk be the output of the search, that is, f [q1] < · · · <
f [qk].

• For i = 1 to k, perform a DFS from the state qi, with the following changes:

– if the search visits a state q that was already discovered by any of the
searches starting at q1, . . . , qi−1, then the search backtracks;

– if the search visits qi, it stops and returns NONEMPTY.

• If none of the searches from q1, . . . , qk returns NONEMPTY, return EMPTY.

Example 12.8. We apply the algorithm to the NBA of example 12.1. Assume that
the first DFS proceeds as depicted in the first run. The search outputs the accepting
states in postorder, that is, in the order q2, q1, q0. Figure 12.1 shows the transitions
explored during the searches of the second phase. Transitions explored during the
search starting at accepting state qi have a label of the form “i.j.”

The search from q2 explores the transitions labeled by 2.1, 2.2, and 2.3. The search
from q1 explores the transitions 1.1, . . . , 1.5. Notice that the search backtracks after

2Notice that this does not require to apply any sorting algorithm; it suffices to output an accepting
state immediately after blackening it.

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 295

exploring 1.1, because the state q2 was already visited by the previous search. More-
over, this search is successful, because transition 1.5 reaches state q1, and so a cycle
containing q1 has been found.

The running time of the algorithm can be easily determined. The first DFS runs
in O(|Q| + |δ|) time. During the searches of the second phase, each transition is
explored at most once, and so they can be executed together in time O(|Q|+ |δ|).

12.1.1.1 Nesting the two searches

Recall that we are looking for algorithms that return an accepting lasso when
A is nonempty. The algorithm we have described is not good for this purpose.
Define the DFS-path of a state as the unique path of the DFS-tree leading from the
initial state to it. When the second phase answers NONEMPTY, the DFS-path of
the state being currently explored, say q, is an accepting cycle but usually not an
accepting lasso. For an accepting lasso, we can prefix this path with the DFS-path
of q obtained during the first phase. However, since the first phase cannot foresee
the future, it does not know which accepting state, if any, will be identified by
the second phase as belonging to an accepting lasso. So either the first search
must store the DFS-paths of all the accepting states it discovers, or a third phase
is necessary, in which a new DFS-path is recomputed.

This problem can be solved by nesting the first and the second phases: when-
ever the first DFS blackens an accepting state q, we immediately launch a second
DFS to check if q is reachable from itself. We obtain the nested-DFS algorithm, due
to Courcoubetis, Vardi, Wolper, and Yannakakis:

• Perform a DFS from each initial state.

• Whenever the search blackens an accepting state q, launch a new DFS from
q. If this second DFS visits q again (i.e., if it explores some transition leading
to q), stop with NONEMPTY. Otherwise, when the second DFS terminates,
continue with the first DFS.

• If the first DFS terminates for every initial state, output EMPTY.

An implementation is shown in algorithm 50. For clarity, the program on the
left does not include the instructions for returning an accepting lasso. A variable
seed is used to store the state from which the second DFS is launched. The in-
struction report X produces the output X and stops the execution. The set S is

q0 q1 q2 q3 q4

q5

1.5

1.2

1.1 2.1
2.2

2.3

1.4 1.3

Figure 12.1: An execution of the nested-DFS algorithm.

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 296

usually implemented by means of a hash table. Notice that it is not necessary to
store states [q, 1] and [q, 2] separately. Instead, when a state q is discovered, either
during the first or the second search, it is stored at the hash address, and two extra
bits are used to store which of the following three possibilities hold: only [q, 1] has
been discovered so far, only [q, 2], or both. So, if a state is encoded by a bitstring
of length c, then the algorithm needs c+ 2 bits of memory per state.

The algorithm on the right is a modification of NestedDFS that returns either
EMP or an accepting lasso. It uses a global boolean variable succ (for success),
initially set to false. If dfs2(q) observes that r = seed holds, it sets succ to true.
This causes procedure calls in dfs1(q) and dfs2(q) to be replaced by return [q, 1]
and return [q, 2], respectively. The lasso is produced in reverse order (i.e., with
the initial state at the end).

12.1.1.2 A small improvement

We show that dfs2 can already return NONEMPTY if it discovers a state that be-
longs to the DFS-path of dfs1. Let qk be an accepting state. Assume that dfs1
discovers qk and that the DFS-path of qk in dfs1 is q0q1 · · · qk−1qk. Assume further

Algorithm 50 Nested depth-first search algorithm.
NestedDFS(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: EMP if Lω (A) = ∅

NEMP otherwise
1 S ← ∅
2 for all q0 ∈ Q0 do dfs1(q0)
3 report EMP

4 proc dfs1(q)
5 add [q, 1] to S
6 for all r ∈ δ(q) do
7 if [r, 1] /∈ S then dfs1(r)
8 if q ∈ F then seed← q; dfs2(q)
9 return

10 proc dfs2(q)
11 add [q, 2] to S
12 for all r ∈ δ(q) do
13 if r = seed then report NEMP
14 if [r, 2] /∈ S then dfs2(r)
15 return

NestedDFSwithWitness(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: EMP if Lω (A) = ∅

NEMP otherwise
1 S ← ∅; succ← false
2 for all q0 ∈ Q0 do dfs1(q0)
3 report EMP

4 proc dfs1(q)
5 add [q, 1] to S
6 for all r ∈ δ(q) do
7 if [r, 1] /∈ S then dfs1(r)
8 if succ then return [q, 1]

9 if q ∈ F then
10 seed← q; dfs2(q)
11 if succ then return [q, 1]

12 return

13 proc dfs2(q)
14 add [q, 2] to S
15 for all r ∈ δ(q) do
16 if [r, 2] /∈ S then dfs2(r)
17 if r = seed then
18 succ← true
19 if succ then return [q, 2]

20 return

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 297

that dfs2(qk) discovers qi for some 0 ≤ i ≤ k − 1 and that the DFS-path of dfs2
is qkqk+1 · · · qk+lqi. The path q0q1 · · · qk−1qk · · · qk+lqi is a lasso, and, since qk is
accepting, it is an accepting lasso. So, stopping with NONEMPTY is correct. Im-
plementing this modification requires to keep track during dfs1 of the states that
belong to the DFS-path of the state being currently explored. Notice, however,
that we do not need information about their order. So we can use a set P to store
the states of the path and implement P as, for example, a hash table. We do not
need the variable seed anymore, because the case r = seed is subsumed by the
more general r ∈ P . A pseudocode implementation is given in algorithm 51.

Algorithm 51 Improved nested depth-first search algorithm.
ImprovedNestedDFS(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: EMP if Lω (A) = ∅, NEMP otherwise
1 S ← ∅; P ← ∅
2 for all q0 ∈ Q0 do dfs1(q0)
3 report EMP

4 proc dfs1(q)
5 add [q, 1] to S; add q to P
6 for all r ∈ δ(q) do
7 if [r, 1] /∈ S then dfs1(r)
8 if q ∈ F then dfs2(q)
9 remove q from P

10 return
11 proc dfs2(q)
12 add [q, 2] to S
13 for all r ∈ δ(q) do
14 if r ∈ P then report NEMP
15 if [r, 2] /∈ S then dfs2(r)
16 return

12.1.1.3 Extension to NGAs

Contrary to the other algorithms studied in the coming sections, the nested-DFS
algorithm cannot be generalized to emptiness of NGAs by conducting some mi-
nor changes in the pseudocode. The simplest way to extend it to NGAs is by
applying the conversion NGA → NBA. Given an NGA with accepting condition
{F0, . . . , Fm−1}, the conversion “replicates” each state m times. Since the nested-
DFS algorithm visits each state at most twice, this gives at most 2m calls to dfs for
each state q of the NGA. Let us now (informally) argue that any generalization
of the nested-DFS algorithm requires at least m calls in the worst case. For this,
observe that, while any NBA accepting a nonempty language has an accepting
lasso q0 . . . qiqi+1 . . . qn = qi such that the states q0, q1 . . . , qn−1 are distinct, this
is no longer true for NGAs. For example, every lasso of the NGA having the same
semi-automaton as the NBA of figure 11.9 and accepting condition {{1}, . . . , {5}}

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 298

q0

q1

q2 qn−1 qn q0

q1

q2 qn−1 qn

qn+1

Figure 12.2: Two bad examples for NestedDFS.

visits the state ch at least five times. If we assume that a generalization of the
nested-DFS algorithm starts a new DFS-search whenever the current search hits a
state of a set Fi of accepting states that has not been visited before, then, when
applied to this NGA, the algorithm will call dfs(ch) at least five times.

12.1.1.4 Evaluation

The strong point of the nested-DFS algorithm is its very modest space require-
ments. Apart from the space needed to store the stack of calls to the recursive
procedures, the algorithm just needs two extra bits for each state of the automaton.
However, in many practical applications, the automaton can easily have millions
or tens of millions of states, and each state may require many bytes of storage. In
these cases, the two extra bits per state are negligible.

The algorithm has two weak points. First, as explained above, it cannot be
easily generalized to NGAs. Moreover, it is not optimal, in the following sense. A
search-based algorithm explores an NBA A starting from the initial states. At each
point t in time, the algorithm has explored a subset of the states and the transitions
of the algorithm, which form a sub-NBA At = (Qt,Σ, δt, Q0t, Ft) of A. Clearly, a
search-based algorithm can only report NONEMPTY at time t if At contains an
accepting lasso. A search-based algorithm is optimal if the converse holds, that is,
if it reports NONEMPTY at the earliest time t such that At contains an accepting
lasso. It is easy to see that NestedDFS is not optimal. Consider the automaton
on the left of figure 12.2. Initially, the algorithm chooses between the transitions
(q0, q1) and (q0, q2). Assume it chooses (q0, q1) (the algorithm does not know that
there is a long tail behind q2). The algorithm explores (q0, q1) and then (q1, q0) at
some time t. The automaton At already contains an accepting lasso, but since q0
has not been blackened yet, dfs1 continues its execution with (q0, q2) and explores
all transitions of A before dfs2 is called for the first time and reports NONEMPTY.
So the time elapsed between the first moment at which the algorithm has enough
information to report NONEMPTY and the moment at which the report occurs can
be arbitrarily long.

The automaton on the right of figure 12.2 shows another problem of algo-
rithm NestedDFS related to nonoptimality. If it selects (q0, q1) first, then, since qn
precedes q0 in postorder, dfs2(qn) is executed before dfs2(q0), and it succeeds,
reporting q0q2 · · · qnqn+1qn, instead of the much shorter lasso q0q1q0.

In the next section, we describe an algorithm that, while also based on DFS,
calls dfs(q) at most once for every state q, can be easily extended to NGAs, and is
optimal.

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 299

A B C

D E F

[1,12) [2,5) [3,4)

[6,11) [8,9) [7,10)

A B C

D E F

A B C

D E F

A B C

D E F

Figure 12.3: A DFS (left) and the explored and active graphs at three different
snapshots (right). Bold solid colored nodes and edges are active; hatched colored
nodes are inactive.

12.1.2 An Algorithm Based on Strongly Connected Components

Recall that the nested-DFS algorithm searches for accepting states of A and then
checks if they belong to some cycle. We design another algorithm that, loosely
speaking, proceeds the other way round: it searches for states that belong to some
cycle of A and checks if they are accepting.

12.1.2.1 Strongly connected components, roots, and the active graph

A strongly connected component (SCC) of A is a maximal set of states S ⊆ Q such
that q ⇝ r for every q, r ∈ S.3 Observe that every state belongs to exactly one
SCC. The first state of an SCC that is discovered by a DFS is called the root of the
SCC (with respect to this DFS).

Let us fix a time t, and let At be the subgraph of A containing the states and
transitions of A explored by the DFS up to time t. We call At the explored graph.
An SCC ofAt (not ofA!) is active if it is currently visited by the gray path (i.e., if at
least one of its states appears in the gray path), and inactive otherwise. A state is
active if its SCC in At is active. (Observe that an active state may not belong to the
gray path, as long as some other state of the SCC does.) The active graph at time
t is the subgraph of At containing the active states and the discovered transitions
between them.

3Note that a path consisting of just a state q and no transitions is a path leading from q to q.

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 300

Example 12.9. Figure 12.3 shows a DFS on a graph with six states A, B, …, F. Each
state is labeled with the interval given by its discovery and finishing times. At state D,
the search explores the curved edge first and, at states E and F, the straight edge first.
The right part of the picture shows three snapshots of the DFS, taken at three different
times. Unexplored states and edges are dotted. The explored graph contains all solid
states and edges. The active graph contains the bold colored states and edges.

• First snapshot: Before backtracking from B. The gray path is A, B. The active
SCCs are {A} and {B,C}, with roots A and B, respectively. The explored graph
and the active graph coincide.

• Second snapshot: After exploring the edge E → F. The gray path is A, D, F, E.
The active SCCs are {A}, {D}, and {E, F}. States B and C are now explored but
inactive.

• Third snapshot: Before backtracking from D. The gray path is A, D. The active
SCCs are {A} and {D, E, F}.

We analyze the structure of the active graph with the help of several observations:

(1) If r is the root of an SCC, then d[r] ≤ d[q] for every state q of the SCC; in
other words, the root is the first state of an SCC discovered by the DFS.

This follows from the definition of a root.

(2) If r is the root of an SCC, then f [r] ≥ f [q] for every state q of the SCC; in
other words, the root is also the last state of the SCC blackened by the DFS.

At time d[r]− 1, there are white paths from r to all states of the SCC. By the
white-path theorem, all states of the SCC are discovered before backtracking
from r. By the parenthesis theorem, the DFS backtracks from all states of
the SCC before it backtracks from r.

(3) An SCC becomes inactive when the DFS backtracks from its root (i.e., when
it is blackened).

This follows immediately from (2).

(4) An inactive SCC of At is also an SCC of A.

This follows from (2) and (3).

(5) At every moment, the roots of all currently active SCCs occur in the gray
path.

This follows from (3) and the fact that the root of an active SCC must be on
the gray path.

(6) Let q be an active state of At, and let r be the root of its SCC. No state s such
that d[r] < d[s] < d[q] is an active root.

Assume s is an active root such that d[r] < d[s] < d[q]. We show that r and
s belong to the same SCC, contradicting that s is a root. It suffices to show
that both r ⇝ s and s⇝ r hold. For r ⇝ s, observe that, by (5), both r and

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 301

s0

SCC of s0

root labeled with
some number i

labeled with numbers
from [i, j)

root labeled with
some number j

trivial SCC with
accepting state

gray path

Figure 12.4: Structure of the active graph.

s are on the gray path, and r precedes s in the path because d[r] < d[s]. For
s ⇝ r, observe that, since s is active and d[s] < d[q], state q is discovered
during the execution of dfs(s), and so s⇝ q; moreover, since r is the root of
the SCC of q, we have q ⇝ r, and so s⇝ r.

(7) If q and r are active states of At and d[q] ≤ d[r], then q ⇝ r.

Let q′ and r′ be the roots of the SCCs of q and r. Then, q ⇝ q′ and r′ ⇝ r,
and so it suffices to prove q′ ⇝ r′. Since q′ and r′ are roots, they belong to
the gray path by (5), and so at least one of q′ ⇝ r′ and r′ ⇝ q′ holds. By
(6), we have d[q′] ≤ d[r′], and so q′ ⇝ r′ holds.

From (1) to (7), we get that the active graph has a necklace structure sketched
in figure 12.4. The chain of the necklace is the gray path, and the beads of the
necklace are the active SCCs. All roots of the active SCCs belong to the gray path,
but the gray path may also contain other nodes. Given two consecutive roots q and
r in the gray path such that d[q] < d[r], the SCC of q contains exactly the active
nodes s discovered between q (inclusive) and r (exclusive). Formally, the SCC of
q contains all nodes s such that d[q] ≤ d[s] < d[r].

12.1.2.2 The Algorithm

The algorithm maintains the explored graph and the necklace structure of the
active graph while the DFS is conducted. More precisely, the algorithm maintains
the following data:

• The set S of states visited by the DFS so far.

• The mapping rank : S → N that assigns to each state a number in the order
they are discovered, called the discovery rank of the state. Formally, the
discovery rank of q is the number of states of S immediately after q is visited.

• The mapping act : S → {true, false} that assigns true to a state iff it is
currently active.

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 302

• The necklace stack N . The elements of N are of the form (r, C), where C is
the set of states of an active SCC, and r is its root. We call the pair (r, C) a
bead. The oldest bead (i.e., the one with the oldest root) is at the bottom of
the stack, and the newest is at the top.

After the initialization step, the DFS is always either exploring a new edge (which
may lead to a new state or to a state already visited) or backtracking along an edge
explored earlier. We show how to update S, rank, act, andN after an initialization,
exploration, or backtracking step, so that, assuming they satisfy their definitions
before the step, they continue to satisfy them after it. Further, we show how to
check after each step whether the explored graph contains an accepting lasso.

Initialization. Initially, both the explored and active graphs consist only of the
initial state q0 and no edges. The necklace has only one bead—namely, (q0, {q0}).
Thus, we initialize S to q0; set rank(q0) and act(q0) to 1 and true, respectively;
and push (q0, {q0}) onto N .

Exploration of new edges. Assume the algorithm explores a new edge from
state q to state r. Assume further that S, rank, act, and N match the current
explored and active graphs and that the explored graph does not contain an ac-
cepting lasso. We distinguish six cases.

(i) r is a new state (i.e., r /∈ S).

Then the explored graph is extended with state r, which is active. So, we
add r to S, and set rank(r) and act(r) to |S| and true, respectively. Since r
forms a trivial SCC, we push a new bead (r, {r}) toN . Finally, we recursively
call dfs(r).
The following figure shows the explored and active graphs before and after
the DFS explores the edge B → C, discovering C. The value of N is up-
dated from (A, {A})(B, {B}) (with the bottom of the stack on the left) to
(A, {A})(B, {B})(C, {C}).

A B C

D E F

A B C

D E F

(ii) r has been visited by the DFS before and is inactive. Formally, r ∈ S and
act(r) = false.

Since r is inactive, its SCC has already been completely explored by the DFS
(by (2) and (3)). So, q and r belong to different SCCs, and in particular,
r ̸⇝ q. It follows that the new edge from q to r cannot create an accepting
lasso, if there was none before. So in this case, no data structure needs to
be updated, and no recursive DFS call is started.
The following figure shows the explored and active graphs before and after
the DFS explores the edge F→ C, which is currently inactive.

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 303

A B C

D E F

A B C

D E F

(iii) r has been visited by the DFS before, is active, and was discovered strictly
after q. Formally, r ∈ S, act(r) = true, and rank(r) > rank(q).

In this case, both q and r are active and already belong to the necklace.
Since rank(r) > rank(q), either q and r belong to the same SCC, or the
SCC of q is before the SCC of r in the necklace. In both cases, the new
edge does not change the structure of the necklace. It cannot create an
accepting lasso either, if no accepting lasso existed before. No state changes
its active/nonactive status. So, again, there is nothing to do, and no recursive
DFS call is started.
The following figure shows the explored and active graphs before and after
the DFS explores the edge D→ E. Observe that E was discovered after D.

A B C

D E F

A B C

D E F

(iv) r has been visited by the DFS before, is active, and was not discovered strictly
after q. Formally, r ∈ S, act(r) = true, and rank(r) ≤ rank(q).

Observe that rank(r) ≤ rank(q) implies d[r] ≤ d[q] and so, because of (7),
we have r ⇝ q. So, q and r belong to the same SCC of the automaton. Let r′
be the root of the SCC of r in the necklace. Since the DFS explores an edge
from q to r, state q is the last state of the gray path, that is, the end of the
necklace. So, all SCCs of the necklace from r′ upward must be merged into
one SCC. For example, if in figure 12.4, the search would now discover an
edge leading from the last gray state to the state labeled by i, then the last
four SCCs would have to be merged. The merge is achieved as follows. We
pop beads (s, C) from N and keep merging the sets C, stopping when the
bead satisfies rank(s) ≤ rank(r), which implies r′ = s. Then, we push a new
bead (s,D), where D is the result of the merge.
The edge from q to r can create a first accepting lasso only if one of the
merged SCCs was hitherto consisting of just an accepting state and no edges.
Therefore, while popping beads fromN , we simply check whether any of the
roots is an accepting state.
The following figure shows the explored and active graphs before and after
the DFS explores the edge E → D. Before exploring the edge the value of
N is (A, {A}), (D, {D}), (F, {E, F}). We pop the last two beads, merging the
SCCs {D} and {E, F}, and push the new bead (D, {D,E, F}). If D is a final
state, the algorithm returns NEMP.

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 304

A B C

D E F

A B C

D E F

The following figure gives another example where rank(r) = rank(q) and
hence r = q. It shows the explored and active graphs before and after the
DFS explores the edge C → C. We pop (C, {C}) and push it back. If C is a
final state, then the algorithm reports NEMP.

A B C

D E F

A B C

D E F

Backtracking. Assume that the algorithm has already explored all the edges
leaving a state q and now proceeds to backtrack from q. Notice that q is active.
We consider two cases:

(v) q is a root of the active graph.

Then, before backtracking from q, the top element ofN is of the form (q, C).
After backtracking, q and its entire SCC become inactive by (3), and they do
not belong to the active graph anymore. So we pop (q, C) from N and set
act(r) to false for every r ∈ C.
The following figure shows the explored and active graphs before and after
the DFS backtracks from D. The SCC {D,E, F} becomes inactive, and the
bead (D, {D,E, F}) is popped from N .

A B C

D E F

A B C

D E F

(vi) q is not a root of the active graph.

Then, by (2) and (3), the root of the SCC of q is active and remains active
after backtracking. The active graph does not change, and there is nothing
to do.
The following figure shows the explored and active graphs before and after
the DFS backtracks from E. At that moment, the SCC of E is {D,E, F}, with
root D. Neither the explored nor the active graph change.

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 305

A B C

D E F

A B C

D E F

The pseudocode for the algorithm, which we call SCCsearch, is described in
algorithm 52. The initialization is carried out in lines 1–2. Case (i) corresponds
to r /∈ S in line 8. Case (ii) does not require to do anything, which is indeed what
happens when the conditions at lines 8 and 9 do not hold. Cases (iii) and (iv) are
dealt with uniformly in the repeat-until loop. Indeed, if d[r] > d[q] (case (iii)),
then the loop is executed exactly once, with the result that the top stack element
is popped from the stack in line 12 and pushed again in line 15. If d[r] ≤ d[q]
(case (iv)), then the loop performs the necessary merge of SCCs. Finally, the two
backtracking cases correspond to lines 16–18.

Algorithm 52 SCC-based search algorithm.
SCCsearch(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: EMP if Lω (A) = ∅, NEMP otherwise
1 S,N ← ∅; n← 0

2 dfs(q0)
3 report EMP

4 proc dfs(q)
5 n← n+ 1; rank(q)← n

6 add q to S; act(q)← true; push (q, {q}) onto N
7 for all r ∈ δ(q) do
8 if r /∈ S then dfs(r)
9 else if act(r) then
10 D ← ∅
11 repeat
12 pop (s, C) from N ; if s ∈ F then report NEMP
13 D ← D ∪ C
14 until rank(s) ≤ rank(r)
15 push (s,D) onto N
16 if q is the top root in N then
17 pop (q, C) from N

18 for all r ∈ C do act(r)← false

12.1.2.3 Runtime

We show that SCCsearch(A) runs in timeO(n+m), where n andm are the numbers
of states and transitions of A, respectively. For the sake of simplicity, we consider
set unions to be atomic. A finer implementation and analysis, left as an exercise,
yields the same complexity if such unions are not atomic. The total number of

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 306

steps of type (i) to (vi) is 2m, because the DFS traverses each transition twice,
once in the direction of the transition and once in the opposite direction, when
it backtracks from the destination state. Steps of types (i) to (iii) and (vi) only
require to perform a constant number of operations on the data structures and
take time O(m) together. Now, consider the steps of type (iv) and (v).

• Type (iv). The beads that enter the necklaceN during a run of SCCsearch(A)
are either beads of the form (q, {q}) pushed intoN at line 6 or beads obtained
by removing two or more beads from N , merging them, and adding the
result back to N in line 15. Since there are n of the former, and each merge
decreases the number of beads by 1 or more, at most n of the latter are
pushed onto N . So line 13 is executed O(n) times.

• Type (v). Steps of type (v) pop a bead (q, C) from N at line 17 and then set
the active bits of all states of C to false at line 18; for this, they traverse the
list representing C. Since all transitions from q have already been explored,
q is black. By (2), all states of C are also black, and so none of them is ever
active again. So every state is deactivated exactly once at line 18, and the
algorithm spends time O(n) executing it.

12.1.2.4 Extension to NGAs

We show that SCCsearch can be easily extended to an emptiness check for NGAs,
without using the conversion NGA→ NBA. We have the following characterization
of nonemptiness:

Fact 12.10. LetA be an NGA with accepting condition G. It is the case that Lω (A) ̸=
∅ iff some SCC S of A satisfies S ∩ F ̸= ∅ for every F ∈ G.

Assume G = {F0, F1, . . . , Fm−1}. Let [m] = {0, . . . ,m − 1}. Let us label each
state q with the indices Iq ⊆ [m] of the acceptance sets it belongs to. For example,
Iq = {1, 3} if q belongs to F1 and F3. We extend beads with a third component;
a bead is now a triple (q, C, I), where q is a state, C is a set of states, and I is an
index set. We modify SCCsearch so that I = ∪q∈CIq holds for every bead (q, C, I)
that enters the necklace, and let it report nonemptiness if I = [m]. It suffices to
adjust the pseudocode as follows:

line SCCsearch for NBA SCCsearch for NGA

6 push(q, {q}) push(q, {q}, Iq)
10 D ← ∅ D ← ∅; J ← ∅
12 pop(s, C); if s ∈ F . . . pop(s, C, I)
13 D ← D ∪ C D ← D ∪ C; J ← J ∪ I
15 push(s,D) push(s,D, J); if J = [m] then report NEMP
17 pop(q, C) pop(q, C, I)

12.1.2.5 Evaluation

Recall that the weak points of the nested-DFS algorithm were that it cannot be
directly extended to NGAs, and it is not optimal. In comparison, the SCC-based
algorithm extends to NGAs and is optimal. Indeed, an accepting lasso can only

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 307

appear after a step of type (iv), and if it appears then the algorithm returns NEMP
before exploring any other transition.

The strong point of the nested-DFS algorithm was its very modest space re-
quirements: just two extra bits for each state of A. Let us examine the space
needed by the SCC-based algorithm. It is convenient to compute it for automata
recognizing the empty language, because in this case, both the nested-DFS and
the SCC-based algorithms must visit all states.

Because of the check rank[s] ≤ rank[r], the algorithm needs to store the rank
of each state. This is done by extending the hash table S. In principle, we need
logn bits to store a rank; however, in practice, a rank is stored using a word of
memory, because if the number of states of A exceeds 2w, where w is the number
of bits of a word, then A cannot be stored in main memory anyway. So the hash
table S requires c+w+ 1 bits per state, where c is the number of bits required to
store a state (the extra bit is the active bit).

The stack N does not need to store the states themselves but the memory
addresses at which they are stored. Ignoring hashing collisions, this requires w
additional bits per state. For generalized Büchi automata, we must also add the k
bits needed to store the set of indices. So the algorithm uses a total of c+ 3w + 1
bits per state (c+ 3w + k + 1 in the version for NGA), compared to the c+ 2 bits
required by the nested-DFS algorithm. In most cases, w is much smaller than c,
and so the influence of the additional memory requirements on the performance
is small.

12.2 Algorithms Based on Breadth-First Search

In this section, we describe algorithms for checking emptiness based on breadth-
first search (BFS). As in the previous section, we first present an algorithm for
NBAs and then extend it to one for NGAs.

No linear-time BFS-based emptiness check is known, so this section may appear
superfluous at first. However, BFS-based algorithms can be suitably described us-
ing operations and checks on sets of states, which allows us to implement them
using automata as data structures. In many cases, the gain obtained by the use of
the data structure more than compensates for the quadratic worst-case behavior,
making the algorithms competitive.

Breadth-first search maintains the set of states that have been discovered but
not yet explored, often called the frontier or boundary. A BFS from a set Q′ of
states (in this section, we consider searches from an arbitrary set of states of A)
initializes both the set of discovered states and its frontier toQ′ and then proceeds
in rounds. In a forward search, a round explores the outgoing transitions of the
states in the current frontier; the new states found during the round are added to
the set of discovered states, and they become the next frontier. A backward BFS
proceeds similarly but explores incoming transitions rather than outgoing ones.
The pseudocode implementations of both BFS variants, shown in algorithm 53,
use two variables S and B to store the set of discovered states and the boundary,
respectively. We assume the existence of oracles that, given the current boundary
B, return either δ(B) = ∪q∈Bδ(q) or δ−1(B) = ∪q∈Bδ−1(q).

Both BFS variants compute the successors or predecessors of a state exactly
once, that is, if in the course of the algorithm, the oracle is called twice with

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 308

Algorithm 53 Forward and backward BFS algorithms.
ForwardBFS(A, Q′)
Input: NBA A = (Q,Σ, δ,Q0, F),

Q′ ⊆ Q

1 S,B ← Q′

2 repeat
3 B ← δ(B) \ S
4 S ← S ∪B
5 until B = ∅

BackwardBFS(A, Q′)
Input: NBA A = (Q,Σ, δ,Q0, F),

Q′ ⊆ Q

1 S,B ← Q′

2 repeat
3 B ← δ−1(B) \ S
4 S ← S ∪B
5 until B = ∅

arguments Bi and Bj , respectively, then Bi ∩Bj = ∅. To prove this in the forward
case (the backward case is analogous), observe that B ⊆ S is an invariant of the
repeat loop and that the value of S never decreases. Now, let B1, S1, B2, S2, . . . be
the sequence of values of the variables B and S right before the ith execution of
line 3. We haveBi ⊆ Si by the invariant, Si ⊆ Sj for every j ≥ i, andBj+1∩Sj = ∅
by line 3. So Bj ∩Bi = ∅ for every j > i.

As data structures for the sets S and B, we can use a hash table and a queue,
respectively. But we can also take the set Q of states of A as a finite universe and
use automata for fixed-length languages to represent both S and B. Moreover, we
can represent δ ⊆ Q×Q by a finite transducer Tδ and reduce the computation of
δ(B) and δ−1(B) in line 3 to computing Post(B, δ) and Pre(B, δ), respectively.

12.2.1 Emerson–Lei’s Algorithm

Let A be an NBA. A state q of A is live if some infinite path starting at q visits
accepting states infinitely often. Clearly, A is nonempty if and only if at least one
initial state is live. We describe an algorithm due to Emerson and Lei for computing
the set of live states. For every n ≥ 0, the n-live states of A are inductively defined
as follows:

• every state is 0-live, and

• a state q is (n+ 1)-live if some path containing at least one transition leads
from q to an accepting n-live state.

Loosely speaking, a state q is n-live if starting from q, it is possible to visit
accepting states n times. Let L[n] denote the set of n-live states of A. We have the
following:

Lemma 12.11. The following holds:

(a) L[n] ⊇ L[n+ 1] for every n ≥ 0.

(b) The sequence L[0] ⊇ L[1] ⊇ L[2] ⊇ · · · reaches a fixpoint L[i] (i.e., there is a
least index i ≥ 0 such that L[i+ 1] = L[i]), and L[i] is the set of live states.

Proof. We prove (a) by induction on n. The case where n = 0 is trivial. Assume
n > 0, and let q ∈ L[n+ 1]. There is a path containing at least one transition that

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 309

leads from q to an accepting state r ∈ L[n]. By induction hypothesis, r ∈ L[n− 1],
and so q ∈ L[n].

To prove (b), first notice that, since Q is finite, the fixpoint L[i] exists. Let
L be the set of live states. Clearly, L ⊆ L[i] for every i ≥ 0. Moreover, since
L[i] = L[i + 1], every state of L[i] has a proper descendant that is accepting and
belongs to L[i]. So L[i] ⊆ L.

Emerson–Lei’s algorithm computes the fixpoint L[i] of the sequence L[0] ⊇
L[1] ⊇ L[2] ⊇ · · · . To compute L[n + 1] given L[n], we observe that a state is
(n+ 1)-live if some nonempty path leads from it to an n-live accepting state, and
so

L[n+ 1] = BackwardBFS(Pre(L[n] ∩ F, δ)).

The pseudocode for the algorithm is shown on the left-hand side of algorithm 54;
the variable L is used to store the elements of the sequence L[0], L[1], L[2],

The repeat loop is executed at most |Q| + 1-times, because each iteration but
the last one removes at least one state from L. Since each iteration takes time
O(|Q|+ |δ|), the algorithm runs in time O(|Q| · (|Q|+ |δ|)).

Algorithm 54 Emerson–Lei’s algorithm.
EmersonLei(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: EMP if Lω (A) = ∅,

NEMP otherwise

1 L← Q

2 repeat
3 OldL← L

4 L← Pre(L ∩ F, δ)
5 L← BackwardBFS(L)
6 until L = OldL
7 if Q0 ∩ L ̸= ∅ then report NEMP
8 else report NEMP

EmersonLei2(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: EMP if Lω (A) = ∅,

NEMP otherwise

1 L← Q

2 repeat
3 OldL← L

4 L← Pre(L ∩ F, δ)
5 L← BackwardBFS(L\ (OldL∩F))
6 until L = OldL
7 if Q0 ∩ L ̸= ∅ then report NEMP
8 else report NEMP

The algorithm may compute the predecessors of a state twice. For instance, if
q ∈ F and there is a transition (q, q), then after line 4 is executed, the state still
belongs to L. The version on the right of algorithm 54 avoids this.

12.2.1.1 Generalization to NGAs

Emerson–Lei’s algorithm can be easily generalized to NGAs. The generalization of
the first version is described in algorithm 55.

Proposition 12.12. GenEmersonLei(A) reports NEMP iff Lω (A) ̸= ∅.

Proof. For every k ≥ 0, redefine the n-live states of A as follows: every state is
0-live, and q is (n+1)-live if some path having at least one transition leads from q
to a n-live state of F(n mod m). Let L[n] denote the set of n-live states. Proceeding

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 310

Algorithm 55 Generalized Emerson–Lei’s algorithm.
GenEmersonLei(A)
Input: NGA A = (Q,Σ, δ, q0, {F0, . . . , Fm−1})
Output: EMP if Lω (A) = ∅, NEMP otherwise

1 L← Q

2 repeat
3 OldL← L

4 for i = 0 to m− 1

5 L← Pre(L ∩ Fi, δ)
6 L← BackwardBFS(L)
7 until L = OldL
8 if Q0 ∩ L ̸= ∅ then report NEMP
9 else report NEMP

as in lemma 12.11, we can easily show that L[(n + 1) · m] ⊇ L[n · m] holds for
every n ≥ 0.

We claim that the sequence L[0] ⊇ L[m] ⊇ L[2 ·m] ⊇ · · · reaches a fixpoint
L[i ·m] (i.e., there is a least index i ≥ 0 such that L[(i + 1) ·m] = L[i ·m]), and
L[i ·m] is the set of live states. Since Q is finite, the fixpoint L[i ·m] exists. Let q
be a live state. There is a path starting at q that visits Fj infinitely often for every
j ∈ {0, . . . ,m−1}. In this path, every occurrence of a state of Fj is always followed
by some later occurrence of a state of F(j+1) mod m, for every j ∈ {0, . . . ,m − 1}.
So, q ∈ L[i · m]. We now show that every state of L[i · m] is live. For every
state q ∈ L[(i + 1) ·m], there is a path π = πm−1πm−2 · · ·π0 such that for every
j ∈ {0, . . . ,m− 1}, the segment πj contains at least one transition and leads to a
state of L[i ·m + j] ∩ Fj . In particular, π visits states of F0, . . . , Fm−1, and since
L[(i + 1) ·m] = L[i ·m], it leads from a state of L[(i + 1) ·m] to another state of
L[(i + 1) ·m]. So every state of L[(i + 1) ·m] = L[i ·m] is live, which proves the
claim.

Since GenEmersonLei(A) computes the sequence L[0] ⊇ L[m] ⊇ L[2 ·m] ⊇ · · · ,
after termination, L contains the set of live states.

12.2.2 A Modified Emerson–Lei’s Algorithm

There exist many variants of Emerson–Lei’s algorithm that have the same worst-
case complexity but try to improve the efficiency, at least in some cases, by means
of heuristics. We present here one of these variants, which we call the modified
Emerson–Lei’s algorithm (MEL). We only present a version for checking emptiness
of NBAs.

Given a set S ⊆ Q of states, let inf(S) denote the states q ∈ S such that
some infinite path starting at q contains only states of S. Instead of computing
Pre(OldL ∩ F, δ) at each iteration step, MEL computes Pre(inf(OldL) ∩ F, δ).

In the following, we show thatMEL, shown in algorithm 56, is correct and then
compare it with Emerson–Lei’s algorithm. As we shall see, while MEL introduces
the overhead of repeatedly computing inf-operations, it still makes sense in many
cases because it reduces the number of executions of the repeat loop.

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 311

Algorithm 56 Modified Emerson–Lei’s algorithm.
MEL(A)
Input: NBA A = (Q,Σ, δ, q0, F)
Output: EMP if Lω (A) = ∅, NEMP otherwise

1 L← Q

2 repeat
3 OldL← L

4 L← inf(OldL)
5 L← Pre(L ∩ F, δ)
6 L← BackwardBFS(L)
7 until L = OldL
8 if Q0 ∩ L ̸= ∅ then report NEMP
9 else report NEMP

10 function inf(S)
11 repeat
12 OldS← S

13 S ← S ∩ Pre(S, δ)
14 until S = OldS
15 return S

To prove correctness, we claim that, after termination, L contains the set of
live states. Recall that the set of live states is the fixpoint L[i] of the sequence
L[0] ⊇ L[1] ⊇ L[2] ⊇ · · · . By definition of liveness, we have inf(L[i]) = L[i]. Let us
defineL′[0] = Q, andL′[n+1] = Pre+(inf(L′[n])∩F, δ). Clearly,MEL computes the
sequence L′[0] ⊇ L′[1] ⊇ L′[2] ⊇ · · · . Since L[n] ⊇ L′[n] ⊇ L[i] for every n > 0,
we have that L[i] is also the fixpoint of the sequence L′[0] ⊇ L′[1] ⊇ L′[2] ⊇ · · · ,
and so MEL computes L[i]. Since inf(S) can be computed in time O(|Q|+ |δ|) for
any set S, MEL runs in time O(|Q| · (|Q|+ |δ|)).

Interestingly, we have already met Emerson–Lei’s algorithm in chapter 11. In
the proof of proposition 11.7, we defined a sequence D0 ⊇ D1 ⊇ D2 ⊇ · · · of
infinite acyclic graphs. In the terminology of this chapter,D2i+1 was obtained from
D2i by removing all nodes having only finitely many descendants, and D2i+2 was
obtained fromD2i+1 by removing all nodes having only nonaccepting descendants.
This corresponds toD2i+1 = inf(D2i) andD2i+2 = Pre+(D2i+1∩F, δ). So, in fact,
we can look at this procedure as the computation of the live states ofD0 usingMEL.

12.2.3 Comparing the Algorithms

We give two families of examples showing thatMELmay outperform Emerson-Lei’s
algorithm but not always.

A case where MEL is better. Consider the automaton of figure 12.5. The ith
iteration of Emerson–Lei’s algorithm removes qn−i+1. The number of calls to Back-
wardBFS is (n+1), although a simple modification allowing the algorithm to stop

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 312

q0 q1 qn−1 qn

Figure 12.5: An example in which the MEL-algorithm outperforms the Emerson–
Lei algorithm.

q0,1 q0,2 q1,1 q1,2 qn,1 qn,2

Figure 12.6: An example in which Emerson–Lei’s algorithm outperforms theMEL-
algorithm.

if L = ∅ spares the (n+ 1)th operation. On the other hand, the first inf -operation
ofMEL already sets the variable L to the empty set of states, and so, with the same
simple modification, the algorithm stops after one iteration.

A case where MEL is not better. Consider the automaton from figure 12.6. The
ith iteration of Emerson–Lei’s algorithm removes q(n−i+1),1 and q(n−i+1),2, and
so the algorithm calls BackwardBFS (n + 1) times. The ith iteration of the MEL-
algorithm removes no state as a result of the inf-operation, and states q(n−i+1),1

and q(n−i+1),2 as a result of the call to BackwardBFS. So, in this case all inf opera-
tions are redundant.

12.3 Exercises

 Exercise 166. Let B be the following Büchi automaton:

(a) Execute the emptiness algorithm NestedDFS on B. Assume that states are
picked in ascending order with respect to their indices.

(b) Recall that NestedDFS is a nondeterministic algorithm, and different choices
of runs may return different lassos. Which lassos of B can be found by
NestedDFS?

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 313

q0 q1

q2

q6

q3

q5 q4 q7 q8

a

b a

a

b

a

b

b

a

a b
a

(c) Show that NestedDFS is not optimal by exhibiting some search sequence on
B.

(d) Execute the SCC-based emptiness algorithm on B. Assume that states are
picked in ascending order with respect to their indices.

(e) Execute the SCC-based emptiness algorithm on B. Assume that transitions
labeled by a are picked before those labeled by b.

(f) Which lassos of B can be found by the SCC-based algorithm?

 Exercise 167. Let A be an NBA, and let At be the sub-NBA of A containing
the states and transitions discovered by a DFS up to (and including) time t. Show
that if a state q belongs to some cycle of A, then it already belongs to some cycle
of Af [q].

 Exercise 168. Recall from exercise 162 that a Büchi automaton is weak
if none of its strongly connected components contains both accepting and nonac-
cepting states. Give an emptiness algorithm for weak Büchi automata. What is the
complexity of your algorithm?

 Exercise 169. Execute SCCsearch on the Büchi automaton below. When a
state has many outgoing transitions, pick letters in this order: a < b < c.

q0 q1 q2

q3 q4 q5

q6
a

b

a

ca

b

bc

b

a

b

 Exercise 170. Recall that SCCsearch runs in time O(|Q| + |δ|) if we con-
sider set unions as atomic. However, set unions are generally not constant-time

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 314

operations. Explain how beads can be implemented so that SCCsearch truly runs
in linear time.

Hint: Can two beads share a state?

⋆ Exercise 171. Recall that exercise 170 gives an implementation of SCCsearch
that truly works in linear time. Let us now take the memory usage into account.
Let at and bt denote, respectively, the number of active states and the number of
beads at time t. Let f(t) be the number of bits used at time t to store the current
beads. Let w be the size of an address.

The solution of exercise 170 satisfies f(t) = 2(at + bt)w. Indeed, it uses two
addresses per active state (one pointing to the state itself and one to its successor),
plus two extra addresses per bead (for the head and tail). Give an implementation
of SCCsearch that halves the memory usage—namely, one that runs in linear time
and satisfies f(t) = (at + bt)w.

Hint: Use two stacks, one for roots and one for active states.

⋆ Exercise 172. Consider Muller automata with accepting condition {F}, that
is, ρ is accepting iff inf(ρ) = F . Give an efficient algorithm for checking emptiness
of these automata. Hint: Adapt SCCsearch.

 Exercise 173. Execute Emerson–Lei’s algorithm and MEL on this NBA:

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

 Exercise 174. Execute GenEmersonLei on the following generalized Büchi
automata, with accepting condition F = {{q1, q8}, {q2, q6}, {q4, q9}}:

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

 Exercise 175. This exercise deals with a variation of Emerson–Lei’s algo-
rithm.

(a) For every R,S ⊆ Q, let pre+(R,S) be the set of states q such that there is
a nonempty path π from q to some state of R where π only contains states
from S. Give an algorithm to compute pre+(R,S).

CHAPTER 12. EMPTINESS CHECK: IMPLEMENTATIONS 315

(b) Execute the algorithm from (a) on the following automaton, where states
from R and S are respectively solid and hatched:

(c) Show that the following modification of Emerson–Lei’s algorithm is correct:

MEL2(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: EMP if Lω (A) = ∅, NEMP otherwise
1 L← Q

2 repeat
3 OldL← L

4 L← pre+(L ∩ F,L)
5 until L = OldL
6 if q0 ∈ L then report NEMP
7 else report NEMP

(d) What is the difference between the sequences of sets computed by MEL and
MEL2?

Chapter 13
Application I: Verification and

Temporal Logic

Recall that, intuitively, liveness properties are those stating that the system will
eventually do something good. More formally, they are properties that are only
violated by infinite executions of the system. In other words, by examining only
a finite prefix of an infinite execution, it is not possible to determine whether the
infinite execution satisfies the property. In this chapter, we apply the theory of
ω-automata to the problem of automatically verifying liveness properties.

13.1 Automata-Based Verification of Liveness Properties

In chapter 7, we introduced some basic concepts about systems: configurations,
possible executions, and executions. We extend these notions to the infinite case.
An ω-execution of a system is an infinite sequence c0c1c2 . . . of configurations where
c0 is some initial configuration, and for every i ≥ 1, configuration ci is a legal
successor—according to the semantics of the system—of configuration ci−1. Note
that according to this definition, if a configuration has no legal successors, then
it does not belong to any ω-execution. Usually, this is undesirable, and it is more
convenient to assume that such a configuration c has exactly one legal successor—
namely, c itself. In this way, every reachable configuration of the system belongs
to some ω-execution. The terminating executions are then the ω-executions of the
form c0 · · · cn−1cωn for some terminating configuration cn. The set of terminating
configurations can usually be identified syntactically. For instance, in a program,
the terminating configurations are usually those in which control is at some par-
ticular program line.

In chapter 7, we showed how to construct a system NFA recognizing all the
executions of a given system. The same construction can be used to define a system
NBA recognizing all the ω-executions.

Example 13.1. Let us reconsider the simple program of chapter 7:

316

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 317

1, 0, 0 5, 0, 0

1, 1, 0 2, 1, 0 4, 1, 0

1, 0, 1 5, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1

i

[1, 0, 0]

[1, 1, 0]

[1, 0, 1]

[1, 1, 1]

[5, 0, 0]

[2, 1, 0] [4, 1, 0]

[1, 1, 0]

[5, 0, 1]

[2, 1, 1] [3, 1, 1] [4, 0, 1]

[1, 0, 1]

[5, 0, 0]

[5, 0, 1]

Figure 13.1: System NBA of the simple program.

1 while x = 1 do
2 if y = 1 then
3 x← 0

4 y ← 1− x
5 end

Its system NFA is depicted in the middle of figure 7.1. The system NBA is the result of
adding self-loops to the states [5, 0, 0] and [5, 0, 1] as depicted in figure 13.1.

13.1.1 Checking Liveness Properties

In section 7.5 of chapter 7, we introduced safety and liveness properties. Intu-
itively, safety properties state that “nothing bad ever happens” and liveness prop-
erties that “something good eventually happens.” In order to check if a system
satisfies a safety property, we construct a system NFA recognizing the set E of
executions of the system and a regular expression for the set V of potential execu-
tions of the system that violate a given safety property. Checking that the safety
property holds amounts to checking that E ∩V = ∅ holds. This can be done auto-
matically by converting the regular expression into a property NFA, computing its
intersection with the system NFA, and checking that the resulting NFA recognizes
the empty language.

We explained in section 7.5 that extending this approach to liveness properties
required to develop a theory of automata on ω-words. Indeed, consider a liveness
property like “eventually every execution of the program terminates” (in exam-
ple 13.1, this is the property “eventually every execution of the program reaches a
configuration of the form [5, x, y]”). No finite execution of the program witnesses
that the property is violated, because the execution might be extended to a longer
one ending at such a configuration. The violations are ω-words that do not con-
tain any configuration of the form [5, x, y], and expressing and manipulating sets
of ω-words require a theory of ω-automata.

We now have such a theory in place. We can replace regular expressions withω-
regular expressions and NFAs with NGAs (which include NBAs as special case). In
section 10.2.2.1 of chapter 10, we have seen how to convert ω-regular expressions

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 318

into NBAs. In section 11.2 of chapter 11, we have given an algorithm to intersect
NGAs. Finally, in chapter 12, we have presented algorithms to check emptiness of
NGAs. Let us apply these constructions to an example.

Example 13.2. We check two liveness properties of the program from example 13.1.

First property. We wish to know whether all full executions of the program starting
at configurations satisfying x = y terminate. Let Σ be the set of all configurations,
and let At5 be the set of all configurations [ℓ, x, y] such that ℓ = 5. An ω-regular
expression for the set of violations is

([1, 0, 0] + [1, 1, 1]) (Σ \ At5)ω.

Indeed, the language of this expression is the set of potential executions that start at
a configuration satisfying x = y and never terminate.

Translating the expression into a property NBA yields the automaton of figure 13.2,
where we use colors as identifiers of the states.

We now apply IntersNGA to the system NBA of figure 13.1 and the NBA of fig-
ure 13.2. Note that we are in the special case discussed at the end of section 11.2: in
one of the NBAs, all states are accepting.

In this case, IntersNGA and IntersNFA coincide, and we obtain the NBA of fig-
ure 13.3, whose states are graphically represented by coloring a state of the system
NBA with the color of a state of the property NBA. Since this NBA does not contain
any accepting lasso, it recognizes the empty language, and so the system satisfies the
property.

Second property. We wish to know whether all full executions that visit line 4
terminate. Let Σ be the set of all configurations, and let At4 and At5 be the sets of
configurations where the program is at line 4 and at line 5, respectively. An ω-regular
expression for the set of violations is

Σ∗At4(Σ \ At5)ω.

The translation of this property into an NBA is depicted in figure 13.4. Applying
IntersNGA, we obtain the automaton depicted in figure 13.5. The emptiness algorithm
returns that this NBA accepts the word

([1, 1, 0] [2, 1, 0] [4, 1, 0])
ω

which corresponds to a full execution that violates the property.

[1, 0, 0]

[1, 1, 1]

Σ \ At5

Figure 13.2: NBA for the first property.

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 319

1, 0, 0

1, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1

i

[1, 0, 0]

[1, 1, 1]
[2, 1, 1] [3, 1, 1] [4, 0, 1]

[1, 0, 1]

Figure 13.3: NBA obtained from IntersNGA (first property).

Σ

At4

Σ \ At5

Figure 13.4: NBA for the second property.

1, 0, 0 5, 0, 0

1, 1, 0 2, 1, 0 4, 1, 0 1, 1, 0 2, 1, 0

1, 0, 1 5, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1 1, 0, 1

i

[1, 0, 0]

[1, 1, 0]

[1, 0, 1]

[1, 1, 1]

[5, 0, 0]

[2, 1, 0] [4, 1, 0] [1, 1, 0] [2, 1, 0]

[4, 1, 0]

[5, 0, 1]

[2, 1, 1] [3, 1, 1] [4, 0, 1] [1, 0, 1]

[5, 0, 0]

[5, 0, 1]

Figure 13.5: NBA obtained from IntersNGA (second property).

13.1.2 Networks of Automata and Fairness

In chapter 7, we used Lamport-Burns’ mutual exclusion algorithm to illustrate how
to check safety properties of concurrent programs modeled using networks of au-
tomata. The program text and the network of automata are shown in algorithm 39
and figure 7.5 of chapter 7. We apply the theory of ω-automata to check the most
important liveness property of a mutual exclusion algorithm: if a process tries to
access its critical section, it eventually will. We call it the finite waiting property.

Figure 13.6 shows the asynchronous product arising from the network of au-
tomata modeling the algorithm. From the asynchronous product, we easily obtain
a system NBA: as in example 13.1, it suffices to add the initial state i, connecting
it to the initial state of the asynchronous product; relabel every transition with its
target configuration; and make all stats accepting. Observe that in this case, every
configuration has at least a successor, and so no self-loops need to be added.

Recall that a configuration of the system is a fourtuple [b0, b1, ℓ0, ℓ1], where
b0, b1 ∈ {0, 1}, ℓ0 ∈ {nc0, t0, c0}, and ℓ1 ∈ {nc1, t1, q1, q′1, c1}. The set of all con-

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 320

figurations, which we denote by Σ, contains sixty elements, of which, as shown in
figure 13.6, only fourteen are reachable.

For i ∈ {0, 1}, let NCi, Ti, Ci be the sets of configurations in which process i is
in the noncritical section, is trying to access the critical section, and is in the criti-
cal section, respectively. The possible ω-executions that violate the finite waiting
property for process i are represented by the ω-regular expression

si = Σ∗ Ti (Σ \ Ci)ω.

We can check this property using the same procedure as in example 13.2. The
property NBA has again two states. The result of the check for process 0 yields
that the property fails. One of the possible counterexamples is the ω-execution

[0, 0, nc0, nc1] [1, 0, t0, nc1] [1, 1, t0, t1]
ω.

In this execution, both processes request access to the critical section, but, from
then on, process 1 never makes any further step. Only process 0 continues operat-
ing, but all it does is repeatedly check that the current value of b1 is 1. Intuitively,
this corresponds to process 1 crashing after requesting access. But we do not ex-
pect the finite waiting property to hold even if processes may crash while waiting.

0, 0, nc0, nc1 1, 1, t0, t1 1, 1, t0, q1 1, 0, t0, q
′
1

1, 0, t0, nc1 1, 1, c0, t1 0, 1, nc0, q1

1, 0, c0, nc1 1, 1, c0, q1 1, 0, c0, q
′
1

0, 0, nc0, q
′
1

0, 1, nc0, t1 1, 1, t0, c1

0, 1, nc0, c1

b0 = 1 b1 ← 0

b0 ← 1

b1 ← 1

b1 ← 1

b0 ← 1 b1 = 1 b1 = 1 b0 = 1

b0 = 0 b0 ← 1
b1 = 0b1 ← 0

b1 ← 0

b1 = 0 b1 ← 1

b0 ← 0

b0 = 1

b0 ← 0

b1 ← 0

b1 = 0

b0 = 1

b0 ← 0

b1 ← 0

b0 ← 1

b0 = 0

b0 ← 0 b0 ← 1

Figure 13.6: Asynchronous product of the Lamport–Burns algorithm. Solid (re-
spectively, dotted) transitions correspond to moves by process 0 (respectively, pro-
cess 1).

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 321

So, in fact, our definition of the finite waiting property was wrong. We can re-
pair the definition by reformulating the property as follows: in any ω-execution
in which both processes execute infinitely many steps, if process 0 tries to access its
critical section, then it eventually will. The condition that both processes must
move infinitely often is called a fairness assumption.

The task now is to give an ω-regular expression formalizing the property. We
face the problem that the label of a transition of the system NBA does not currently
contain information about which process is making a move. We solve this problem
by enriching the alphabet of the system NBA. Instead of labeling a transition only
with the name of the target configuration, we also label it with the number of the
process responsible for the move leading to that configuration: 0 if the transition
is solid and 1 if it is dotted. For instance, the transition

[0, 0, nc0, nc1]
[1,0,t0,nc1]−−−−−−−−→[1, 0, t0, nc1]

becomes
[0, 0, nc0, nc1]

([1,0,t0,nc1],0)−−−−−−−−−−→[1, 0, t0, nc1]

to reflect the fact that [1, 0, t0, nc1] is reached by a move of process 0. The new
alphabet of the NBA is Σ × {0, 1}. If we let M0 := Σ × {0} and M1 := Σ × {1}
denote the “moves” of process 0 and process 1, respectively, then the ω-regular
expression

inf = ((M0 +M1)
∗M0M1)

ω

represents all ω-executions in which both processes move infinitely often. Further,
Lω (si)∩Lω (inf) (where si is suitably rewritten to account for the larger alphabet)
is the set of violations of the reformulated finite waiting property.

To check if some ω-execution is a violation, we can construct NGAs for si and
inf and compute their intersection with the system NBA. For process 0, the check
yields that the property indeed holds. For process 1, the property still fails because
of, for instance, the full execution

([0, 0, nc0, nc1] [0, 1, nc0, t1] [1, 1, t0, t1] [1, 1, t0, q1]

[1, 0, t0, q
′
1] [1, 0, c0, q

′
1] [0, 0, nc0, q

′
1])

ω

in which process 1 repeatedly tries to access its critical section but always lets
process 0 access first.

13.2 Linear Temporal Logic

In the previous section, we have formalized properties of systems using ω-regular
expressions or NGAs. This becomes rather difficult for all but the easiest properties.
For instance, the NGA or the ω-regular expression for the modified finite waiting
property is already quite involved, and it is difficult to be convinced that they have
the intended meaning. In this section, we introduce a new language for specifying
safety and liveness properties, called linear temporal logic (LTL). LTL is closer to
natural language than ω-regular expressions but still has a formal semantics.

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 322

Formulas of LTL are constructed from a set AP of atomic propositions. Intu-
itively, atomic propositions are abstract names for basic properties of configura-
tions, whose meaning is fixed only after a concrete system is considered. Formally,
given a system with a set C of configurations, the meaning of the atomic propo-
sitions is fixed by a valuation function V : AP → 2C that assigns to each abstract
name the set of configurations at which it holds.

Example 13.3. Consider the program of example 13.1. Let C be the set of configu-
rations of the program. We choose

AP = {at_1, at_2, . . . , at_5, x=0, x=1, y=0, y=1}

and define the valuation function V : AP → 2C as follows:

• V(at_i) = {[ℓ, x, y] ∈ C : ℓ = i} for every i ∈ {1, . . . , 5},

• V(x=0) = {[ℓ, x, y] ∈ C : x = 0}, and similarly for the other cases.

Under this valuation, at_i expresses that the program is at line i, and x=j expresses
that the current value of x is j.

Atomic propositions are combined bymeans of the usual boolean operators and
the temporal operators X (“next”) and U (“until”). Intuitively, as a first approxi-
mation, Xφ means “φ holds at the next configuration” (the configuration reached
after one step of the program), and φ U ψ means “φ holds until a configuration is
reached satisfying ψ.” The set of LTL formulas over AP is defined as follows.

Definition 13.4. Let AP be a finite set of atomic propositions. The set LTL(AP) of
LTL formulas over AP is the set of expressions generated by the grammar

φ ::= true | p | ¬φ1 | φ1 ∧ φ2 | Xφ1 | φ1 U φ2 .

Formulas are interpreted on infinite sequences σ = σ0σ1σ2 · · · , where σi ⊆ AP
for every i ≥ 0. We call these sequences computations. The executable computations
of a system are the computations σ for which there exists an ω-execution c0c1c2 · · ·
such that for every i ≥ 0, the set of atomic propositions satisfied by ci is exactly
σi. We formally define when a computation satisfies a formula.

Definition 13.5. For every computation σ overAP , let σj denote the suffix σjσj+1 · · ·
of σ; in particular, σ0 = σ. The satisfaction relation σ |= φ (read “σ satisfies φ”) is
inductively defined by

• σ |= true,

• σ |= p iff p ∈ σ0,

• σ |= ¬φ iff σ ̸|= φ,

• σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2,

• σ |= Xφ iff σ1 |= φ, and

• σ |= φ1 U φ2 iff ∃k ≥ 0 s.t. σk |= φ2 and σi |= φ1 for all 0 ≤ i < k.

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 323

Observe that, in the last line above, if k = 0, then the condition σi |= φ1 for
all 0 ≤ i < 0 is true for every φ1, because the set of indices i satisfying 0 ≤ i < 0
is empty. Intuitively, if φ2 already holds initially, then it is not necessary for φ1 to
hold at any position. We use the following abbreviations:

• false,∨,→ and↔, defined in the usual way.

• Fφ = true U φ (“eventually φ,” or “now or sometime in the future φ”).
According to the semantics above, σ |= Fφ holds iff there exists k ≥ 0 such
that σk |= φ. Observe that if σ |= φ, then σ0 |= φ, and so σ |= Fφ.

• Gφ = ¬F¬φ (“always φ” or “globally φ”). According to the semantics above,
σ |= Gφ holds iff σk |= φ for every k ≥ 0.

The set of computations that satisfy a formula φ is denoted by Lω (φ). A system
satisfies φ if all its executable computations satisfy φ.

Example 13.6. The system NBA of example 13.1 has exactly four ω-executions:

e1 = [1, 0, 0] [5, 0, 0]ω,

e2 = ([1, 1, 0] [2, 1, 0] [4, 1, 0])
ω
,

e3 = [1, 0, 1] [5, 0, 1]ω,

e4 = [1, 1, 1] [2, 1, 1] [3, 1, 1] [4, 0, 1] [1, 0, 1] [5, 0, 1]ω.

The corresponding executable computations for the set AP of example 13.3 are

σ1 = {at_1, x=0, y=0} {at_5, x=0, y=0}ω,
σ2 = ({at_1, x=1, y=0} {at_2, x=1, y=0} {at_4, x=1, y=0})ω ,
σ3 = {at_1, x=0, y=1} {at_5, x=0, y=1}ω,
σ4 = {at_1, x=1, y=1} {at_2, x=1, y=1} {at_3, x=1, y=1} {at_4, x=0, y=1}

{at_1, x=0, y=1} {at_5, x=0, y=1}ω.

We give some examples of LTL properties:

• φ0 = x=1 ∧ X y=0 ∧ XX at_4. In natural language: the value of x in the first
configuration of the execution is 1, the value of y in the second configuration
is 0, and in the third configuration, the program is at location 4. We have
σ2 |= φ0, and σ1, σ3, σ4 ̸|= φ0.

• φ1 = F at_5. In natural language: the execution eventually reaches a configu-
ration in which the program is at line 5. Since this is the line corresponding to
the termination of the execution, program satisfies this property if all its exe-
cutions terminate. We have σ1, σ3, σ4 |= φ1, but σ2 ̸|= φ1, and so the program
does not satisfy the property. Observe that σ1, σ2, σ3, σ4 |= F at_1, because
σ0
1 , σ

0
2 , σ

0
3 , σ

0
4 |= at_1.

• φ2 = x=0 U at_5. In natural language: x stays equal to 0 until the execution
reaches location 5. However, this description is ambiguous: Do executions that
never reach location 5 satisfy the property? Do executions that set x to 1 imme-
diately before reaching location 5 satisfy the property? The formal definition
removes the ambiguities: the answer to the first question is “no”; to the second,
“yes.” We have σ1, σ3 |= φ2 and σ2, σ4 ̸|= φ2.

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 324

• φ3 = at_5 U x=0. In natural language: the execution stays at location 5 until
x takes the value 0. But, again, the description is ambiguous. We certainly
have σ2, σ4 ̸|= φ3, but do σ1 and σ3, for which x is initially 0, satisfy the
property? The formal definition says “yes.” As mentioned before, if σ0 |= φ,
then σ |= ψ U φ for any ψ.

• φ4 = y=1∧F(y=0 ∧ at_5)∧¬(F(y=0 ∧ X y=1)). In natural language: the initial
configuration satisfies y = 1, the execution terminates in a configuration with
y = 0, and y never increases during the execution. This is one of the properties
we analyzed in chapter 7, and it is not satisfied by any ω-execution.

Example 13.7. We express properties of Lamport-Burns’ algorithm (see chapter 7)
using LTL formulas. As system NBA, we use the one in which transitions are labeled
with the name of the target configuration and with the number of the process respon-
sible for the move leading to that configuration. We take AP = {NC0, T0, C0, NC1,
T1, C1,M0,M1}, with the obvious valuation.

• The mutual exclusion property is expressed by the formula

G(¬C0 ∨ ¬C1).

The algorithm satisfies the formula.

• The property that process i cannot access the critical section without having
requested it first is expressed by

¬(¬Ti U Ci).

Both processes satisfy this property.

• The naive finite waiting property for process i is expressed by

G(Ti → FCi).

The modified version in which both processes must execute infinitely many
moves is expressed by

(GFM0 ∧ GFM1)→ G(Ti → FCi).

Observe how fairness assumptions can be very elegantly expressed in LTL. The
assumption itself is expressed as a formulaψ, and the property thatω-executions
satisfying the fairness assumption also satisfy φ is expressed by ψ → φ.
None of the processes satisfies the naive version of the finite waiting property.
Process 0 satisfies the modified version but not process 1.

• The bounded overtaking property for process 0 is expressed by

G(T0 → (¬C1 U (C1 U (¬C1 U C0)))).

The formula states that whenever T0 holds, the computation continues with a
(possibly empty) interval at which ¬C1 holds, followed by a (possibly empty)
interval at which C1 holds, followed by a (possibly empty) interval at which
¬C1 holds, followed by a point at which C0 holds. The property holds.

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 325

Example 13.8. Formally speaking, it is not correct to say “φ U ψ means that some
future configuration satisfies φ, and until then, all configurations satisfy ψ.” The
reason is that formulas do not hold at configurations but at computations. The correct
phrasing is: “the suffix of the computation starting at the next configuration satisfies
φ, and some suffix of the computation satisfies ψ.”

To illustrate this point, let AP = {p, q}, and consider the formula φ = (Fp) U q
and the computation τ = ∅ ∅ {q} ∅ {p} ∅ω. One might think that τ does not satisfy
φ, because no configuration before the one satisfying q satisfies p. But that is not the
case; we have τ |= φ. Indeed, the suffix τ2 = {q} ∅ {p} ∅ω satisfies q, and the suffixes
τ0 = τ and τ1 = ∅ {q} ∅ {p} ∅ω satisfy Fp; the fact that p only holds after q holds is
irrelevant.

13.3 From LTL Formulas to Generalized Büchi Automata

We present an algorithm that, given a formula φ ∈ LTL(AP), returns an NGA
Aφ over the alphabet 2AP recognizing Lω (φ). Then we derive a fully automatic
procedure that, given a system and an LTL formula, decides whether all executable
computations of the system satisfy the formula.

13.3.1 Satisfaction Sequences and Hintikka Sequences

We define the satisfaction sequence and the Hintikka sequence of a computation
σ and a formula φ. We first need to introduce the notions of closure of a formula
and atom of the closure.

Definition 13.9. Given a formula φ, the negation of φ is the formula ψ if φ = ¬ψ
and the formula ¬φ otherwise. The closure cl(φ) of a formula φ is the set containing
all subformulas of φ and their negations. A nonempty set α ⊆ cl(φ) is an atom of
cl(φ) if it satisfies the following properties:

(a0) If true ∈ cl(φ), then true ∈ α.

(a1) For every φ1 ∧ φ2 ∈ cl(φ): φ1 ∧ φ2 ∈ α if and only if φ1 ∈ α and φ2 ∈ α.

(a2) For every ¬φ1 ∈ cl(φ): ¬φ1 ∈ α if and only if φ1 /∈ α.

The set of all atoms of cl(φ) is denoted by at(φ).

Observe that if α is the set of all formulas of cl(φ) satisfied by a computa-
tion, then α is necessarily an atom. Indeed, every computation satisfies true; if a
computation satisfies the conjunction of two formulas, then it satisfies each of the
conjuncts; and finally, if a computation satisfies a formula, then it does not satisfy
its negation and vice versa. Notice as well that, because of (a2), if cl(φ) contains
k formulas, then every atom of cl(φ) contains exactly k/2 formulas.

Example 13.10. The closure of the formula p ∧ (p U q) is

{p, ¬p, q, ¬q, p U q, ¬(p U q), p ∧ (p U q), ¬ (p ∧ (p U q))}.

We claim that the only two atoms containing p ∧ (p U q) are

{p, q, p U q, p ∧ (p U q)} and {p, ¬q, p U q, p ∧ (p U q)}.

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 326

Let us see why. By (a2), an atom always contains either a subformula or its negation
but not both. So in principle, there are sixteen possibilities for atoms, since we have
to choose exactly one of p and ¬p, q and ¬q, p U q and ¬(p U q), and p ∧ (p U q)
and ¬ (p ∧ (p U q)). Since we look for atoms containing p ∧ (p U q), we are left with
eight possibilities. But, by (a1), every atom α containing p ∧ (p U q) must contain
both p and p U q. Thus, the only freedom left is the possibility to choose q or ¬q.
None of these choices violates any of the conditions, and so exactly two atoms contain
p ∧ (p U q).

Definition 13.11. The satisfaction sequence for a computation σ and a formula φ
is the infinite sequence of atoms

sats(σ, φ) = sats(σ, φ, 0) sats(σ, φ, 1) sats(σ, φ, 2) · · ·

where sats(σ, φ, i) is the atom containing the formulas of cl(φ) satisfied by σi.

Intuitively, the satisfaction sequence of a computation σ is obtained by “com-
pleting” the computation: while σ only indicates which atomic propositions hold
at each point in time, the satisfaction sequence also indicates which atoms hold.

Example 13.12. Let φ = p U q, and consider σ1 = {p}ω and σ2 = ({p} {q})ω. We
have

sats(σ1, φ) = {p, ¬q, ¬(p U q)}ω,
sats(σ2, φ) = ({p, ¬q, p U q} {¬p, q, p U q})ω .

Observe that σ satisfies φ if and only if φ ∈ sats(σ, φ, 0) (i.e., if and only if φ
belongs to the first atom of σ).

Satisfaction sequences have a semantic definition: in order to knowwhich atom
holds at a point, one must know the semantics of LTL. Hintikka sequences provide
a syntactic characterization of satisfaction sequences. The definition of a Hintikka
sequence does not involve the semantics of LTL, that is, someone who ignores the
semantics can still determine whether a given sequence is a Hintikka sequence
or not. We prove that a sequence is a satisfaction sequence if and only if it is a
Hintikka sequence.

Definition 13.13. A pre-Hintikka sequence for φ is an infinite sequence α0α1α2 · · ·
of atoms satisfying the following conditions for every i ≥ 0:

(ℓ1) For every Xφ1 ∈ cl(φ):

Xφ1 ∈ αi iff φ1 ∈ αi+1.

(ℓ2) For every φ1 U φ2 ∈ cl(φ):

φ1 U φ2 ∈ αi iff φ2 ∈ αi, or φ1 ∈ αi and φ1 U φ2 ∈ αi+1.

A pre-Hintikka sequence is a Hintikka sequence if it also satisfies

(g) For every φ1 U φ2 ∈ αi, there exists j ≥ i such that φ2 ∈ αj .

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 327

A pre-Hintikka or Hintikka sequence αmatches a computation σ if σi ⊆ αi for every
i ≥ 0.

Note that conditions (ℓ1) and (ℓ2) are local: in order to determine if α satisfies
them, we only need to inspect every pair αi, αi+1 of consecutive atoms. On the
contrary, condition (g) is global, since the distance between the indices i and j can
be arbitrarily large.

Example 13.14. Let φ = ¬(p ∧ q) U (r ∧ s). We consider several sequences and
examine whether they are Hintikka sequences.

• Let α1 = {p, ¬q, r, s, φ}. The sequence αω1 is not a Hintikka sequence for
φ, because α1 is not an atom; indeed, by (a1), every atom containing r and s
must contain r ∧ s.

• Let α2 = {¬p, r, ¬φ}. The sequence αω2 is not a Hintikka sequence for φ,
because α2 is not an atom; indeed, by (a2), every atom must contain either q
or ¬q and either s or ¬s.

• Let α3 = {¬p, q, ¬r, s, r∧s, φ}. The sequence αω3 is not a Hintikka sequence
for φ, because α3 is not an atom; indeed, by (a2), every atom must contain
either (p ∧ q) or ¬(p ∧ q).

• Let α4 = {p, q, (p∧q), r, s, r∧s, ¬φ}. The set α4 is an atom, but the sequence
αω4 is not a Hintikka sequence for φ, because it violates condition (ℓ2): since
α4 contains (r ∧ s), it must also contain φ.

• Let α5 = {p, ¬q, ¬(p ∧ q), ¬r, s, ¬(r ∧ s), φ}. The set α5 is an atom,
and the sequence αω5 is a pre-Hintikka sequence. However, it is not a Hintikka
sequence because it violates condition (g): since α5 contains φ, some atom in
the sequence must contain (r ∧ s), which is not the case.

• Let α6 = {p, q, (p ∧ q), r, s, (r ∧ s), φ}. The sequences (α6)
ω and (α5 α6)

ω

are two examples of Hintikka sequences for φ.

It follows immediately from the definition of Hintikka sequences that if α =
α0α1α2 · · · is a satisfaction sequence, then every pairαi, αi+1 satisfies (ℓ1) and (ℓ2),
and the sequence α itself satisfies (g). So, every satisfaction sequence is a Hintikka
sequence. The following theorem shows that the converse also holds: every Hin-
tikka sequence is a satisfaction sequence.

Theorem 13.15. Let σ be a computation and let φ be a formula. The unique Hin-
tikka sequence for φ matching σ is the satisfaction sequence sats(σ, φ).

Proof. As observed above, it follows from the definitions that sats(σ, φ) is a Hin-
tikka sequence forφmatching σ. To show that no other Hintikka sequencematches
sats(σ, φ), let α = α0α1α2 · · · be a Hintikka sequence for φ matching σ, and let ψ
be an arbitrary formula of cl(φ). We prove that for all i ≥ 0: ψ ∈ αi if and only if
ψ ∈ sats(σ, φ, i). The proof is by induction on the structure of ψ.

• ψ = true. We have true ∈ sats(σ, φ, i) and, since αi is an atom, true ∈ αi.

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 328

• ψ = p for an atomic proposition p. Since α matches σ, we have p ∈ αi if and
only if p ∈ σi. By definition of satisfaction sequences, p ∈ σi if and only if
p ∈ sats(σ, φ, i). Thus, p ∈ αi if and only if p ∈ sats(σ, φ, i).

• ψ = φ1 ∧ φ2. We have

φ1 ∧ φ2 ∈ αi
⇐⇒ φ1 ∈ αi and φ2 ∈ αi (by condition (a1))
⇐⇒ φ1 ∈ sats(σ, φ, i) and φ2 ∈ sats(σ, φ, i) (by. ind. hypothesis)
⇐⇒ φ1 ∧ φ2 ∈ sats(σ, φ, i) (by def. of sats(σ, φ)).

• ψ = ¬φ1 or ψ = Xφ1. The proofs are very similar to the last one.

• ψ = φ1 U φ2.

(a) If φ1 U φ2 ∈ αi, then φ1 U φ2 ∈ sats(σ, φ, i).

By condition (ℓ2) of the definition of a Hintikka sequence, we have to con-
sider two cases:

– φ2 ∈ αi. By induction hypothesis, φ2 ∈ sats(σ, φ), and hence φ1 U φ2 ∈
sats(σ, φ, i).

– φ1 ∈ αi and φ1 U φ2 ∈ αi+1. By condition (g), there is at least one
index j ≥ i such that φ2 ∈ αj . Let jm be the smallest of these indices.
We prove the result by induction on jm − i. If i = jm, then φ2 ∈ αjm ,
and we proceed as in the case φ2 ∈ αi. If i < jm, then since φ1 ∈ αi,
we have φ1 ∈ sats(σ, φ, i) (by induction on ψ). Since φ1 U φ2 ∈ αi+1,
we have either φ2 ∈ αi+1 or φ1 ∈ αi+1. In the first case, we have
φ2 ∈ sats(σ, φ, i+1), and so φ1 U φ2 ∈ sats(σ, φ, i). In the second case,
by induction hypothesis (on jm− i), we have φ1 U φ2 ∈ sats(σ, φ, i+1),
and so φ1 U φ2 ∈ sats(σ, φ, i).

(b) If φ1 U φ2 ∈ sats(σ, φ, i), then φ1 U φ2 ∈ αi.

We consider again two cases.

– φ2 ∈ sats(σ, φ, i). By induction hypothesis, φ2 ∈ αi, and henceφ1 Uφ2 ∈
αi.

– φ1 ∈ sats(σ, φ, i) and φ1 U φ2 ∈ sats(σ, φ, i + 1). By the definition
of a satisfaction sequence, there is at least one index j ≥ i such that
φ2 ∈ sats(σ, φ, j). Proceed now as in case (a).

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 329

13.3.2 Constructing the NGA for an LTL Formula

Given a formula φ, we construct an NGA Aφ recognizing Lω (φ). By the defi-
nition of a satisfaction sequence, a computation σ satisfies φ if and only if φ ∈
sats(σ, φ, 0). Moreover, by theorem 13.15, sats(σ, φ) is the (unique) Hintikka se-
quence for φmatching σ. Thus, Aφ recognizes the computations σ satisfying: the
first atom of the unique Hintikka sequence for φ matching σ contains φ.

To achieve this, we apply the following strategy:

(a) Define the states and transitions of the automaton so that the runs of the
NGA Aφ are all the sequences

α0
σ0−−→α1

σ1−−→α2
σ2−−→· · ·

such that σ = σ0σ1 · · · is a computation, and α = α0α1 · · · is a pre-Hintikka
sequence of φ matching σ.

(b) Define the sets of accepting states so that a run is accepting if and only if its
corresponding pre-Hintikka sequence is also a Hintikka sequence.

Condition (a) determines all but the accepting states of Aφ:

• the alphabet of Aφ is 2AP;

• the states of Aφ are atoms of φ;

• the initial states are the atoms α such that φ ∈ α; and

• the output transitions of a state α, where α is an atom, are the triples α σ−→β
such that σ matches α, and the pair α, β satisfies conditions (ℓ1) and (ℓ2)
(where α and β play the roles of αi and αi+1).

The sets of accepting states of Aφ are determined by condition (g). By defini-
tion of Hintikka sequences, wemust guarantee that in every runα0

σ0−−→α1
σ1−−→· · · ,

if any αi contains a subformula φ1 U φ2, then there is j ≥ i such that φ2 ∈ αj . By
condition (ℓ2), this amounts to ensuring that every run contains infinitely many
indices i such that φ2 ∈ αi, or infinitely many indices j such that ¬(φ1 U φ2) ∈ αj .
Thus, we choose the sets of accepting states as follows:

• The accepting condition contains a set Fφ1 U φ2
of accepting states for each

subformula φ1 U φ2 of φ. An atom belongs to Fφ1 U φ2 if it does not contain
φ1 U φ2 or if it contains φ2.

The pseudocode for the translation is described in algorithm 57.

Example 13.16. We construct the automaton Aφ for the formula φ = p U q. The
closure cl(φ) has eight atoms, corresponding to all the possible ways of choosing be-
tween p and ¬p, q and ¬q, and p U q and ¬(p U q). However, we can easily see that
the atoms {p, q,¬(p U q)}, {¬p, q,¬(p U q)}, and {¬p,¬q, p U q} have no output
transitions, because those transitions would violate condition (ℓ2). Since states with-
out output transitions cannot appear in any run, they can be removed, and we are
left with the five atoms shown in figure 13.7.

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 330

Algorithm 57 Algorithm to convert an LTL formula into an NGA.
LTLtoNGA(φ)
Input: formula φ over AP
Output: NGA Aφ = (Q, 2AP, Q0, δ,F) with Lω (Aφ) = Lω (φ)
1 Q0 ← {α ∈ at(φ) : φ ∈ α}; Q← ∅; δ ← ∅
2 W ← Q0

3 whileW ̸= ∅ do
4 pick α fromW

5 add α to Q
6 for all φ1 U φ2 ∈ cl(φ) do
7 if φ1 U φ2 /∈ α or φ2 ∈ α then add α to Fφ1 U φ2

8 for all β ∈ at(φ) do
9 if α, β satisfies (ℓ1) and (ℓ2) then
10 add (α, α ∩ AP, β) to δ
11 if β /∈ Q then add β toW
12 F ← ∅
13 for all φ1 U φ2 ∈ cl(φ) do F ← F ∪ {Fφ1 U φ2

}
14 return (Q, 2AP, Q0, δ,F)

The three atoms on the left contain p U q, and so they become the initial states.
Figure 13.7 uses some conventions to simplify the graphical representation. Observe
that every transition of Aφ leaving an atom α is labeled by α ∩ AP. For instance,
all transitions leaving the state {¬p, q, p U q} are labeled with {q}, and all transi-
tions leaving {¬p, ¬q, ¬(p U q)} are labeled with ∅. Therefore, since the label of a
transition can be deduced from its source state, we omit transition labels in the figure.

Moreover, since φ only has one subformula of the form φ1 U φ2, the NGA is in fact
an NBA, and we can represent the accepting states as for NBAs. The accepting states
of Fp U q are the atoms that do not contain p U q—the two atoms on the right—and
the atoms containing q—the leftmost atom and the atom at the top.

Consider, for example, the atoms

α = {¬p,¬q,¬(p U q)} and β = {p,¬q, p U q}.

Automaton Aφ contains a transition α {p}−−−→β because {p} matches β, and α, β sat-
isfy conditions (ℓ1) and (ℓ2). Condition (ℓ1) holds vacuously, since φ contains no
subformulas of the form Xψ, while condition (ℓ2) holds as p U q ̸∈ α and q /∈ β and
p /∈ α. On the other hand, there is no transition from β to α as it would violate
condition (ℓ2): p U q ∈ β, but neither q ∈ β nor p U q ∈ α.

NGAs obtained from LTL formulas by means of LTLtoNGA have a very particular
structure:

• As observed above, all transitions leaving a state carry the same label.

• Every computation accepted by the NGA has a single accepting run.

By definition of the NGA, if α0
σ0−−→α1

σ1−−→· · · is an accepting run, then
α0 α1 · · · is the satisfaction sequence of σ0 σ1 · · · . Since the satisfaction

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 331

p, q, p U q

p,¬q, p U q

¬p, q, p U q

¬p,¬q,¬(p U q)

p,¬q,¬(p U q){p, q}

{p, q}
{p}

{p, q}

{q}

{p, q}

∅

{p, q}

{p}

{p}

{q}

{q}

{q}

∅

{q}

∅

∅ {p}

∅

{p}

Figure 13.7: An NGA (NBA) for the formula p U q, with three initial states and
four accepting states.

sequence of a given computation is by definition unique, there can be only
one accepting run.

• The sets of computations recognized by any two distinct states of the NGA
are disjoint.

Let σ be a computation, and let sats(σ, φ) = sats(σ, φ, 0) sats(σ, φ, 1) . . . be
its satisfaction sequence. Then σ is only accepted from the state sats(σ, φ, 0).

13.3.3 Size of the NGA

Let n be the length of the formula φ. It is easy to see that the set cl(φ) has size
O(n). Thus, the NGA Aφ has at most O(2n) states. Since φ contains at most n
subformulas of the form φ1 U φ2, the automatonAφ has at most n sets of accepting
states.

We now prove a matching lower bound on the number of states. We exhibit
a family of formulas {φn}n≥1 such that φn has length O(n), and every NGA rec-
ognizing Lω (φn) has at least 2n states. For this, we exhibit a family {Dn}n≥1 of
ω-languages over an alphabet Σ such that for every n ≥ 0:

(1) every NGA recognizing Dn has at least 2n states, and

(2) there is a formula φn ∈ LTL(Σ) of length O(n) such that Lω (φn) = Dn.

Note that in (2), we are abusing language, because if φn ∈ LTL(Σ), then Lω (φn)
contains words over the alphabet 2Σ, and so Lω (φn) and Dn are languages over
different alphabets. With Lω (φn) = Dn, we mean that for every computation σ ∈

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 332

(2Σ)ω, we have σ ∈ Lω (φn) iff σ = {a1}{a2}{a3} · · · for some ω-word a1a2a3 · · · ∈
Dn.

We let Σ = {0, 1,#} and choose the language Dn as follows:

Dn = {ww#ω : w ∈ {0, 1}n}.

(1) Every NGA recognizing Dn has at least 2n states.

Assume that an NGA A = (Q, {0, 1,#}, δ, q0, {F1, . . . , Fk}) with |Q| < 2n

recognizes Dn. For every word w ∈ {0, 1}n, there is a state qw such that
A accepts w#ω from qw. By the pigeonhole principle, we have qw1

= qw2

for two distinct words w1, w2 ∈ {0, 1}n. But then A accepts w1w2#ω, which
does not belong to Dn, contradicting the hypothesis.

(2) There is a formula φn ∈ LTL(Σ) of length O(n) such that Lω (φn) = Dn.

We need three auxiliary formulas. The first one expresses that at every po-
sition, exactly one atomic proposition holds:

φn1 = G[(0 ∨ 1 ∨#) ∧ ¬(0 ∧ 1) ∧ ¬(0 ∧#) ∧ ¬(1 ∧#)].

The second expresses that # does not hold at any of the first 2n positions,
and it holds at all later positions:

φn2 = ¬ # ∧

(
2n−1∧
i=1

Xi¬ #

)
∧ X2nG#.

The third formula expresses that if the atomic proposition holding at a po-
sition is 0 or 1, then n positions later the atomic proposition holding is the
same one, or #:

φn3 = G[(0→ Xn(0 ∨#)) ∧ (1→ Xn(1 ∨#))].

Clearly, φn = φn1 ∧ φn2 ∧ φn3 is the formula we are looking for. Observe
that φn contains O(n) characters.

13.4 Automatic Verification of LTL Formulas

We sketch a procedure for the automatic verification of properties expressed by
LTL formulas. The input to the procedure is

• a system NBA As obtained either directly from the system or by computing
the asynchronous product of a network of automata,

• a formula φ of LTL over a set of atomic propositions AP, and

• a valuation ν : AP → 2C , where C is the set of configurations of As, de-
scribing for each atomic proposition the set of configurations at which the
proposition holds.

The procedure follows these steps:

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 333

(1) Compute an NGA Av for the negation of the formula φ. Automaton Av rec-
ognizes all the computations that violate φ.

(2) Compute an NGAAvs recognizing the executable computations of the system
that violate the formula.

(3) Check emptiness of Avs.

Step (1) can be carried out by applying LTLtoNGA and step (3) by any of the
algorithms of chapter 12. For step (2), observe first that the alphabets of Av and
As are different: the alphabet of Av is 2AP, while the alphabet of As is the set C
of configurations of the system. So, we first apply the valuation V to transform Av

into an automaton, say A′v, with C as alphabet. For example, if q
{p1,p2}−−−−−→ q′ is a

transition of Av, where p1 and p2 are two atomic propositions, then A′v contains
a transition q

c−→ q′ for every configuration c such that c ∈ V(p1) ∩ V(p2). The
NGA Avs can then be computed as the result of applying IntersNGA to A′v and As
(algorithm 47 in chapter 11).

Example 13.17. In example 13.2, we proved the following property of the program of
example 13.1: all full executions starting at configurations satisfying x = y terminate
(first property of the example). For this, we represented the property by an ω-regular
expression. Let us now examine the same property, but this time expressing it as an
LTL formula.

We choose the set of atomic propositionsAP = {at_5, x=y}. The valuation assigns
to at_5 all configurations where the program is at line 5 and to x=y all configurations
where the values of variables x and y coincide. The LTL property we wish to verify
is φ = x=y→ F at_5. The smallest NGA Av for ¬φ = x=y ∧ G¬at_5 is depicted in
figure 13.8.

Applying the valuation, we obtain that the sets C∅ and C{x=y} of configurations
satisfying the corresponding sets of atomic propositions are

C∅ = {[ℓ, x, y] : ℓ ̸= 5 and x ̸= y} = {[ℓ, 0, 1], [ℓ, 1, 0] : ℓ ̸= 5},
C{x=y} = {[ℓ, x, y] : ℓ ̸= 5 and x = y} = {[ℓ, 0, 0], [ℓ, 1, 1] : ℓ ̸= 5}.

Both sets contain eight configurations. The automaton A′v is the result of replacing
in Av the transition (q0, {x=y}, q1) by eight transitions of the form (q0, c, q0), one for
each configuration c ∈ Cx=y, and proceeding similarly with the other two transitions.
From this moment on, we proceed as in example 13.2. The NGA Avs is exactly the

q0 q1
{x=y}

∅

{x=y}

Figure 13.8: An NGA for ¬φ = x=y ∧ G¬at_5.

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 334

one shown in example 13.2 for the first property. Since it contains no accepting lasso,
the program satisfies the property.

Observe that steps (1) to (3) can be carried out simultaneously. The states
of Avs are pairs [α, c], where α is an atom of φ, and c is a configuration of the
system. Let us see in detail how to compute their successors. Algorithm 58 takes
a pair [α, c] as input and returns its successors in the NGA Avs. The algorithm first
computes the successors of c in As. Then, for each successor c′ of c, it computes
the set P of atomic propositions satisfied by c′ according to the valuation. Finally,
the algorithm computes the set of atoms β such that β matches P and the pair
α, β satisfies conditions (ℓ1) and (ℓ2) of definition 13.13. The successors of [α, c]
are all the pairs [β, c′].

Algorithm 58 Computation of successors.
Succ([α, c])
1 S ← ∅
2 for all c′ ∈ δs(c) do
3 P ← ∅
4 for all p ∈ AP do
5 if c′ ∈ ν(p) then add p to P
6 for all β ∈ at(φ) matching P do
7 if α, β satisfies (ℓ1) and (ℓ2) then add c′ to S
8 return S

This algorithm can be inserted in the algorithm for the emptiness check. For
instance, if we use SCCsearch, then we just replace

6 for all r ∈ δ(q) do

by a call to Succ:

6 for all [β, c′] ∈ Succ([α, c]) do

13.5 Exercises

 Exercise 176. Prove formally the following equivalences:

(a) ¬Xφ ≡ X¬φ

(b) ¬Fφ ≡ G¬φ

(c) ¬Gφ ≡ F¬φ

(d) XFφ ≡ FXφ

(e) XGφ ≡ GXφ

 Exercise 177. The weak until operator W has the following semantics:

σ |= φ1 W φ2 ⇐⇒ ∃k ≥ 0 : (σk |= φ2 and ∀0 ≤ i < k σi |= φ1),

or ∀k ≥ 0 (σk |= φ1).

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 335

Prove the following equivalences:

pW q ≡ Gp ∨ (p U q) ≡ F¬p→ (p U q) ≡ p U (q ∨ Gp).

 Exercise 178. Let AP = {p, q} and Σ = 2AP . Give LTL formulas defining
the following languages:

(a) {p, q} ∅ Σω

(b) Σ∗ ({p}+ {p, q}) Σ∗ {q} Σω
(c) Σ∗ {q}ω

(d) {p}∗ {q}∗ ∅ω

 Exercise 179. Let AP = {p, q, r}. Give LTL formulas that hold for the
computations satisfying the following properties. If you are unsure of the exact
meaning of the property, then choose an interpretation. Here are two solved ex-
amples:

• p is false before q: Fq → (¬p U q).

• p becomes true before q: ¬q W (p ∧ ¬q).

Now it is your turn:

(a) p is true between q and r.

(b) p precedes q before r.

(c) p precedes q after r.

(d) after p and q eventually r.

(e) p alternates between true and
false.

(f) p, and only p, holds at even posi-
tions, and q, and only q, holds at
odd positions.

 Exercise 180. Let AP = {p, q} and let Σ = 2AP. Give Büchi automata for
the ω-languages over Σ defined by the following LTL formulas:

(a) XG¬p

(b) (GFp)→ (Fq)

(c) p ∧ ¬(XFp)

(d) G(p U (p→ q))

(e) Fq → (¬q U (¬q ∧ p))

 Exercise 181. Say which of the following equivalences hold. For every
equivalence that does not hold, give an instantiation of φ and ψ together with a
computation that disproves the equivalence.

(a) X(φ ∨ ψ) ≡ Xφ ∨ Xψ

(b) X(φ ∧ ψ) ≡ Xφ ∧ Xψ

(c) X(φ U ψ) ≡ (Xφ U Xψ)

(d) F(φ ∨ ψ) ≡ Fφ ∨ Fψ

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 336

(e) F(φ ∧ ψ) ≡ Fφ ∧ Fψ

(f) G(φ ∨ ψ) ≡ Gφ ∨ Gψ

(g) G(φ ∧ ψ) ≡ Gφ ∧ Gψ

(h) GF(φ ∨ ψ) ≡ GFφ ∨ GFψ

(i) GF(φ ∧ ψ) ≡ GFφ ∧ GFψ

(j) ρ U (φ ∨ ψ) ≡ (ρ U φ) ∨ (ρ U ψ)

(k) (φ ∨ ψ) U ρ ≡ (φ U ρ) ∨ (ψ U ρ)

(l) ρ U (φ ∧ ψ) ≡ (φ U ρ) ∧ (ψ U ρ)

(m) (φ ∧ ψ) U ρ ≡ (φ U ρ) ∧ (ψ U ρ)

 Exercise 182. Let V ∈ {F,G}∗ be a sequencemade of the temporal operators
F and G. Show that FGp ≡ V FGp and GFp ≡ V GFp.

 Exercise 183. Recall that a formula is a tautology if all computations satisfy
it. Which of the following formulas of LTL are tautologies? If the formula is not a
tautology, then give a computation that does not satisfy it.

(a) Gp→ Fp

(b) G(p→ q)→ (Gp→ Gq)

(c) F(p ∧ q)↔ (Fp ∧ Fq)

(d) ¬Fp→ F¬Fp

(e) (Gp→ Fq)↔ (p U (¬p ∨ q))

(f) (FGp→ GFq)↔ G(p U (¬p ∨ q))

(g) G(p→ Xp)→ (p→ Gp)

⋆ Exercise 184. We say that an LTL formula is negation-free if negations
only occur in front of atomic formulas (that is, ¬true or ¬a where a is an atomic
proposition). In this exercise, we show how to construct a deterministic Büchi
automaton for negation-free LTL formulas. In the remainder, we assume that φ
denotes such a formula over a set of atomic propositionsAP . We inductively define
the formula af(φ, ν), read “φ after ν” where ν ∈ 2AP , as follows:

af(true, ν) = true, af(φ ∧ ψ, ν) = af(φ, ν) ∧ af(ψ, ν),
af(false, ν) = false, af(φ ∨ ψ, ν) = af(φ, ν) ∨ af(ψ, ν),

af(a, ν) = af(a ∈ ν, ν), af(Xφ, ν) = φ,

af(¬a, ν) = af(a /∈ ν, ν), af(φ U ψ, ν) = af(ψ, ν) ∨ (af(φ, ν) ∧ φ U ψ).

We extend it to finite words: af(φ, ϵ) = φ and af(φ, νw) = af(af(φ, ν), w) for every
ν ∈ 2AP and every finite word w. Prove the following statements:

(a) For every formula φ, finite word w ∈
(
2AP

)∗ and ω-word w′ ∈
(
2AP

)ω:
ww′ |= φ ⇐⇒ w′ |= af(φ,w).

So, intuitively, af(φ,w) holds “after reading w” iff φ holds “at the beginning”
of ww′.

(b) For every negation-free formula φ: w |= φ iff af(φ,w′) ≡ true for some finite
prefix w′ of w.

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 337

(c) For every formula φ and ω-word w ∈
(
2AP

)ω: af(φ,w) is a positive boolean
combination of subformulas of φ.

(d) For every formula φ of length n: the set of formulas {af(φ,w) : w ∈
(
2AP

)∗}
has at most 22

n

equivalence classes up to LTL-equivalence.

(e) There exists a deterministic Büchi automaton recognizing Lω (φ) with at
most 22

n

states, where n is the length of φ. Hint: Use (b)–(d).

 Exercise 185. In this exercise, we show that the reduction algorithm of
exercise 150(2) does not reduce the Büchi automata generated from LTL formulas,
as well as show that a little modification to the algorithm LTLtoNGA (algorithm 57)
can alleviate this problem.

Let φ be a formula of LTL(AP), and let Aφ = LTLtoNGA(φ).

(a) Prove that the reduction algorithm of exercise 150(2) does not reduce A,
that is, show that A = A/CSR.

(b) Prove that Lω (Bφ) = Lω (Aφ), where Bφ is the result of modifying Aφ as
follows:

• add a new state q0 and make it the unique initial state.

• for every initial state q of Aφ, add a transition q0
q∩AP−−−−→ q to Bφ (recall

that q is an atom of cl(φ), and so q ∩ AP is well defined).

• replace every transition q1
q1∩AP−−−−→ q2 of Aφ by q1

q2∩AP−−−−→ q2.

(c) Construct the automaton Bφ for the automaton of figure 13.7.

(d) Apply the reduction algorithm of exercise 150(2) to Bφ. Is the resulting
automaton minimal?

 Exercise 186. Let A = (Q,Σ, δ, q0, F) be an automaton such that Q =
P × [1..n] for some finite set P and n ≥ 1. Automaton A models a system made of
n processes. A state (p, i) ∈ Q represents the current global state p of the system,
and the last process i that was executed.

We define two predicates execj and enabj overQ indicating whether process j
is respectively executed and enabled. More formally, for every q = (p, i) ∈ Q and
j ∈ [1..n], let

execj(q) ⇐⇒ i = j,

enabj(q) ⇐⇒ (p, i) −→ (p′, j) for some p′ ∈ P.

(a) Give LTL formulas over Qω for the following statements:

(i) All processes are executed infinitely often.
(ii) If a process is enabled infinitely often, then it is executed infinitely of-

ten.

CHAPTER 13. APPLICATION I: VERIFICATION AND TEMPORAL LOGIC 338

(iii) If a process is eventually permanently enabled, then it is executed in-
finitely often.

(b) The three above properties are known respectively as unconditional, strong,
and weak fairness. Show the following implications, and show that the re-
verse implications do not hold:

unconditional fairness =⇒ strong fairness =⇒ weak fairness.

⋆ Exercise 187. In this exercise, we prove that, in the worst case, the number
of states of the smallest deterministic Rabin automaton for an LTL formula can be
doubly exponential in the size of the formula. Let Σ0 = {a, b}, Σ1 = {a, b,#} and
Σ = {a, b,#, $}. For every n ≥ 0, let us define the ω-language Ln ⊆ Σω as follows:

Ln =
∑
w∈Σn

0

Σ∗1 # w # Σ∗1 $ w #ω.

Informally, an ω-word belongs to Ln iff

• it contains a single occurrence of $,

• the word to the left of $ is of the form w0#w1# · · ·#wk for some k ≥ 1 and
(possibly empty) words w0, . . . , wk ∈ Σ∗0,

• the ω-word to the right of $ consists of a word w ∈ Σn0 followed by an infinite
tail #ω, and

• w is equal to at least one of w0, . . . , wn.

Show the following statements:

(a) There is an infinite family {φn}n≥0 of formulas of LTL(Σ) such that φn has
size O(n2) and Lω (φn) = Ln. Here, “Lω (φn) = Ln” stands for σ ∈ Lω (φn)
iff σ = {a1}{a2}{a3} · · · for some ω-word a1a2a3 · · · ∈ Ln.

(b) The smallest deterministic Rabin automaton recognizing Ln has at least 22
n

states.

Chapter 14
Application II: Logics on ω-Words

and Linear Arithmetic

In chapter 8, we showed that the languages expressible in monadic second-order
logic on finite words are exactly the regular languages, and we derived an algo-
rithm that, given a formula, constructs an NFA accepting exactly the set of inter-
pretations of the formula. This result can be easily extended to the case of infinite
words: in the forthcoming section 14.1, we show that the languages expressible
in monadic second-order logic on ω-words are exactly the ω-regular languages.

In chapter 9, we introduced Presburger arithmetic, a logical language for ex-
pressing properties of the integers, and showed how to construct, for a given for-
mula φ of Presburger arithmetic, an NFA Aφ recognizing the solutions of φ. In the
forthcoming section 14.2, we extend this result to linear arithmetic, a language for
describing properties of real numbers with the same syntax as Presburger arith-
metic.

14.1 Monadic Second-Order Logic on ω-Words

Monadic second-order logic on ω-words has the same syntax as its counterpart on
finite words and a very similar semantics as well.

Definition 14.1. LetX1 = {x, y, z, . . .} andX2 = {X,Y, Z, . . .} be two infinite sets
of first-order and second-order variables. Let Σ = {a, b, c, . . .} be a finite alphabet.
The set MSO(Σ) of monadic second-order formulas over Σ is the set of expressions
generated by the grammar

φ ::= Qa(x) | x < y | x ∈ X | ¬φ | φ ∨ φ | ∃x φ | ∃X φ

An interpretationofa formulaφ is apair (w,V)wherew ∈ Σω, andV is amapping that
assigns every free first-order variablexapositionV(x) ∈ Nand every free second-order
variable X a set of positions V(X) ⊆ N.1 (The mapping may also assign positions to
other variables.)

1In chapter 8 it was convenient to split V into two mappings V1 and V2 for first and second-order
variables, respectively. This is no longer necessary, and so now we write just V.

339

CHAPTER 14. APPLICATION II: MSO LOGICS ON ω-WORDS AND LINEAR
ARITHMETIC 340

The satisfaction relation (w,V) |= φ between a formula φ of MSO(Σ) and an
interpretation (w,V) of φ is defined as follows:

(w,V) |= Qa(x) iff w[V(x)] = a,
(w,V) |= x < y iff V(x) < V(y),

(w,V) |= ¬φ iff (w,V) ̸|= φ,
(w,V) |= φ1 ∨ φ2 iff (w,V) |= φ1 or (w,V) |= φ2,
(w,V) |= ∃x φ iff some i ∈ N satisfies (w,V[i/x]) |= φ,
(w,V) |= x ∈ X iff V(x) ∈ V(X),
(w,V) |= ∃X φ iff some S ⊆ N satisfies (w,V[S/X]) |= φ,

where w[i] is the letter of w at position i, V[i/x] is the interpretation that assigns i to
x and otherwise coincides with V, and V[S/X] is the interpretation that assigns S to
X and otherwise coincides with V — whether V is defined for x and X or not.

If (w,V) |= φ, then we say that (w,V) is a model of φ. Two formulas are equiv-
alent if they have the same models. The language L (φ) of a sentence φ ∈ MSO(Σ)
is the set L (φ) = {w ∈ Σω : w |= ϕ}, where w |= ϕ iff w is a model of ϕ w.r.t. the
empty mapping. An ω-language L ⊆ Σω is MSO-definable if L = L (φ) for some
formula φ ∈ MSO(Σ).

Example 14.2. The language a∗bω over alphabet {a, b} can be expressed by the
formula

∃x ∀y [(y < x)↔ Qa(y)].

Variable x refers to the position of the first b.

14.1.1 Expressive Power of MSO(Σ) on ω-Words

We show that the ω-languages expressible in monadic second-order logic are ex-
actly the ω-regular languages. The proof is very similar to its counterpart for
languages of finite words (proposition 8.26) and actually even a bit simpler.

Proposition 14.3. If L ⊆ Σω is ω-regular, then L is definable in MSO(Σ).

Proof. Let A = (Q,Σ, δ,Q0, F) be an NBA with Q = {q0, . . . , qn} and Lω (A) = L.
We construct a formula φA such that for all w ∈ Σω, w |= φA iff w ∈ Lω (A).

We start with some notations. Let w = a1a2 · · · ∈ Σω, and let

Pq =
{
i ∈ N : q ∈ δ̂(q0, a1 · · · ai)

}
.

In words, i ∈ Pq iff A can be in state q immediately after reading letter ai.
We can construct a formula VisitRecord(X0, . . . , Xn) with free second-order

variablesX0, . . . , Xn exactly as in proposition 8.26. This formula has the property
that V(Xi) = Pqi holds for every model (w,V) and for every 0 ≤ i ≤ n. In
words, VisitRecord(X0, . . . , Xn) is only true whenXi takes the value Pqi for every
0 ≤ i ≤ n. Thus, we can take the following formula, which further states that
accepting states are visited infinitely often:

φA := ∃X0 · · · ∃Xn VisitRecord(X0, . . . , Xn) ∧ ∀x ∃y

x < y ∧
∨
qi∈F

y ∈ Xi

 .

CHAPTER 14. APPLICATION II: MSO LOGICS ON ω-WORDS AND LINEAR
ARITHMETIC 341

It remains to prove thatMSO-definable ω-languages are ω-regular. Given a sen-
tence φ ∈ MSO(Σ), we encode an interpretation (w,V) as an ω-word. We proceed
as for finite words. Consider, for instance, a formula with first-order variables x, y
and second-order variables X,Y . Consider the interpretationa(ab)ω,

x 7→ 2
y 7→ 6
X 7→ set of prime numbers
Y 7→ set of even numbers

We encode it as

x
y
X
Y

a
0
0
0
0

a
1
0
1
1

b
0
0
1
0

a
0
0
0
1

b
0
0
1
0

a
0
1
0
1

b
0
0
1
0

a
0
0
0
1

· · ·
· · ·
· · ·
· · ·
· · ·

corresponding to the ω-word
a
0
0
0
0

a
1
0
1
1

b
0
0
1
0

a
0
0
0
1

b
0
0
1
0

a
0
1
0
1

b
0
0
1
0

a
0
0
0
1

· · ·

· · ·

· · ·

over alphabet Σ× {0, 1}4.

Definition 14.4. Let φ be a formula with n free variables, and let (w,V) be an
interpretation of φ. We denote by enc(w,V) the word over the alphabet Σ× {0, 1}n
described above. The ω-language of φ is Lω (φ) = {enc(w,V) : (w,V) |= φ}.

A proof by induction on the structure of φ shows that Lω (φ) is ω-regular. The
proof is a straightforward modification of the proof for the case of finite words;
it constructs a NGA Aφ such that Lω (Aφ) = Lω (φ). Operations on NFAs are
replaced by their corresponding operations on NGAs.

14.2 Linear Arithmetic

Linear arithmetic is a language for describing properties of real numbers. It has the
same syntax as Presburger arithmetic (see chapter 9), but formulas are interpreted
over the reals, instead of the natural numbers or the integers. Given a formula
φ of linear arithmetic, we show how to construct an NGA Aφ recognizing the
solutions of φ. Section 14.2.1 discusses how to encode real numbers as ω-words,
and section 14.2.2 constructs the NGA.

14.2.1 Encoding Real Numbers

We encode real numbers as infinite words in two steps. First, we encode reals as
pairs of numbers and then these pairs as words.

CHAPTER 14. APPLICATION II: MSO LOGICS ON ω-WORDS AND LINEAR
ARITHMETIC 342

We encode each real number x ∈ R as a pair (xI , xF), where xI ∈ Z, xF ∈ [0, 1]
and x = xI + xF . We call xI and xF the integer and fractional parts of x. So, for
instance, (1, 1/3) encodes 4/3, and (−1, 2/3) encodes −1/3 (not −5/3). Every in-
teger is encoded by two different pairs, for example, 2 is encoded by (1, 1) and
(2, 0). We are not bothered by this; note that in the standard decimal represen-
tation of real numbers, integers also have two representations; for example, 2 is
represented by both 2.0 and 1.9.

We encode each pair (xI , xF) as an infinite wordwI⋆wF . ThewordwI is a two’s
complement encoding of xI (see chapter 9). However, unlike in chapter 9, we use
the MSBF encoding instead of the LSBF encoding. This is not essential, but it leads
to a more elegant construction. Thus, wI is any wordwI = anan−1 · · · a0 ∈ {0, 1}+
satisfying

xI = −an · 2n +

n−1∑
i=0

ai · 2i. (14.1)

The ω-word wF is any infinite sequence b1b2b3 · · · ∈ {0, 1}ω satisfying

xF =

∞∑
i=1

bi · 2−i. (14.2)

The only ω-word b1b2b3 · · · for which we have xF = 1 is 1ω. So, in particular, the
encodings of the integer 1 are the ω-words of 0∗1⋆0ω and 0∗0⋆1ω. Equation (14.2)
also has two solutions for some fractions, for example, the encodings of 1/2 are
the ω-words of 0∗0 ⋆ 10ω and 0∗0 ⋆ 01ω. Other fractions have a unique form, for
example, 0∗0 ⋆ (01)ω for 1/3.

Example 14.5. Numbers 3.3, 3, and −3.75 are encoded by

3.3 7→ 0∗011 ⋆ (01)ω,

3 7→ 0∗011 ⋆ 0ω and 0∗010 ⋆ 1ω,

−3.75 7→ 1∗100 ⋆ 010ω and 1∗100 ⋆ 001ω.

When encoding tuples of reals, we use padding to make the symbols ⋆ fall on
the same column. For instance, a possible encoding of the triple (−6.75, 12.3, 3) is10

0

 11
0

 01
0

 00
1

 10
1

 ⋆⋆
⋆

 00
0

 11
0

 00
0

 01
0

ω

.

14.2.2 Constructing an NGA for the Real Solutions

Given a linear arithmetic formula φ, we construct an NGAAφ accepting the encod-
ings of the solutions ofφ. Ifφ is a negation, disjunction, or existential quantification,
then we proceed as in chapter 9, replacing the operations on NFAs and transducers
by operations on NGAs.

Let us now consider an atomic formula of the form φ = a · x ≤ b. The NGA Aφ
(which will actually be an NBA) must accept the encodings of all tuples c ∈ Rn
satisfying a · c ≤ b. We decompose the problem into two subproblems for integer
and fractional parts. Given c ∈ Rn, let cI and cF be the integer and fractional part

CHAPTER 14. APPLICATION II: MSO LOGICS ON ω-WORDS AND LINEAR
ARITHMETIC 343

of c for some encoding of c. For instance, if c = (2.3,−2.75, 1), then we can have
cI = (2,−3, 1) and cF = (0.3, 0.25, 0), corresponding to the encoding

[010 ⋆ (01)ω, 101 ⋆ 010ω, 001 ⋆ 0ω],

or cI = (2,−3, 0) and cF = (0.3, 0.25, 1), corresponding to

[00010 ⋆ (01)ω, 11101 ⋆ 001ω, 00000 ⋆ 1ω].

Let α+ and α− be respectively the sum of the positive and negative components
of a; for instance, if a = (1,−2, 0, 3,−1), then α+ = 4 and α− = −3. We show the
following:

Proposition 14.6. It is the case that c ∈ Rn is a solution of φ = a · x ≤ b iff:

• a · cI ≤ b− α+, or

• a · cI = β for some integer β ∈ [b− α+ + 1, b− α−] and a · cF ≤ b− β.

Proof. First note that, since cF ∈ [0, 1]n, we have a · cF ∈ [α−, α+].
⇒) Let us assume that a · cI > b− α+, as we are otherwise done. Since c is a

solution of φ, we have a·cI+a·cF = a·(cI+cF) = a·c ≤ b. In particular, this means
that a·cI ≤ b−a·cF and hence that a·cI ≤ b−α−. By assumption, this implies that
a · cI = β, where β ∈ [b−α+ +1, b−α−]. Furthermore, a · cF ≤ b− a · cI = b−β.
⇐) If a · cI ≤ b− α+, then we are done since

a · c = a · cI + a · cF ≤ (b− α+) + a · cF ≤ (b− α+) + α+ = b.

Thus, let us assume that a·cI = β for some integer β ∈ [b−α++1, b−α−] such that
a·cF ≤ b−β. We are done since a·c = a·cI+a·cF = β+a·cF ≤ β+(b−β) = b.

To simplify the notation, let β− = b − α+ + 1 and β+ = b − α−. By proposi-
tion 14.6, we can decompose the solution space of φ as follows:

Sol(φ) = {cI + cF : a · cI < β−}∪
∪

β−≤β≤β+

{cI + cF : a · cI = β and a · cF ≤ b−β}.

Example 14.7. We use φ = 2x− y ≤ 0 as a running example. We have [α−, α+] =
[1, 2], b = 0 and [β−, β+] = [−1, 1]. Thus, (x, y) ∈ R2 is a solution of φ iff one of the
following conditions holds

• 2xI − yI ≤ −2,

• 2xI − yI = −1 ∧ 2xF − yF ≤ 1,

• 2xI − yI = 0 ∧ 2xF − yF ≤ 0,

• 2xI − yI = 1 ∧ 2xF − yF ≤ −1.

Observe that solutions of a · cI < β− and a · cI = β can be computed using
algorithms IneqZtoNFA and EqZtoNFA of section 9.3. Recall that both algorithms
use the LSBF encoding, but it is easy to transform their output into NFAs for the
MSBF encoding: since the algorithms deliver NFAs with exactly one final state, it
suffices to reverse the transitions of the NFA and exchange the initial and accepting
states. This way, the new automaton recognizes a wordw iff the old one recognizes
its reverse wR, and so it recognizes exactly the MSBF encodings.

CHAPTER 14. APPLICATION II: MSO LOGICS ON ω-WORDS AND LINEAR
ARITHMETIC 344

Example 14.8. Figure 14.1 shows NFAs for the solutions of 2xI − yI ≤ −2 in LSBF
(left) and MSBF encodings (right). The NFA on the right is obtained by reversing the
transitions and exchanging the initial and final states. Similarly, figure 14.2 shows
NFAs for the solutions of 2xI − yI = −1.

It remains to show how to compute an automaton for the solutions of an in-
equation of the form a · xF ≤ β − b. This is done in the next section.

14.2.2.1 A DBA for the Solutions of a · xF ≤ β − b

We construct a DBA recognizing the solutions of formulas of the form a · xF ≤ d
such that 0 ≤ xF ≤ 1. The algorithm is similar to AFtoNFA from section 9.2. The
states of the DBA are integers. We choose transitions and accepting states so that
the following property holds:

q ∈ Z recognizes the encodings of the tuples cF ∈ [0, 1]n s.t. a · cF ≤ q. (14.3)

However, recall that a · cF ∈ [α−, α+] for every cF ∈ [0, 1]n, and therefore:

• all states q ≥ α+ accept all tuples of reals in [0, 1]n and can be merged with
state α+, and

• all states q < α− accept no tuples in [0, 1]n and can be merged with state
(α− − 1).

−2

−1

0

qf

[
0
1

]

[
0
0

]
,

[
0
1

]

[
0
0

]
,

[
1
1

]

[
1
0

]

[
0
1

]

[
0
0

]
,

[
0
1

]

[
1
0

]
,

[
1
1

]

[
1
0

]

[
1
0

]
,

[
1
1

]

[
0
0

]
,

[
1
0

]
,

[
1
1

]

−2

−1

0

qf

[
0
1

]

[
0
0

]
,

[
0
1

]

[
0
0

]
,

[
1
1

]

[
1
0

]

[
0
1

]

[
0
0

]
,

[
0
1

]

[
1
0

]
,

[
1
1

]

[
1
0

]

[
1
0

]
,

[
1
1

]

[
0
0

]
,

[
1
0

]
,

[
1
1

]

Figure 14.1: NFAs for the solutions of 2x − y ≤ −2 over Z with LBSF (left) and
MSBF (right) encodings.

CHAPTER 14. APPLICATION II: MSO LOGICS ON ω-WORDS AND LINEAR
ARITHMETIC 345

−1

0 1

qf

[
1
1

]

[
0
1

]

[
1
1

]

[
0
0

]

[
1
0

] [
0
0

]

[
0
1

]
[
1
1

]

[
0
1

]
qf

1

−1

0

[
1
1

]

[
0
1

]

[
1
1

]

[
0
0

]

[
1
0

][
0
0

]

[
0
1

]
[
1
1

]

[
0
1

]

Figure 14.2: NFAs for the solutions of 2x − y = −1 over Z with LBSF (left) and
MSBF (right) encodings.

Calling these two merged states “all” and “none,” respectively, the states of the
DBA (not all of them may be reachable from the initial state) are

all, none and {q ∈ Z : α− ≤ q < α+}.

All of these states but none are accepting, and the initial state is β. Let us now de-
fine the set of transitions. Given a state q and a letter ζ ∈ {0, 1}n, let us determine
the target state q′ of the unique transition labeled by ζ from q. Clearly, if q = all,
then q′ = all, and if q = none, then q′ = none. If q ∈ Z, then we compute the value
v that q′ must have in order to satisfy property 14.3, and then we set

q′ =

q if v ∈ [α−, α+),

none if v < α−,

all if v ≥ α+.

To compute v, observe that a word w ∈ ({0, 1}n)ω is accepted from q′ iff the word
ζw is accepted from q. Thus, the tuple c′ ∈ Rn encoded by w and the tuple c ∈ Rn
encoded by ζw are related by the following equation:

c =
1

2
ζ +

1

2
c′. (14.4)

Since c′ is accepted from q′ iff c is accepted by q, to fulfill property 14.3, we must
choose v so that a · (12ζ +

1
2c
′) ≤ q holds iff a · c′ ≤ v holds. We get v = 2q − a · ζ,

and so we define the transition function of the DBA as follows:

δ(q, ζ) =

q if q ∈ {none, all},
2q − a · ζ if 2q − a · ζ ∈ [α−, α+),

none if 2q − a · ζ < α−,

all if 2q − a · ζ ≥ α+.

CHAPTER 14. APPLICATION II: MSO LOGICS ON ω-WORDS AND LINEAR
ARITHMETIC 346

Example 14.9. Figure 14.3 depicts the DBA for 2xF − yF ≤ 1, where the trap state
none has been omitted for the sake of readability. Since α+ = 2 and α− = −1, the
possible states are {all,none,−1, 0, 1}. The initial state is 1. Let us determine the
target state of the transitions leaving state 1. We instantiate the definition of δ(q, ζ)
with q = 1, α+ = 2 and α− = −1, and get

1

0 −1

all
[
1
1

]
[
1
0

]

[
0
0

]
,
[
0
1

]

[
0
0

]
[
0
1

] [
1
0

]
[
1
1

] [
0
1

]

[
0
0

]
, . . . ,

[
1
1

]

Figure 14.3: DBA for the solutions of 2x− y ≤ 1 over {0, 1}2.

δ(1, ζ) =

2− 2ζx + ζy if 2− 2ζx + ζy ∈ {−1, 0, 1},
none if 2− 2ζx + ζy < −1,
all if 2− 2ζx + ζy ≥ 2,

which can be simplified to

δ(1, ζ) =

{
all if ζx = 0,

ζy otherwise.

Recall that, by property 14.3, a state q ∈ Z accepts the encodings of the pairs
(xF , yF) such that 2xF − yF ≤ q. This allows us to immediately derive the DBAs for
2xF − yF ≤ 0 and 2xF − yF ≤ −1: they are the DBA of figure 14.3 with 0 as initial
state, and the same DBA with −1 as initial state, respectively.

The procedure to construct the DBA for a · xF ≤ d is summarized in algo-
rithm 59.

Example 14.10. Let φ = 2x − y ≤ 0. We construct the full NBA Aφ by putting all
the pieces together. Recall that (x, y) ∈ R2 is a solution of φ iff (at least) one of the
following conditions holds:

(i) 2xI − yI ≤ −2,

(ii) 2xI − yI = −1 ∧ 2xF − yF ≤ 1,

(iii) 2xI − yI = 0 ∧ 2xF − yF ≤ 0,

(iv) 2xI − yI = 1 ∧ 2xF − yF ≤ −1.

The top of figure 14.4 depicts an NBA for (i). This NBA is easily obtained from
the NFA for the solutions of 2xI − yI ≤ −2 depicted on the right of figure 14.1.

CHAPTER 14. APPLICATION II: MSO LOGICS ON ω-WORDS AND LINEAR
ARITHMETIC 347

Algorithm 59 Converting an inequality into a DBA recognizing the MSBF encod-
ings of its solutions.
IneqtoDBA(φ)
Input: Inequation φ = a · xF ≤ d
Output: DBA A = (Q,Σ, δ, q0, F) such that Lω (A) = L (φ)

(without trap state)
1 Q, δ, F ← ∅; q0 ← d

2 W ← {d}
3 α− ←

∑
i:ai<0 ai; α

+ ←
∑
i:ai≥0 ai

4 whileW ̸= ∅ do
5 pick q fromW

6 add q to Q
7 add q to F
8 for all ζ ∈ {0, 1}n do
9 q′ ← 2q − a · ζ
10 if q′ ≥ α− then
11 if q = all or q′ ≥ α+ then q′ ← all
12 if q′ /∈ Q then add q′ toW
13 add (q, ζ, q′) to δ

The NBA at the bottom of figure 14.4 recognizes pairs (x, y) ∈ R2 satisfying (ii),
(iii), or (iv). To construct it, we “concatenate” the NFA on the right of figure 14.2 and
the DBA of figure 14.3. The resulting NBA recognizes the solutions of 2xI − yI = −1
and 2xF − yF ≤ 1, which is adequate for (ii). For (iii) and (iv), we respectively
connect state 0 to 0 and 1 to −1 (with ⋆).

14.3 Exercises

 Exercise 188. Give an MSO({a, b}) sentence for each of the following ω-
regular languages:

(a) Finitely many as: (a+ b)∗bω

(b) Infinitely many bs: ((a+ b)∗b)ω

(c) as at each even position: (a(a+ b))ω

What regular languages would you obtain if your sentences were interpreted over
finite words?

 Exercise 189. Let us revisit exercise 131 over infinite words rather than
finite ones. Consider a formula ϕ(X) of MSO(Σ) that does not contain any occur-
rence of predicates of the form Qa(x). Given two interpretations that assign the
same set of positions to X, we have that either both interpretations satisfy ϕ(X),
or none of them does. Thus, we can speak of the sets of natural numbers satisfy-
ing ϕ(X). This observation can be used to automatically prove some (very) simple

CHAPTER 14. APPLICATION II: MSO LOGICS ON ω-WORDS AND LINEAR
ARITHMETIC 348

−2

−1

0

qf

[
0
1

]

[
0
0

]
,

[
0
1

]

[
0
0

]
,

[
1
1

]

[
1
0

]

[
0
1

]

[
0
0

]
,

[
0
1

]

[
1
0

]
,

[
1
1

]

⋆
Σ[

1
0

]

[
1
0

]
,

[
1
1

]

[
0
0

]
,

[
1
0

]
,

[
1
1

]

qf

1

−1

0

[
1
1

]

[
0
1

]

[
1
1

]

[
0
0

]

[
1
0

][
0
0

]
[
0
1

] [
1
1

]

[
0
1

]
1

0 −1

all
[
1
1

]

[
1
0

]

[
0
0

]
,
[
0
1

]

[
0
0

]

[
0
1

] [
1
0

]

[
1
1

] [
0
1

]

Σ

⋆

⋆

⋆

Figure 14.4: NBA for the real solutions of 2x− y ≤ 0 satisfying (i) (top) and (ii),
(iii), or (iv) (bottom).

properties of the natural numbers. Consider, for instance, the following “conjec-
ture”: every set of natural numbers has a minimal element.2 The conjecture holds
iff the formula

Has_min(X) := ∃x ∈ X ∀y ∈ X (x ≤ y)

is satisfied by every interpretation in which X is nonempty. Construct an automa-
ton for Has_min(X), and check that it recognizes all nonempty sets.

 Exercise 190. Construct a DBA for xF + 3 · yF ≤ 2 using IneqtoDBA.

 Exercise 191. Let φ be a formula from linear arithmetic s.t. V |= φ iff
2We only proved the case of finite sets in exercise 131. Here, we handle finite and infinite sets.

CHAPTER 14. APPLICATION II: MSO LOGICS ON ω-WORDS AND LINEAR
ARITHMETIC 349

V(x) ≥ V(y) ≥ 0. Give an NBA that accepts the solutions of φ (over R), without
necessarily following the construction presented in the chapter.

 Exercise 192. Reconsider Exercise 191 with a strict inequality, i.e. V(x) >
V(y) ≥ 0.

 Exercise 193. Linear arithmetic cannot express the operations y = ⌈x⌉
(ceiling) and y = ⌊x⌋ (floor). Explain how they can be implemented with Büchi
automata.

 Exercise 194. Let c be an irrational number such as π, e, or
√
2. Show that

no formula from linear arithmetic is such that V |= φ iff V(x) = c.

Solutions

350

Solutions for Chapter 1

 Exercise 1. Give a regular expression for the language of all words over
Σ = {a, b}

(a) beginning and ending with the same letter.

(b) having two occurrences of a at distance 3.

(c) with no occurrence of the subword aa.

Solution: Let us write Σ∗ for (a+ b)∗. The expressions are as follows:

(a) a+ b+ aΣ∗a+ bΣ∗b

(b) Σ∗aΣΣaΣ∗

(c) (a+ ε)(b∗ + ba)
∗ or equivalently (b∗ + ab)∗(ε+ a)

 Exercise 3. Show that the language of the regular expression r = (a +
ε)(b∗ + ba)

∗ is the language A of all words over {a, b} that do not contain any
occurrence of aa.

Solution:

• L (r) ⊆ A. Let w ∈ L (r). By definition of r, we have w = u1u2 · · ·un for
some n ≥ 1 and some words u1 ∈ {ε, a} and u2, . . . , un ∈ L (b∗ + ba). For
the sake of contradiction, assume that w contains an occurrence of aa. Since
none of the ui contains aa, there must exist some i ∈ {1, . . . , i − 1} such
that ui ends with a and ui+1 starts with a. The only possible case for ui+1 is
ui+1 = u1 = a, which means that i = 0. This is a contradiction.

• A ⊆ L (r). Let w ∈ A. There exist n ≥ 0 and i, j1, j2, . . . jn, k ≥ 0 such that

– w = biabj1abj2 · · · abjnabk, and
– j1, j2, . . . , jn > 0.

351

SOLUTIONS FOR CHAPTER 1 352

If i = 0, then w ∈ L (r) since

w = a bj1−1 ba · · · bjn−1 ba bk ∈ L (a b∗ ba · · · b∗ ba b∗) ⊆ L (r) .

If i > 0, then w ∈ L (r) since

w = bi−1 ba bj1−1 ba · · · bjn−1 ba bk

∈ L (ε b∗ ba b∗ ba · · · b∗ ba b∗) ⊆ L (r) .

 Exercise 5.

1. Prove that for all languagesA andB, the following holds: A ⊆ B =⇒ A∗ ⊆
B∗.

2. Prove that the regular expressions ((a + ab)∗ + b∗)∗ and Σ∗ represent the
same language, where Σ = {a, b} and where Σ∗ stands for (a+ b)∗.

Solution:

(a) Let us assume that A ⊆ B. Let w ∈ A∗. We must show that w ∈ B∗. If
w = ε, then w is trivially in B∗. Otherwise, there exist n > 0 and words
v1, . . . , vn ∈ A such that w = v1 · · · vn. Since A ⊆ B, we know that vi ∈ B
for every i ∈ {1, . . . , n}, and so w = v1 . . . vn ∈ B∗.

(b) The language Σ∗ contains all words over alphabet Σ, so in particular it con-
tains all words from L (((a+ ab)∗ + b∗)∗). For the other direction, let A = Σ
andB = L ((a+ ab)∗ + b∗). We haveA ⊆ B. Thus, by (a) we haveA∗ ⊆ B∗,
which means that Σ∗ ⊆ L (((a+ ab)∗ + b∗)∗).

 Exercise 7. For each of the following properties, provide a syntax that
describes the regular expressions r satisfying the property.

(a) L (r) = ∅,

(b) L (r) = {ε},

(c) ε ∈ L (r),

(d) (L (r) = L (rr)) =⇒ (L (r) = L (r∗)).

Solution:

(a) They are the regular expressions generated by the “two-level” syntax

r ::= ∅ | rs | sr | r + r

where s denotes an arbitrary regular expression. A simple proof by induction
shows that if r is generated by this syntax, then L (r) = ∅. For the converse,
let t be an arbitrary regular expression such that L (t) = ∅. If t = ∅, then we
are done because t is generated by the syntax. The cases t = ε and t = a are

SOLUTIONS FOR CHAPTER 1 353

impossible. If t = t1t2, then we have L (t1) = ∅ or L (t2) = ∅; by induction
hypothesis either t1 or t2 is generated by the syntax, and thus so is t. If
t = t1 + t2, then we have L (t1) = ∅ and L (t2) = ∅; by induction hypothesis
both t1 and t2 are generated by the syntax, and thus so is t.

(b) They are the regular expressions generated by the syntax

r ::= ε | s∗ | rr | s+ r | r + s | r + r | r∗

where s denotes an arbitrary regular expression from (a).

(c) They are the regular expressions generated by the syntax

r ::= ε | rr | r + s | s+ r | s∗

where s denotes an arbitrary regular expression.

(d) Suppose that L (r) = L (rr). We have

L (rrr) = L (rr)L (r) = L (r)L (r) = L (rr) = L (r) .

Hence, by repeated application of this argument, we obtain L
(
ri
)
= L (r)

for every i ≥ 1. In particular, this means that L (r) = L (rr) implies L (r∗) =
{ε} ∪ L (r). We use this observation to prove that the implication holds iff
L (r) ̸= ∅.

⇒): Assume L (r) = ∅. We have L (rr) = ∅ = L (r), but L (r) = ∅ ̸= {ε} =
L (r∗), and so the implication does not hold.

⇐): Assume L (r) ̸= ∅. We consider two cases.

• Case ε ∈ L (r). If L (r) = L (rr) then L (r∗) = {ε}∪L (r) by the above
observation. Since ε ∈ L (r), we get L (r∗) = {ε} ∪ L (r) = L (r), and
so the implication holds.

• Case ε /∈ L (r). Let k be the length of a shortest word in L (r). The
shortest word in L (rr) has length 2k. Since ε /∈ L (r), we have k >
0 and so 2k ̸= k. Thus, L (rr) ̸= L (r), and the implication holds
vacuously.

Consequently, the regular expressions satisfying the implication are exactly
those whose language is nonempty. These are the regular expressions gen-
erated by the syntax

r ::= ε | a | rr | s+ r | r + s | s∗

where s denotes an arbitrary regular expression.

 Exercise 8. Use the solution to exercise 7 to define inductively the predicates
IsEmpty(r), IsEpsilon(r), and HasEpsilon(r) over regular expressions given by

• IsEmpty(r)⇔ (L (r) = ∅),

• IsEpsilon(r)⇔ (L (r) = {ε}),

• HasEpsilon(r)⇔ (ε ∈ L (r)).

SOLUTIONS FOR CHAPTER 1 354

Solution:

• IsEmpty(r) is defined by:

IsEmpty(∅) = true,
IsEmpty(ε) = IsEmpty(a) = IsEmpty(r∗) = false,

IsEmpty(r1 + r2) = IsEmpty(r1) ∧ IsEmpty(r2),
IsEmpty(r1r2) = IsEmpty(r1) ∨ IsEmpty(r2).

• IsEpsilon(r) is defined by:

IsEpsilon(ε) = true,
IsEpsilon(∅) = IsEpsilon(a) = false,

IsEpsilon(r1 + r2) = (IsEpsilon(r1) ∧ IsEmpty(r2)) ∨
(IsEmpty(r1) ∧ IsEpsilon(r2)) ∨
(IsEpsilon(r1) ∧ IsEpsilon(r2)),

IsEpsilon(r1r2) = IsEpsilon(r1) ∧ IsEpsilon(r2),
IsEpsilon(r∗) = IsEpsilon(r) ∨ IsEmpty(r).

• HasEpsilon(r) is defined by:

HasEpsilon(ε) = HasEpsilon(r∗) = true,
HasEpsilon(∅) = HasEpsilon(a) = false,

HasEpsilon(r1 + r2) = HasEpsilon(r1) ∨ HasEpsilon(r2),
HasEpsilon(r1r2) = HasEpsilon(r1) ∧ HasEpsilon(r2).

 Exercise 10. Let L ⊆ {a, b}∗ be the language described by the regular
expression a∗b∗a∗a.

(a) Give an NFA-ε that accepts L.

(b) Give an NFA that accepts L.

(c) Give a DFA that accepts L.

Solution:

(a)

a

ε

b

a

a

(b)

SOLUTIONS FOR CHAPTER 1 355

a

b

b

a

a

a

(c)

b

a

a

b

b

a

a

b

a, b

 Exercise 11. Let |w|σ denote the number of occurrences of letter σ in word
w. For every k ≥ 2, let Lk,σ = {w ∈ {a, b}∗ : |w|σ mod k = 0}.

(a) Give a DFA with k states that accepts Lk,σ.

(b) Show that any NFA accepting Lm,a ∩ Ln,b has at least m · n states.

Hint: Consider using the pigeonhole principle.

Solution:

(a) Graphically, the automaton A is as follows:

q0

q1

q2

qk−1

σ σ

σ

̸= σ

̸= σ

̸= σ

̸= σ

σ

Formally, we define A = ({q0, q1, . . . , qk−1}, {a, b}, δ, {q0}, {q0}) where

δ(qi, x) =

{
q(i+1 mod k) if x = σ,

qi if x ̸= σ.

SOLUTIONS FOR CHAPTER 1 356

(b) Let A = (Q, {a, b}, δ,Q0, F) be a minimal NFA that accepts Lm,a ∩ Ln,b. For
the sake of contradiction, suppose that |Q| < m · n. Let wi,j = aibj . Since
wi,ja

(m−1)ib(n−1)j ∈ L (A), the word wi,j can be read in A, i.e. there exist
pi,j ∈ Q0 and qi,j ∈ Q such that

pi,j
wi,j−−→ qi,j .

By the pigeonhole principle, there exist 0 ≤ i, i′ < m and 0 ≤ j, j′ < n such
that (i, j) ̸= (i′, j′) and qi,j = qi′,j′ . Moreover, since A is minimal, qi,j can
reach some final state qf ∈ F through some v ∈ Σ∗, as otherwise qi,j could
be removed. Therefore, we have:

pi,j
wi,jv−−−→ qf and pi′,j′

wi′,j′v−−−−→ qf .

This means that wi,jv ∈ L (A) and wi′,j′v ∈ L (A). Thus, we have:

(i+ |v|a) mod m = 0 = (i′ + |v|a) mod m,
(j + |v|b) mod n = 0 = (j′ + |v|b) mod n.

This implies i = i′ and j = j′, which is a contradiction. Hence, |Q| ≥ m · n
as claimed.

 Exercise 15. Prove or disprove: every regular language is recognized by an
NFA

(a) having one single initial state,

(b) having one single final state,

(c) whose initial states have no incoming transitions,

(d) whose final states have no outgoing transitions,

(e) all of the above,

(f) whose states are all initial,

(g) whose states are all final.

Which of the above hold for DFAs? Which ones for NFA-ε?

Solution: For NFAs:

(a) Yes. We can add a single initial state q0, make all former initial state q ∈ Q0

non initial and add transitions δ(q0, a) = δ(q, a). Moreover, we make q0 final
iff some q ∈ Q0 was final.

(b) Yes. The argument is symmetric to (a).

(c) Yes. This follows from (a).

(d) Yes. This follows from (b).

SOLUTIONS FOR CHAPTER 1 357

(e) No. There is no such NFA accepting a∗.

(f) No. There is no such NFA accepting {a}, as it would otherwise also accept ε.

(g) No. There is no such NFA accepting {a}, as it would otherwise also accept ε.

For NFA-ε, the same holds except for (e) which is true. Indeed, we can add a
single initial and final state respectively connected to the former initial and final
states with ε-transitions. For DFAs:

(a) Yes. We do the same as for NFAs.

(b) No. There is no such DFA accepting {ε, a}.

(c) Yes. This follows from (a).

(d) No. There is no such DFA accepting {ε, a}.

(e) No. It is already false for NFAs.

(f) No. It is already false for NFAs.

(g) No. It is already false for NFAs.

 Exercise 16. Given a regular expression r, construct an NFA A that satisfies
L (A) = L (r) and the following properties:

• initial states have no incoming transitions,

• accepting states have no outgoing transitions,

• all input transitions of a state (if any) carry the same label,

• all output transitions of a state (if any) carry the same label.

Apply your construction on r = (a(b+ c))∗.

Solution: Let A = (Q,Σ, δ,Q0, F) be an NFA such that L (A) = L (r). We define
A′ = (Q′,Σ′, δ′, Q′0, F

′) as

Q′ = Q× Σ2

Q′0 = Q0 × Σ2

F ′ = F × Σ2

δ′ = {((q, x, y), y, (r, y, z)) : (q, y, r) ∈ δ, x, y ∈ Σ}

Clearly, every state (q, x, y) only has incoming transitions labelled with x and only
has outgoing transitions labelled with y. To deal with the initial and final states,
we modify A′ by copying every initial and final state, and deleting all incoming or
outgoing transitions, respectively.

Alternatively, it is possible to construct an NFA inductively from r. If r is ∅, ε
or a, then we can take A as one of these three automata:

SOLUTIONS FOR CHAPTER 1 358

a

If r = r1 + r2 or r = r1r2, then by induction hypothesis, there exist NFAs A1 =
(Q1,Σ, δ1, Q01, F1) and A2 = (Q2,Σ, δ2, Q02, F2) that satisfy the above properties
for r1 and r2. In the former case, it suffices to put A1 and A2 side by side. In the
latter case, we would like to “glue A2 to the end of A1”. However, since transitions
with different letters cannot enter a common state, we make |Σ| copies of A1.
More formally, we construct A = (Q,Σ, δ,Q0, F) where:

Q = {qa : q ∈ Q1, a ∈ Σ} ∪Q2,

δ = {(pa, b, qa) : q ∈ δ1(p, b), a ∈ Σ} ∪
{(pa, a, q) : p ∈ F1, a ∈ Σ, q ∈ δ2(Q02, a)} ∪ δ2,

Q0 = {qa : q ∈ Q01},
F = F2.

It remains to handle the case of r = s∗. By induction hypothesis, there exists an
NFA A = (Q,Σ, δ,Q0, F) that satisfies the above properties for s. Let us construct
an NFA A′ = (Q′,Σ, δ′, Q′0, F

′) that satisfies the claim. Note that s∗ is equivalent
to ε + s+. So it suffices to deal with s+, and add a disjoint singleton NFA for ε.
Informally, we wish to connect F ′ to Q′0 with ε-transitions. However, we cannot
use ε-transitions. Moreover, we must respect the constraints. Hence, we make
1 + |Σ| copies of each accepting state of A. The purpose of the first copy is to
satisfy the fact that accepting states cannot have outgoing transitions. Each other
copy is associated to the letter that may leave an accepting state. Formally, we
define:

Q′ = Q ∪ {qa : q ∈ F, a ∈ Σ},
δ′ = δ ∪ {(p, b, qa) : q ∈ F ∩ δ2(p, b), a ∈ Σ} ∪

{(pa, a, q) : p ∈ F, a ∈ Σ, q ∈ δ(Q0, a)},
Q′0 = Q0,

F ′ = F.

Let us apply the constructing on r = (a(b+ c))∗. We obtain the following NFAs
for a and b+ c:

a b

c

By applying the construction for concatenation, we obtain:

SOLUTIONS FOR CHAPTER 1 359

a

a

a

b

c

b

c

By cleaning the NFA, we obtain:

a

a

b

c

By applying the construction for the Kleene star, we obtain:

a

a

b

b

b

b

c

c

c

c

a

a
a

a

By cleaning the NFA, we obtain an NFA for (a(b + c))∗ that satisfies all of the
constraints:

SOLUTIONS FOR CHAPTER 1 360

a

a

b

b

c

c

a

a
a

a

 Exercise 17. Convert this NFA-ε to an NFA using the algorithm NFAεtoNFA:

p

q

r

s

ε

ε

b

a

ε

Solution: We obtain the resulting NFA B in seven steps:

Iter. B = (Q′,Σ, δ′, Q′0, F
′) δ′′ (ε-transitions) Workset W

0 p {(p, ε, q), (p, ε, r)}

1
p p

q
ε {(p, ε, r), (p, a, q),

(p, b, s)}

2
p

p

q

r

ε

ε

{(p, a, q), (p, b, s),
(p, ε, s)}

3 p

q
a

p

q

r

ε

ε

{(p, b, s), (p, ε, s),
(q, a, q), (q, b, s)}

SOLUTIONS FOR CHAPTER 1 361

4
p

q

s

a

b

p

q

r

ε

ε

{(p, ε, s), (q, a, q),
(q, b, s)}

5
p

q

s

a

b

p

q

r

s

ε

ε

ε {(q, a, q), (q, b, s)}

6
p

q

s

a

b

a

p

q

r

s

ε

ε

ε {(q, b, s)}

7
p

q

s

a

b

a

b
p

q

r

s

ε

ε

ε ∅

 Exercise 19. Let Σn = {1, 2, . . . , n}, and let Ln be the set of all words
w ∈ Σn such that at least one letter of Σn does not appear in w. So, for instance,
1221, 32, 1111 ∈ L3 and 123, 2231 /∈ L3.

(a) Give an NFA for Ln with O(n) states and transitions.

(b) Give a DFA for Ln with 2n states.

(c) Show that any DFA for Ln has at least 2n states.

(d) Do the bounds of (a), (b), and (c) also hold for Ln?

Solution:

(a)

· · ·

Σn \ {1} Σn \ {n}

SOLUTIONS FOR CHAPTER 1 362

(b) We construct a DFA A = (Q,Σnδ, q0, F) whose states are subsets of the al-
phabet:

Q = P(Σn),
δ(S, a) = S ∪ {a} for every S ∈ Q, a ∈ Σn,

q0 = ∅,
F = Q \ {Σn}.

(c) For every word w ∈ Σ∗n, let α(w) denote the subset of letters of Σn that
appear in w. Let An = (Q,Σn, δ, q0, F) be a DFA recognizing Ln. Let w1, w2

be two words such that α(w1) ̸= α(w2), and let q1, q2 ∈ Q be the states such
that

q0
w1−−→ q1 and q0

w2−−→ q2.

We claim that q1 ̸= q2. Since α(w1) ̸= α(w2), we may assume w.l.o.g. that
α(w1) ̸⊆ α(w2). Thus, there is a word v such that w1v contains all letters of
Σn, but w2v does not. By definition of Ln, we have w1v /∈ Ln and w2v ∈ Ln,
which implies q1 ̸= q2, and we are done.
By the claim, the number of states of An is larger or equal to the number of
subsets of Σn, and hence An has at least 2n states.

(d) Clearly, (b) holds as we can simply complement the DFA for Ln. Moreover,
(c) holds because the minimal DFAs for a language and for its complement
have the same number of states. We prove that (a) does not hold, i.e. that
every NFA for Ln has 2n states.
Let Σ1,Σ2 be two different subsets of Σn, and let w1 ∈ Σ∗1 and w2 ∈ Σ∗2.
Let A be an NFA that recognizes Ln. We show that A has runs ρ1 on w1 and
ρ2 on w2 leading to different states q1 and q2. Since Σ1 ̸= Σ2, w.l.o.g. there
are words v1 and v2 such that w1v1, w2v2 ∈ Ln, but w2v1 /∈ Ln. Let ρ1, ρ2
be accepting runs for w1v1 and w2v2. Let q1 and q2 be the states reached by
the runs after reading w1 and w2. If q1 = q2, then w2v1 ∈ Ln, which is a
contradiction. Thus, q1 ̸= q2.

 Exercise 20. LetMn be the language of the following regular expression:

(0 + 1)∗0(0 + 1)n−10(0 + 1)∗.

These are the words containing at least one pair of 0s at distance n. For example,
101101, 001001, 000000 ∈M3 and 101010, 000111, 011110 /∈M3.

(a) Give an NFA forMn with O(n) states and transitions.

(b) Give a DFA forMn with Ω(2n) states.

(c) Show that any DFA forMn has at least 2n states.

SOLUTIONS FOR CHAPTER 1 363

Solution:

(a) We give an NFA forM3; the generalization toMn is straightforward:

0 0, 1 0, 1 0

0, 1 0, 1

(b) The DFA has 2n + 1 states: one for each word from {0, 1}n, and one final
state qf . Intuitively, the DFA is at state b1 · · · bn ∈ {0, 1}n if these are the last
n letters that were read. Accordingly, for every b2 · · · bn ∈ {0, 1}n−1, the DFA
has four transitions of the form

0b2 · · · bn
0−→ qf ,

0b2 · · · bn
1−→ b2 · · · bn1,

1b2 · · · bn
0−→ b2 · · · bn0,

1b2 · · · bn
1−→ b2 · · · bn1.

Initially the DFA has not yet read anything, but this is equivalent to having
read only 1s so far: in both cases, there can be no pair of 0s at distance n
before n steps. Thus, we take 1n as the initial state.

(c) The proof is very similar to the one of Exercise 19(c): one may show that
the states reached by the DFA after reading any two distinct words w1, w2 ∈
{0, 1}n must be different.

 Exercise 21. Recall that an NFA A accepts a word w if at least one of the
runs of A on w is accepting. This is sometimes called the existential accepting
condition. Consider the variant where A accepts word w if all runs of A on w
are accepting (in particular, if A has no run on w, then it trivially accepts w).
This is called the universal accepting condition. Note that a DFA accepts the same
language with both the existential and the universal accepting conditions.

Intuitively, we can imagine an automaton with universal accepting condition
as executing all runs in parallel. After reading a word w, the automaton is simulta-
neously in all states reached by all runs labeled by w and accepts if all those states
are accepting.

Consider the language by Ln = {ww : w ∈ {0, 1}n}.

(a) Give an automaton of size O(n) with universal accepting condition that rec-
ognizes Ln.

(b) Prove that every NFA (and so in particular every DFA) recognizing Ln has at
least 2n states.

(c) Give an algorithm that transforms an automaton with universal accepting
condition into a DFA recognizing the same language. This shows that au-
tomata with universal accepting condition recognize the regular languages.

SOLUTIONS FOR CHAPTER 1 364

Solution:

(a) Note that v ∈ Ln iff for every 1 ≤ i ≤ n the i-th and i + n-th letters of
v coincide. This is a conjunction of conditions. We construct a universal
automaton that has a run on v for each of these conditions, and the run
accepts iff the condition holds.

The automaton has a spine of states q0, . . . , qn, with transitions qi
0,1−−→ qi+1

for every 0 ≤ i ≤ n− 1. At every state qi, the automaton can leave the spine
remembering the (i+ 1)-th letter by means of transitions

qi
0−→ r1 and qi

1−→ r′1.

The automaton then reads the next n − 1 letters by transitions ri
0,1−−→ ri+1

and r′i
0,1−−→ r′i+1 for every 1 ≤ i ≤ n − 1, and checks whether the (i + n)-th

letter matches the (i+ 1)-th letter by transitions

rn
0−→ qf and r′n

1−→ qf ,

where qf is the unique final state.

(b) We use the same technique as in Exercise 19. Let A be an NFA recognizing
Ln. For every word ww ∈ {0, 1}2n, the automaton A has at least one accept-
ing run on ww. Let qw be the state reached by one such run after reading the
first w. We claim that for any two different words w,w′ ∈ {0, 1}n the states
qw, qw′ are different. For the sake of contradiction, suppose that qw = qw′ .
Automaton A has an accepting run on ww′, obtained by concatenating the
first half of the accepting run on ww and the second half of the accepting
run on ww′. Since ww′ /∈ Ln, this is a contradiction. Consequently, A has a
different state qw for each word ww ∈ {0, 1}2n, and hence it has at least 2n
states.

(c) It suffices to replace line 6 of NFAtoDFA by: if Q′ ⊆ F then add Q′ to F . In
other words, all states of Q′ must be accepting rather than at least one.

⋆ Exercise 22. The existential and universal accepting conditions can be
combined, yielding alternating automata. The states of an alternating automaton
are partitioned into existential and universal states. An existential state q accepts a
word w, denoted w ∈ L (q), if either w = ε and q ∈ F , or w = aw′ and there exists
a transition (q, a, q′) such that w′ ∈ L (q′). A universal state q accepts a word w if
either w = ε and q ∈ F , or w = aw′ and w′ ∈ L (q′) for every transition (q, a, q′).
The language recognized by an alternating automaton is the set of words accepted
by its initial state.

Give an algorithm that transforms an alternating automaton into a DFA recog-
nizing the same language.

Solution: As an example, let us consider this alternating automaton A:

SOLUTIONS FOR CHAPTER 1 365

q0

q1

q4

q2

q3

∃

∃ ∀

∃∀

a

a

b

b

b

After reading the letter a, the automaton is in either state q1 or q4, which we
can write as q1 ∨ q4. If the automaton reads b from q1, then it is in q1. If it reads
b from q4, then it is “in both” q2 and q3, which we write as q2 ∧ q3. Altogether,
reading the word ab in A leads to q1 ∨ (q2 ∧ q3). If we substitute each state qi
by true iff qi is accepting, then the resulting boolean value indicates whether the
word is accepted. In our example, ab is accepted since false∨(true∧true) = true.

Now, consider an arbitrary alternating automaton A. Let Q = {q1, . . . , qn} be
its set of states. The above example suggests to define the states of the DFA as
the set of all positive boolean formulas over variables Q. However, since there are
infinitely many such formulas, we define the states as the equivalence classes of
formulas (where, as usual, two formulas are equivalent if they are true for the
same valuations of the variables).

The initial state is the (equivalence class of) the formula q0. The final states
are the formulas that are true when all accepting states are set to true, and all
non accepting states to false. Given a formula f , the unique formula f ′ such that
(f, a, f ′) belongs to the transition relation is defined as follows. For each state q:

• If q is existential and (q, a, q1), . . . , (q, a, qn) are the output transitions of q,
then replace every occurrence of q in f by (q1 ∨ · · · ∨ qn). If n = 0, then
replace it by false.

• If q is universal and (q, a, q1), . . . , (q, a, qn) are the output transitions of q,
then replace every occurrence of q in f by (q1 ∧ · · · ∧ qn). If n = 0, then
replace it by true.

For example, the resulting DFA for the alternating automaton above is:

q0 q1 ∨ q4 q1 ∨ (q2 ∧ q3)
a b

 Exercise 24. Execute algorithm NFAεtoNFA on the following NFA-ε over
Σ = {a1, . . . , an} to show that the algorithm may increase the number of transi-
tions quadratically:

q0 q1 q2 qn−1 qn

a1

ε

a2

ε

an

ε

SOLUTIONS FOR CHAPTER 1 366

Solution: Let us execute the algorithm by prioritizing ε-transitions. The contents
of the worksetW evolve as follows during the first few iterations:

Iter. W

0 {(q0, a1, q1), (q0, ε, q1)}
1 {(q0, a1, q1), (q0, a2, q2), (q0, ε, q2)}
2 {(q0, a1, q1), (q0, a2, q2), (q0, a3, q3), (q0, ε, q3)}
...

...

n− 1 {(q0, a1, q1), (q0, a2, q2), (q0, a3, q3), . . . , (q0, an, qn), (q0, ε, qn)}
n {(q0, a1, q1), (q0, a2, q2), (q0, a3, q3), . . . , (q0, an, qn)}

n+ 1 {(q0, a2, q2), (q0, a3, q3), . . . , (q0, an, qn), (q1, a2, q2), (q1, ε, q2)}
n+ 2 {(q0, a2, q2), (q0, a3, q3), . . . , (q0, an, qn), (q1, a2, q2), (q1, a3, q3), (q1, ε, q3)}

...
...

2n− 1 {(q0, a2, q2), (q0, a3, q3), . . . , (q0, an, qn), (q1, a2, q2), (q1, a3, q3), . . . , (q1, an, qn), (q1, ε, qn)}
2n {(q0, a2, q2), (q0, a3, q3), . . . , (q0, an, qn), (q1, a2, q2), (q1, a3, q3), . . . , (q1, an, qn)}

Thus, after these iterations, we have discovered transitions

{(q0, aj , qj) : 0 < j ≤ n} ∪ {(q1, aj , qj) | 1 < j ≤ n}

which will all be part of the resulting NFA. By continuing the execution, we will
discover the set of transitions {(qi, aj , qj) : 0 ≤ i < j < n} which has size (n −
1) + . . . + 1 = n(n − 1)/2. Thus, the resulting NFA has a quadratic number of
transitions:

q0 q1 q2 qn−1 qn

a1 a2 an

a2

an−1

an

an−1

an

an−1

an

 Exercise 27. Let L be a regular language over Σ. Show that the following
languages are also regular by constructing automata:

(a)
√
L = {w ∈ Σ∗ : ww ∈ L},

(b) Cyc(L) = {vu ∈ Σ∗ : uv ∈ L}.

SOLUTIONS FOR CHAPTER 1 367

Solution: Let A = (Q,Σ, δ,Q0, F) be an NFA that accepts L.

(a) Intuitively, we construct an automaton B that guesses an intermediate state
p and then reads w simultaneously from an initial state q0 and from p. The
automaton accepts if it simultaneously reaches p and some qF ∈ F . Formally,
let B = (Q′,Σ, δ′, Q′0, F

′) be such that

Q′ = Q×Q×Q,
Q′0 = {(p, q, p) : p ∈ Q, q ∈ Q0},
F ′ = {(p, p, q) : p ∈ Q, q ∈ F},

and, for every p, q, r ∈ Q and a ∈ Σ,

δ′((p, q, r), a) = {(p, q′, r′) : q′ ∈ δ(q, a), r′ ∈ δ(r, a)}.

(b) Intuitively, we construct an automaton B that guesses a state p and reads
a prefix v of the input word until it reaches a final state. Then, automaton
B moves nondeterministically to an initial state from which it reads the re-
mainder u of the input word, and it accepts if it reaches p. More formally,
let B = (Q′,Σ, δ′, Q′0, F

′) be such that

Q′ = Q× {0, 1} ×Q,
Q′0 = {(p, 0, p) : p ∈ Q},
F ′ = {(p, 1, p) : p ∈ Q},

and, for every p, q ∈ Q and a ∈ Σ ∪ {ε},

δ′((p, b, q), a) =

{(p, b, q′) : q′ ∈ δ(q, a)} if a ∈ Σ,

{(p, 1, q′) : q′ ∈ Q0} if a = ε, b = 0 and q ∈ F,
∅ otherwise.

 Exercise 28. For every n ∈ N, let msbf(n) be the set of most-significant-
bit-first encodings of n, that is, the words that start with an arbitrary number of
leading zeros, followed by n written in binary. For example, msbf(3) = L (0∗11),
msbf(9) = L (0∗1001), and msbf(0) = L (0∗). Similarly, let LSBF(n) denote the set
of least-significant-bit-first encodings of n, that is, the set containing for each word
w ∈ msbf(n) its reverse. For example, LSBF(6) = L (0110∗) and LSBF(0) = L (0∗).

(a) Construct and compare DFAs recognizing the set of even numbers w.r.t. the
unary encoding (where n is encoded by the word 1n), the msbf-encoding,
and the LSBF-encoding.

(b) Do the same for the set of numbers divisible by 3.

(c) Give regular expressions corresponding to the languages of (b).

SOLUTIONS FOR CHAPTER 1 368

Solution:

(a) Here are the three DFAs:

• Unary encoding:

1

1

• MSBF encoding:

0 1

1

0

• LSBF encoding:

0

0, 1

(b) The DFA for the unary encoding is, loosely speaking, a cycle of length three.
We now give a DFA for the MSBF encoding. The idea is that the state reached
after reading a word w corresponds to the remainder of the number repre-
sented by w when dividing by 3. We therefore take as states Q = {0, 1, 2}
with 0 as both initial and final state. If a word w encodes a number k, then
wa encodes the number 2k+a. Thus, for every state q ∈ {0, 1, 2}, we define:

δ(q, a) = (2q + a) mod 3.

This yields the automaton:

0 1 2

0 1

1 0

1 0

To obtain a DFA for the LSBF encoding, we “reverse” the DFA as follows:
exchange initial and final states, and reverse the transitions. In general,
this yields an NFA, but in this case the result of this operation is the same
automaton! Thus, we have shown that a binary number b1b2 · · · bn is divisible
by 3 iff the number bnbn−1 · · · b1 is also divisible by 3.

(c) For the unary encoding, we can take (111)∗. For the two other encodings,
we can take the regular expression (0 + 1(01∗0)∗1)

∗.

SOLUTIONS FOR CHAPTER 1 369

⋆ Exercise 29. Consider this DFA over alphabet {[0, 0], [0, 1], [1, 0], [1, 1]}:

0 1 2

[
0
0

] [
1
1

][
1
0

] [
0
0

]

[
0
1

][
1
1

]

A word w encodes a pair of natural numbers (X(w), Y (w)), where X(w) and
Y (w) are obtained by reading the top and bottom rows in MSBF encoding. For
instance, the following word encodes (44, 19):

w =

[
1
0

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
0
1

]
Show that the above DFA recognizes the set of words w such thatX(w) = 3 ·Y (w),
that is, the solutions of the equation x− 3y = 0.

Solution: We write ∅ to denote the implicit trap state. Let f : Σ∗ → Z be defined
as f(w) = X(w) − 3 · Y (w). Note that −3 ≤ f(c) ≤ 1 for all c ∈ Σ. Further,
by the definition of the msbf-encoding, f(wc) = 2f(w) + f(c) for every w ∈ Σ∗

and c ∈ Σ. We will show, for all w ∈ Σ∗, that δ(q0, w) = f(w) if f(w) ∈ {0, 1, 2},
and δ(q0, w) = ∅ otherwise. As the only final state is 0, this shows that w is
accepted iff f(w) = 0. The proof proceeds by induction on the length ofw. Clearly,
f(ε) = 0 = δ(q0, ε). For the induction step, let w ∈ Σ∗ and c ∈ Σ. We consider the
following two cases:

• If f(w) ∈ {0, 1, 2}, then f(wc) = 2f(w)+ f(c) (as above). It is easy to check
for all q ∈ Q that δ(q, c) = 2q + f(c) holds if 2q + f(c) ∈ {0, 1, 2}, and
δ(q, c) = ∅ otherwise. Using the induction hypothesis, we have δ(q0, wc) =
δ(δ(q0, w), c) = δ(f(w), c), and the statement follows.

• If δ(q0, w) = ∅, then by induction hypothesis we have either f(w) ≥ 3 or
f(w) ≤ −1. For the former, we have f(wc) = 2f(w) + f(c) ≥ 6− 3 = 3, and
for the latter 2f(w) + f(c) ≤ −2 + 1 ≤ −1. (Recall −3 ≤ f(c) ≤ 1.) In both
cases, we have shown f(wc) /∈ {0, 1, 2}; correspondingly, δ(∅, c) = ∅ (due to
∅ being the trap state) implies the statement.

⋆ Exercise 30. Algorithm NFAtoRE transforms a finite automaton into a reg-
ular expression representing the same language by iteratively eliminating states
of the automaton. In this exercise, we present an algebraic reformulation of the
algorithm. We represent an NFA as a system of language equations with as many
variables as states and solve the system by eliminating variables. A language equa-
tion over an alphabet Σ and a set V of variables is an equation of the form r1 = r2,
where r1 and r2 are regular expressions over Σ∪V . For instance, X = aX+ b is a
language equation. A solution of a system of equations is a mapping that assigns

SOLUTIONS FOR CHAPTER 1 370

to each variableX a regular expression over Σ, such that the languages of the left-
and right-hand sides of each equation are equal. For instance, a∗b is a solution of
X = aX + b because L (a∗b) = L (aa∗b+ b).

(a) Arden’s lemma states that, given two languages A,B ⊆ Σ∗, the smallest
language X ⊆ Σ∗ satisfying X = AX + B is the language A∗B. Moreover,
if ε ̸∈ A, then the solution is unique. Prove Arden’s lemma.

(b) Consider the following system of equations, where variablesX and Y repre-
sent languages (regular expressions) over the alphabet Σ = {a, b, c, d, e, f}:

X = aX + bY + c

Y = dX + eY + f.

Find the unique solution with the help of Arden’s lemma.

Hint: As a first step, consider X not as a variable but as a constant language,
and solve the equation for Y using Arden’s lemma.

(c) We can associate to any NFA A = (Q,Σ, δ, {q0}, F) a system of linear equa-
tions as follows. We takeQ as variables, which we call hereX,Y, Z, . . . ,with
X as initial state. The system has the following equation for each state Y :

Y =

∑
(Y,a,Z)∈δ

aZ if Y /∈ F,

 ∑
(Y,a,Z)∈δ

aZ

+ ε if Y ∈ F.

Consider the DFA (1)(a) from the Tour of Conversions on page 32.
Let X,Y, Z,W be the states of the automaton, and read from top to bottom
and from left to right. The associated system of linear equations is

X = aY + bZ + ε Y = aX + bW

Z = bX + aW W = bY + aZ.

Compute the solution of this system by iteratively eliminating variables. Start
with Y , then eliminate Z, and finallyW . Compare with the elimination pro-
cedure depicted in step (1) of the Tour of Conversions on page 32.

Solution:

SOLUTIONS FOR CHAPTER 1 371

(a) We first show that A∗B is a solution of X = AX +B:

A∗B =

∪
k≥0

Ak

B

=
∪
k≥0

AkB (by distributivity)

= B ∪
∪
k≥1

AkB

= B ∪A

∪
k≥0

Ak

B (by distributivity)

= A(A∗B) ∪B.

Now, let L be an arbitrary solution of X = AX + B. We must show that
A∗B ⊆ L. Since L = AL+B, we have:

L = AL+B

L = A(AL+B) +B = B +AB +A2L

L = A(A(AL+B) +B) +B = B +AB +A2B +A3L

...

and so, by induction, we get for all k ≥ 0:

L = Ak+1L ∪
k∪
ℓ=0

AℓB.

In particular, this implies AℓB ⊆ L for every ℓ ≥ 0, and hence A∗B ⊆ L.

To conclude, let us consider the case where ε /∈ A. Let w ∈ L and k = |w|.
We have w /∈ Ak+1L and hence w ∈

∪
0≤ℓ≤k A

ℓB ⊆ A∗B. Thus, L ⊆ A∗B
which implies L = A∗B.

(b) By Arden’s Lemma, the unique solution of the equation

Y = dX + eY + f = eY + (dX + f)

is the language e∗(dX + f) independently of the value of X. Substituting
into the equation for X, we obtain

X = aX + be∗(dX + f) + c

= (a+ be∗d)X + be∗f + c,

which by Arden’s Lemma yields:

X = (a+ be∗d)∗(be∗f + c)

Y = e∗(d(a+ be∗d)∗(be∗f + c) + f).

SOLUTIONS FOR CHAPTER 1 372

(c) In order to eliminate Y , we simply substitute the equation Y = aX + bW
into the remaining equations, yielding:

X = aaX + abW + bZ + ε

Z = bX + aW

W = aZ + baX + bbW

Similarly, we may eliminate Z:

X = aaX + abW + bbX + baW + ε = (aa+ bb)X + (ab+ ba)W + ε

W = abX + aaW + baX + bbW = (aa+ bb)W + (ab+ ba)X.

By Arden’s Lemma, the parametrized unique solution forW is (aa+bb)∗(ab+
ba)X. So, we obtain the single equation

X = (aa+ bb)X + (ab+ ba)(aa+ bb)∗(ab+ ba)X + ε

= (aa+ bb+ (ab+ ba)(aa+ bb)∗(ab+ ba))X + ε.

whose unique solution is

X = (aa+ bb+ (ab+ ba)(aa+ bb)∗(ab+ ba))
∗

This is the same regular expression as obtained in the chapter. In fact, the
elimination of states corresponds to the elimination of the corresponding
variables in the underlying system of linear equations.

 Exercise 31. Consider a deck of cards (with arbitrary many cards) in which
black and colored cards alternate, the top card is black, and the bottom card is
colored. The set of possible decks is given by the regular expression (BR)∗. Cut
the deck at any point into two piles, and then perform a perfect riffle shuffle to
yield a new deck (where cards strictly alternate). For example, we can cut a deck
with six cards 123456 (with 1 as the top card) into two piles 12 and 3456, and
the riffle yields 345162 (we start the riffle with the first pile). Give a regular
expression over the alphabet {B,R} describing the possible configurations of the
decks after the riffle.

Hint: After the cut, the last card of the first pile can be black or colored. In the first
case, the two piles belong to (BR)∗B and R(BR)∗ and in the second case to (BR)∗

and (BR)∗. Let Rif(r1, r2) be the language of all decks obtained by performing a riffle
on decks taken from L (r1) and L (r2). We are looking for a regular expression for

Rif ((BR)∗B,R(BR)∗) + Rif ((BR)∗, (BR)∗) .

Use exercise 30 to set up a system of equations over the variables X = Rif((BR)∗B,
R(BR)∗) and Y = Rif((BR)∗, (BR)∗), and solve it.

SOLUTIONS FOR CHAPTER 1 373

Solution: By definition of a riffle, for every regular expressions r, r1, r2 and let-
ters a, b ∈ Σ:

Rif(r, ε) = r,

Rif(ε, r) = r,

Rif(r1 + r2, r) = Rif(r1, r) + Rif(r2, r),
Rif(r, r1 + r2) = Rif(r, r1) + Rif(r, r2),
Rif(r1a, r2b) = Rif(r1, r2)ba.

Applying these identities we get:

Rif ((BR)∗B,R(BR)∗) = Rif ((BR)∗B, (RB)∗R)

= Rif ((BR)∗, (RB)∗)RB,

Rif ((BR)∗, (RB)∗) = Rif (ε+ (BR)∗BR, ε+ (RB)∗RB)

= (BR)∗ + (RB)∗ + Rif ((BR)∗B, (RB)∗R)BR.

By introducing variablesX and Y for Rif ((BR)∗B,R(BR)∗) and Rif ((BR)∗, (RB)∗),
we obtain the following system of equations:

X = Y RB

Y = (BR)∗ + (RB)∗ +XBR.

Substituting Y in the equation for X yields

X = ((BR)∗ + (RB)∗ +XBR)RB = ((BR)∗ + (RB)∗)RB +XBR

whose unique solution is

X = ((BR)∗ + (RB)∗)RB(BR)∗.

Substituting in the equation for Y yields

Y = ((BR)∗ + (RB)∗) (ε+RB(BR)∗BR) .

⋆ Exercise 32. Let L be an arbitrary language over a one-letter alphabet.
Prove that L∗ is regular.

Solution: We assume that L ̸= ∅ and L ̸= {ε}, as the claim is otherwise trivial.
Letw ∈ L be the shortest nonempty word ofL. Let v0 = ε. Note that v0{w}∗ ⊆ L∗.
If L∗ = v0{w}∗, then we are done. Otherwise, let v1 ∈ L∗ be the shortest word
such that v1 ∈ L∗ \ v0{w}∗. We have (v0 + v1){w}∗ ⊆ L∗. If L∗ = (v0 + v1){w}∗,
then we are done. Otherwise, we can continue this process by picking the shortest
word vi ∈ L∗ \ (v0 + v1 + . . .+ vi−1){w}∗ and checking whether L∗ = (v0 + v1 +
. . .+ vi){w}∗. Let p = |w|. This process is guaranteed to terminate in n < p steps,
which means that L = (v0 + v1 + . . .+ vn){w}∗, which is regular. Indeed, for the
sake of contradiction, suppose it does not terminate in less than p steps. By the

SOLUTIONS FOR CHAPTER 1 374

pigeonhole principle, there exists 0 ≤ i < p such that |vp| ≡ |vi| (mod p). Since
|vi| < |vp|, we have vp ∈ vi{w}∗, which contradicts the way vp was picked.

⋆ Exercise 34. LetKn = (Vn, En) be the complete directed graph of n nodes—
that is, with nodes Vn = {1, . . . , n} and edges En = {(i, j) : 1 ≤ i, j ≤ n}. A
path of Kn is a sequence of nodes, and a circuit is a path that begins and ends
in the same node. Let An = (Qn,Σn, δn, q0n, Fn) be the DFA defined by Qn =
{1, . . . , n} ∪ {⊥}, Σn = {ai,j : 1 ≤ i, j ≤ n}, q0n = 1, Fn = {1}, and

δn(q, ai,j) =

{
⊥ if q = ⊥ or q ̸= i,

j otherwise (if q = i).

The language accepted by An consists of all words encoding circuits of Kn from
node 1 to itself. For example, the following DFA A3 accepts a1,3a3,2a2,1, which
encodes the circuit 1321 of K3.

1

3

2

a1,2

a2,1

a1,3

a3,1 a2,3

a3,2
a1,1 a2,2

a3,3

The size of a regular expression r, denoted |r|, is defined recursively as 1 if r ∈
{ε, ∅} ∪ Σn; |r1| + |r2| if r = r1 + r2 or r = r1r2; and |s| if r = s∗. Similarly, we
define the length of r, denoted len(r), as 1 if r ∈ {ε, ∅}∪Σn; max(len(r1), len(r2))
if r = r1 + r2; len(r1) + len(r2) if r = r1r2; and len(s) if r = s∗. Note that
|r| ≥ len(r).

A path expression r is a regular expression over Σn that encodes paths of Kn.
We seek to show that any path expression for L (An), and hence any regular ex-
pression, must have length Ω(2n). As a consequence, this means that DFAs can be
exponentially more succinct than regular expressions.

(a) Let π be a circuit of Kn and let r be a path expression. We say that r covers
π if L (r) contains a word uwv such that w encodes π. Furthermore, we say
that r covers π∗ if L (r) covers πk for every k ≥ 0. It can be shown that if r
covers π2·len(r), then it covers π∗.
From this, show that if r covers π∗ and no proper subexpression of r does,
then r = s∗ for some expression s, and every word of L (s) encodes a circuit
starting at a node of π.

(b) For every 1 ≤ k ≤ n + 1, let [k] denote the permutation of {1, 2, . . . , n + 1}
that cyclically shifts every index k position to the right. More formally, node
i is renamed to i + k if i + k ≤ n + 1 and to i + k − (n + 1) otherwise. Let
π[k] be the result of applying the permutation to π. For example, if n = 4
and π = 24142, we obtain

π[1] = 35253, π[2] = 41314, π[3] = 52425, π[4] = 13531, π[5] = 24142 = π.

SOLUTIONS FOR CHAPTER 1 375

Let π be a circuit of Kn. Show that π[k] is a circuit of Kn+1 that does not
pass through node k.

(c) Let us define a circuit gn of Kn inductively:

g1 = 11,

gn+1 = 1 (gn[1])
2n (gn[2])

2n · · · (gn[n+ 1])2
n

for every n ≥ 1.

In particular, we have

g1 = 11,

g2 = 1 (22)2 (11)2,

g3 = 1 (2 (33)2 (22)2)4 (3 (11)2 (33)2 3)4 (1 (22)2 (11)2)4.

Prove, using (a)–(b), that every path expression r covering gn is such that
|r| ≥ 2n−1.

(d) Show that any regular expression rn such that L (rn) = L (An) is such that
|rn| ≥ 2n−1.

Solution:

(a) Let r be a path expressions that covers π∗ and with no proper subexpression
of r covering π∗. For the sake of contradiction, suppose r is not of the form
s∗. If r = r1+ r2, then, since r covers π2·len(r), either r1 or r2 covers π2·len(r).
This means that either r1 or r2 covers π∗, which contradicts the minimality
of r. Similarly, if r = r1r2, then, since r covers π4·len(r)+1, either r1 or r2
covers π2·len(r), which is a contradiction.

Thus, we have r = s∗ for some s. Let us consider two words of L (s):

w1 = ai1,i2ai2,i3 · · · aik−1,ik and w2 = aj1,j2aj2,j3 · · · ajℓ−1,jℓ .

Since r is a path expression and r = s∗, the words w1w1, w1w2, w2w1 and
w2w2 encode paths. Consequently, we have i1 = ik = j1 = ik = jℓ. Thus, all
words of L (s) encode circuits starting and ending at the same node, say i. It
remains to prove that i is a node of π. For the sake of contradiction, suppose
it is not the case. For every k ≥ 1, any shortest word of L (s∗) that covers
πk must also be a word of s, because the first and last letters of a word of
L (s) cannot be used to encode π. It follows that s covers π∗, contradicting
the assumption that no proper subexpression of r covers π∗.

(b) Since π is a path of Kn, it does not pass through node n + 1. The node
permuted to node k by the permutation [k] is n + 1. Thus, the circuit π[k]
does not pass through node k.

(c) We proceed by induction. The claim is obvious for n = 1 since |r| ≥ 1 =
21−1. Now, let r be a path expression covering gn+1 such that no proper
subexpression of r covers gn+1. By definition, r covers (gn[i])

2n for every
1 ≤ i ≤ n+ 1. Thus, by (a), either r covers (gn[i])∗ for every 1 ≤ i ≤ n+ 1,

SOLUTIONS FOR CHAPTER 1 376

or len(r) ≥ 2n−1. Let us assume the former, as we are done in the latter case
since |r| ≥ len(r). Expression r contains, for every 1 ≤ i ≤ n+ 1, a minimal
subexpression ri covering (gn[i])

∗. By (a), ri = s∗i for some expression si.
Let s be of minimal size among s1, . . . , sn+1. By (a), there is a node j such
that every word of L (s) encodes a circuit starting at j. Consider s∗ and s∗j .
By induction hypothesis, each of them has size at least 2n−2. By minimality
of s∗, we have that s∗j cannot be a proper subexpression of s∗. Thus, there
are two possible cases: (1) neither s∗ is a subexpression of s∗j , nor s∗j is a
subexpression of s∗; or (2) s∗ is a subexpression of s∗j . Let us handle both
cases.

(1) We have |r| ≥ |s∗|+ |s∗j | ≥ 2n−2 + 2n−2 = 2n−1.
(2) Recall that sj covers gn[j], which by (b) does not pass through node j.

By (a), no word of L (sj) can encode a circuit starting at j. Recall that
every word of L (s) encodes a circuit starting at j. This implies s ̸= sj ,
and hence s∗ is a proper subexpression of sj . It follows that sj [s∗/ε],
i.e. the result of substituting s∗ by ε in sj , still covers (gn[j])

∗, since
the substitution only loses circuits containing j which (gn[j])

∗ does not
visit. By induction hypothesis, |sj [s∗/ε]| ≥ 2n−2. Since |s∗| ≥ 2n−2, we
obtain |sj | ≥ 2n−1. Since s∗j is a subexpression of r, we finally conclude
that |r| ≥ 2n−1.

(d) Let rn be a regular expression such that L (rn) = L (An). Note that L (rn)
encodes all circuits from node 1 to itself. Thus, in particular, it covers circuit
gn. By (d), we have |rn| ≥ 2n−1.

⋆ Exercise 35. Let us introduce weakly acyclic DFAs, NFAs, and regular
expressions:

• A DFA A = (Q,Σ, δ, q0, F) is weakly acyclic if δ(q, w) = q implies δ(q, a) = q
for every letter a occurring in w.

• An NFA A = (Q,Σ, δ,Q0, F) is weakly acyclic if q ∈ δ(q, w) implies δ(q, a) =
{q} for every letter a occurring in w.

• Weakly acyclic regular expressions over an alphabetΣ are regular expressions
generated by

r ::= ∅ | Γ∗ | Λ∗ar | r + r where Γ,Λ ⊆ Σ and a ∈ Σ \ Λ.

Finally, a regular language is weakly acyclic if it is recognized by some weakly
acyclic DFA. Show the following statements:

(a) An NFA A = (Q,Σ, δ, q0, F) is weakly acyclic iff it satisfies any of the follow-
ing three conditions:

(i) the binary relation ⪯ ⊆ Q × Q, given by q ⪯ q′ iff δ(q, w) = {q′} for
some word w, is a partial order;

(ii) each strongly connected component of the underlying directed graph
of A contains a single state; and

SOLUTIONS FOR CHAPTER 1 377

(iii) the underlying directed graph of A does not contain any simple cycle
beyond self-loops.

(b) If A is a weakly acyclic NFA, then B = NFAtoDFA(A) is a weakly acyclic DFA.

(c) For every weakly acyclic regular expression r, there is a weakly acyclic DFA
that accepts L (r).

(d) For every weakly acyclic NFA A, there is a weakly acyclic regular expression
for L (A).

Since every weakly acyclic DFA is also a weakly acyclic NFA by definition, we con-
clude that a language is weakly acyclic iff it is recognized by a weakly acyclic DFA
iff it is recognized by a weakly acyclic NFA iff it is the language of a weakly acyclic
regular expression.

Solution:

(a) We only prove (i), because (ii) and (iii) follow immediately from (i) and the
definitions of strongly connected components and simple cycle.
⇒) Assume q ∈ δ(q, w) implies δ(q, a) = {q} for every letter a occurring
in w. We prove that the relation ⪯ is a partial order. For every state q, we
have δ(q, ε) = {q} and so q ⪯ q, which proves that ⪯ is reflexive. Since
q′ ∈ δ(q, w) and q′′ ∈ δ(q′, w′) implies q′′ ∈ δ(q, ww′), we conclude that
q ⪯ q′ and q′ ⪯ q′′ implies q ⪯ q′′, which proves that ⪯ is transitive. It
remains to show that ⪯ is antisymmetric. For this, we assume that q ⪯ q′

and q′ ⪯ q hold, and show that q = q′. By definition of ⪯, there exist words
w,w′ ∈ Σ∗ and a state q′ such that q′ ∈ δ(q, w) and q ∈ δ(q′, w′) = {q}. It
follows that q ∈ δ(q, ww′) and so, by definition of weakly acyclic NFAs, we
have δ(q, a) = {q} for every letter a occurring in either w or w′. This implies
δ(q, w) = {q}. Since q′ ∈ δ(q, w) by assumption, we get q = q′.
⇐) Assume that ⪯ is a partial order, and that δ(q, w) = {q} holds for some
state q and word w. For every letter a occurring in w, there are words
w′, w′′ ∈ Σ∗ such that w = w′aw′′. Letting q′, q′′ be the states such that
δ(q, w′) = {q′} and δ(q′, a) = {q′′} we have δ(q′′, w′′) = {q} and from the
definition of ⪯ we get q ⪯ q′ ⪯ q′′ ⪯ q. Since ⪯ is a partial order by assump-
tion, this implies q = q′ = q′′, and so δ(q, a) = q.

(b) Let A = (Q,Σ, δ,Q0, F). Recall that the states of B are sets of states from
A, and that Q1

a−→Q2 is a transition of B iff δ(Q1, a) = Q2. Hence, by (a),
applied to B, it suffices to show that the relation ⪯ ⊆ 2Q × 2Q defined
by Q1 ⪯ Q2 iff δ(Q1, w) = Q2 for some word w is a partial order. It was
shown in (a) that the relation is reflexive and transitive for any DFA, and
so it suffices to show that ⪯ is antisymmetric, i.e., that δ(Q1, w1) = Q2 and
δ(Q2, w2) = Q1 implies Q1 = Q2.
Assume δ(Q1, w1) = Q2 and δ(Q2, w2) = Q1. We say that a state q ∈ Q1 is
cyclic if there is some n ≥ 1 such that q ∈ δ(q, (w1w2)

n). We prove that every
state of Q1 is cyclic, which shows Q1 = Q2. For the sake of contradiction,
suppose Q1 contains some acyclic state q. We can pick q minimal w.r.t. ⪯.

SOLUTIONS FOR CHAPTER 1 378

Since δ(Q1, w1w2) = Q1 by assumption, there is some q′ ∈ Q1 such that
q ∈ δ(q′, w1w2), and so q ⪰ q′. Since q is acyclic, we have q′ ̸= q, and so
q ≻ q′. By minimality of q, the state q′ is cyclic. Since A is weakly acyclic,
we have δ(q′, a) = {q′} for every letter a that occurs in w1w2, and so, in
particular, δ(q′, w1w2) = {q′}. This contradicts q ̸= q′.

(c) We proceed by structural induction on expression r. The claim is obvious
for both r = ∅ and r = Γ∗. Assume r = Λ∗ar for some Λ ⊆ Σ and a /∈ Λ.
By induction, there exists a weakly acyclic DFA A = (Q,Σ, δ, q0, F) such that
L (A) = L (r). The following weakly acyclic DFA accepts Λ∗aL (r):

q0

A

Λ a

Σ \ (Λ ∪ {a})

Σ

Assume r is of the form r1+r2. By induction, there exist weakly acyclic DFAs
A1 = (Q1,Σ, δ1, q01, F1) and A2 = (Q2,Σ, δ2, q02, F2) such that L (Ai) =
L (ri) for both i ∈ {1, 2}. The NFAA = (Q1∪Q2,Σ, δ1∪δ2, {q01, q02}, F1∪F2)
accepts L (r). Moreover, by (b), B = NFAtoDFA(A) is a weakly acyclic DFA
that accepts L (A). Thus, we are done.

(d) Let A = (Q,Σ, δ,Q0, F) be a weakly acyclic NFA. If we omit the self-loops of
A, then we obtain a directed acyclic graph, and hence finitely many paths.
Therefore, L (A) is a finite union of languages of the form Λ∗1a1 · · ·Λ∗nanΓ∗
where Λ1, . . . ,Λn,Γ ⊆ Σ and each ai /∈ Λi.

Solutions for Chapter 2

 Exercise 36. For each language L ⊆ {a, b, c}∗ below, say whether L has
finitely many residuals, and, if so, describe the residuals.

(a) (ab+ ba)∗,

(b) (aa)∗,

(c) {anbncn : n ≥ 0}.

Solution:

(a) We have Lε = L ((ab+ ba)∗), La = L (b(ab+ ba)∗), Lb = L (a(ab+ ba)∗)
and Lc = ∅. All other residuals are equal to one of these four.

(b) We have Lε = L ((aa)∗), La = L (a(aa)∗) and Lb = ∅. All other residuals
are equal to one of these three.

(c) Every prefix of a word of the form anbncn has a different residual. For all
other words the residual is the empty set. Thus, there are infinitely many
residuals.

 Exercise 37. Consider the most-significant-bit-first (MSBF) encoding of
natural numbers over alphabet Σ = {0, 1}. Recall that every number has infinitely
many encodings, because all the words of 0∗w encode the same number as w.
Construct the minimal DFAs accepting the following languages, where Σ4 denotes
all words of length 4:

(a) {w : MSBF−1(w) mod 3 = 0} ∩ Σ4.

(b) {w : MSBF−1(w) is a prime} ∩ Σ4.

379

SOLUTIONS FOR CHAPTER 2 380

Solution:

(a) The DFA must recognize the encodings of {0, 3, 6, 9, 12, 15}, i.e. the language

{0000, 0011, 0110, 1001, 1100, 1111}.

Thus, we obtain:

0

1

1

0

1

00

11

0 0

1

(b) The DFA must recognize the encodings of {2, 3, 5, 7, 11, 13}, that is, the lan-
guage

{0010, 0011, 0101, 0111, 1011, 1101}.

Thus, we obtain:

0

1

0

1

1

0, 1

0, 1

0

1 0

11

 Exercise 38. Prove or disprove the following statements:

(a) A subset of a regular language is regular.

(b) A superset of a regular language is regular.

(c) If L1 and L1L2 are regular languages, then L2 is regular.

(d) If L2 and L1L2 are regular languages, then L1 is regular.

SOLUTIONS FOR CHAPTER 2 381

Solution: All statements are false. Since ∅ and Σ∗ are both regular, any of (a)
or (b) would imply that every language is regular, which is certainly not the case,
e.g. A = {an2

: n ≥ 0} is not regular. For (c), let L1 = L (a∗) and let L2 = A.
We have L1L2 = L (a∗), which is regular, but L2 is not. Similarly, (d) is disproved
with L1 = A and L2 = L (a∗).

 Exercise 39. Consider the following DFA A:

q0

q1

q2

q3

q4

q5

q6

a

b

a

b

a

b

b

a

a

b

a

b

a

b

(a) Compute the language partition of A.

(b) Construct the quotient of A with respect to its language partition.

(c) Give a regular expression for L (A).

Solution:

(a)

Iter. Block to split Splitter New partition

0 — — {q0, q1, q2, q3, q5, q6}, {q4}
1 {q0, q1, q2, q3, q5, q6} (b, {q4}) {q0, q2, q6}, {q1, q3, q5}, {q4}
2 none, partition is stable — —

The language partition is Pℓ = {{q0, q2, q6}, {q1, q3, q5}, {q4}}.

(b)

SOLUTIONS FOR CHAPTER 2 382

[q0]Pℓ
[q1]Pℓ

[q4]Pℓ

a

b a

b

a

b

(c) (a+ b)∗ab.

 Exercise 43. LetA1 andA2 be DFAs with n1 and n2 states such thatL (A1) ̸=
L (A2). Show that there exists a word w of length at most n1 + n2 − 2 such that
w ∈ (L (A1) \ L (A2)) ∪ (L (A2) \ L (A1)).

Hint: Consider the NFA obtained by putting A1 and A2 “side by side” and
CSR(A).

Solution: Let A be the NFA obtained by taking the disjoint union of A1 and A2.
Since L (A1) ̸= L (A2), automaton A has at least one final and one nonfinal state.
Thus, the procedure that computes CSR(A) initially has a partition of two blocks.
Since every split increases the number of blocks by one, and the maximal possible
number of blocks is n1 + n2, the algorithm performs at most n1 + n2 − 2 splits.
Hence, it suffices to show that if two states q1 and q2 are put in different blocks at
the k-th split, then the language (L (q1)\L (q2))∪ (L (q2)\L (q1)) contains a word
w of length at most k. We prove this by induction on k. If k = 0, then exactly one
of q1 or q2 is a final state, and we can take w = ε. If k > 0, then right before q1
and q2 are put in different blocks, there is a letter a and transitions

q1
a−→ q′1 and q2

a−→ q′2,

such that q′1 and q′2 already belong to different blocks. By induction hypothesis,
the language

(L (q′1) \ L (q′2)) ∪ (L (q′2) \ L (q′1))

contains a word w′ of length k − 1. Thus, we can take w = aw′.

⋆ Exercise 44. Let Σ = {a, b}. Let Ak be the minimal DFA such that L (Ak) =
{ww : w ∈ Σk}.

(a) Construct A2.

(b) Construct a DFA that accepts L (Ak).

(c) How many states does Ak contain for k > 2?

Solution:

(a) The trap state is omitted for the sake of readability:

SOLUTIONS FOR CHAPTER 2 383

qε

qa

qb

qaa

qab

qba

qbb

ra

rb

rε

a

b

a

b

a

b

a

a

b

b

a

b

(b) We generalize the construction given in (a) for k = 2: state qw indicates
that word w has been read so far, and state rw indicates that w must be read
in order to accept. More formally, let Ak = (Q,Σ, δ, q0, F) be the following
automaton which we complete with a trap state:

Q = {qw : w ∈ Σ∗, |w| ≤ k} ∪ {rw : w ∈ Σ∗, |w| < k},
δ = {(qu, a, qua) : |u| < k} ∪
{(qav, a, rv) : a ∈ Σ, |v| = k − 1} ∪
{(rav, a, rv) : a ∈ Σ, |v| < k − 1},

q0 = qε,

F = {rε}.

(c) Note that Ak defined in (b) has f(k) = (2k+1− 1)+ (2k − 1)+ 1 = 3 · 2k − 1
states. We show that Ak is minimal. To prove it, we show that L (Ak) has
f(k) residuals. To simplify the notation, let L = L (Ak).

• We have Lv = ∅ for every v ∈ Σ∗ such that |v| > 2k. Hence, ∅ is our
first residual.

• For every word v of length at most k − 1, we have Lv = {uvu : u ∈
Σ∗, |vu| = k}. Note that all of these sets contain at least two words,
and they are all distinct. There are so many of them as words of length
at most k, and so we get

∑k−1
i=0 2i = 2k − 1 new residuals.

• For every word v such that k ≤ |v| ≤ 2k, we have v = v1v2v3, where
|v1v2| = k and |v1| = |v3|. If v1 ̸= v3, then Lv = ∅, which is not a
new residual. If v1 = v3, then Lv = {v2} is a new residual as all other
residuals we have seen so far had either zero or at least two words.
Thus, we get a new residual for every word v2 of length 0 ≤ |v2| ≤ k,
and hence

∑k
i=0 2

i = 2k+1 − 1 residuals.

In total, we have at least 1 + (2k − 1) + (2k+1 − 1) = 3 · 2k − 1 residuals,
which matches the upper bound given by the number of states of Ak.

SOLUTIONS FOR CHAPTER 2 384

 Exercise 45. For every language L ⊆ Σ∗ and word w ∈ Σ∗, let wL = {u ∈
Σ∗ : uw ∈ L}. A language L′ ⊆ Σ∗ is an inverse residual of L if L′ = wL for some
w ∈ Σ∗.

(a) Determine the inverse residuals of the first two languages of exercise 36:
(ab+ ba)∗ and (aa)∗.

(b) Show that a language is regular iff it has finitely many inverse residuals.

(c) Does a language always have as many residuals as inverse residuals?

Solution:

(a) • We give the inverse residuals of L = L ((ab+ ba)∗) as regular expres-
sions:

εL = (ab+ ba)∗, aL = (ab+ ba)∗b,
bL = (ab+ ba)∗a, aaL = ∅.

All other inverse residuals are equal to one of these four. The language
has the same number of residuals and inverse residuals, but they are
not same languages.

• We give the inverse residuals of (aa)∗ as regular expressions:

εL = (aa)∗, aL = (aa)∗a, bL = ∅.

All other inverse residuals are equal to one of these three. In this case,
the residuals and the inverse residuals of the language coincide.

(b) LetL be a language and letLR be the reverse ofL (see Exercise 14). We have
u ∈ wL iff uw ∈ L iff wRuR ∈ LR iff uR ∈ (LR)w

R

. Thus, K is an inverse
residual of L iff KR is a residual of LR. In particular, the number of inverse
residuals of L is equal to the number of residuals of LR. Consequently:

L is regular
iff LR is regular (by Exercise 14)
iff LR has finitely many residuals
iff L has finitely many residuals.

(c) No. Consider the language L over {a, b} containing all words ending with
a, i.e. (a+ b)∗a. The language has two residuals:

Lw =

{
(a+ b)∗a+ ε if w ends with a,
(a+ b)∗a if w ends with b or w = ε.

but three inverse residuals:

wL =

(a+ b)∗a if w = ε,

(a+ b)∗ if w ends with a,
∅ if w ends with b.

SOLUTIONS FOR CHAPTER 2 385

 Exercise 48. A DFA with negative transitions (DFA-n) is a DFA whose tran-
sitions are partitioned into positive and negative transitions. A run of a DFA-n is
accepting if

• it ends in a final state and the number of occurrences of negative transitions
is even, or

• it ends in a nonfinal state and the number of occurrences of negative transi-
tions is odd.

The intuition is that taking a negative transition “inverts the polarity” of the ac-
ceptance condition.

(a) Show that the language accepted by a DFA-n is regular.

(b) Give a DFA-n for a regular language L that has fewer states than the minimal
DFA for L.

(c) Show that the minimal DFA-n for a language is not necessarily unique.

Solution:

(a) Let A = (Q,Σ, δ, q0, F) be a DFA-n. We construct a DFA B that behaves as A,
but that also remembers the parity of the number of occurrences of negative
transitions. This allows the automaton to determine whether the current
state should be accepting or not. More formally, let B = (Q′,Σ, δ′, q′0, F

′) be
the DFA such that

Q′ = Q× {0, 1},

δ′((q, x), a) =

{
(δ(q, a), 1− x) if (q, a) is negative,
(δ(q, a), x) otherwise,

q′0 = (q0, 0),

F ′ = {(q, 0) : q ∈ F} ∪ {(q, 1) : q /∈ F}.

A simple induction shows that L (B) = L (A).

(b) Let L = {w ∈ {a}∗ : |w|a is even}. The minimal DFA that accepts L has two
states. The following DFA-n, with a single negative transition, accepts L:

a

(c) Let L = {w ∈ {a, b}∗ : w ends with a ⇐⇒ |w|b mod 2 = 1}. The minimal
DFA that accepts L has four states. The following DFA-n, whose negative
transitions are colored and dashed, both accept L:

a

ab

b

a

b

a

b

SOLUTIONS FOR CHAPTER 2 386

Let us show that these automata are indeed minimal. Suppose they are not.
This means that there exists a DFA-n A with a single state q that accepts L.
It must necessarily loop upon reading a and b. Moreover q is initial, and also
final since ε ∈ L (A). The a-transition must be negative, as otherwise a ∈
L (A). Similarly, the b-transition must be negative, as otherwise b ∈ L (A).
This implies that ab ∈ L (A), which is a contradiction since ab /∈ L.

⋆ Exercise 49. We say that a residual of a regular language L is composite if it
is the union of other residuals of L and that it is prime otherwise. Show that every
regular language L is recognized by an NFA whose number of states is equal to
the number of prime residuals of L.

Solution: We define an NFA AL = (QL ∪ {q0},Σ, δL, Q0, FL) where:

• QL is the set of prime residuals of L;

• For every K ∈ QL and every a ∈ Σ, we define δ(K, a) as the set K of prime
residuals of L such that

∪
K′∈KK

′ = Ka;

• Q0 is the set of prime residuals of L such that
∪
K∈Q0

K = L;

• FL is the set of prime residuals of L that contain the empty word.

We claim that a word w ∈ Σ∗ is accepted from state K iff w ∈ K. This implies
L (AL) = L as desired.

We proceed by induction on |w|. If w = ε, then w is accepted from state K
iff K ∈ FL iff ε ∈ K. Assume that w = av for some letter a and word v. If w is
accepted from K, then there exists K ′ ∈ δ(K, a) such that v is accepted from K ′.
By induction hypothesis, we have v ∈ K ′. Since K ′ ⊆ Ka, we have v ∈ Ka and
hence w = av ∈ K. Conversely, if w ∈ K, then we have v ∈ Ka. By definition of
δ, we have v ∈ K ′ for some K ′ ∈ δ(K, a). By induction hypothesis, v is accepted
from K ′, which implies that w is accepted from K.

 Exercise 53. Let Rev(A) be the algorithm of exercise 14 that, given an NFA
A as input, returns a trimmed NFA AR such that L

(
AR
)
= L (A)R, where LR

denotes the reverse of L. Recall that an NFA is trimmed if every state accepts at
least one word (see exercise 52). Prove that, for every NFA A, the following DFA
is the unique minimal DFA that accepts L (A):

NFAtoDFA(Rev(NFAtoDFA(Rev(A)))).

Solution: Let B = NFAtoDFA(Rev(A)) and C = Rev(B). The following holds:

L (B) = L (A)R and L (C) = L (B)
R
=
(
L (A)R

)R
= L (A) .

Since B is deterministic, NFA C is reverse-deterministic. Moreover, since B has
one single initial state, C has a single final state. Finally, by definition of Rev, C is
trimmed. Thus, by Exercise 52, D = NFAtoDFA(C) is a minimal DFA recognizing
the same language as C, which is L (A).

 Exercise 54.

SOLUTIONS FOR CHAPTER 2 387

(a) Let Σ = {a, b}. Find a language L ⊆ Σ∗ that has infinitely many residuals
and that satisfies |Lw| > 0 for all w ∈ Σ∗.

(b) Let Σ = {a}. Find a language L ⊆ Σ∗, such that Lw = Lw
′
=⇒ w = w′ for

all words w,w′ ∈ Σ∗.

Solution:

(a) L = {ww : w ∈ Σ∗}. First we prove that L has infinitely many residuals
by showing that for each pair of words of the infinite set {aib : i ≥ 0} the
corresponding residuals are not equal. Let u = aib, and v = ajb be such that
i < j. We have Lu ̸= Lv since u ∈ Lu, but u /∈ Lv. For the second half of the
statement, observe that w ∈ Lw for any word w ∈ Σ∗.

(b) Let L = {a2n : n ≥ 0}. Let i < j. We show that La
i ̸= La

j

. Let di and dj
denote repsectively the distance from i and j to the closest larger power of
two, e.g. if i = 13, then di = 16 − i = 3. If di < dj , then we are done since
adi ∈ Lai and adi /∈ Laj . Similarly, if di > dk, then adi /∈ Lai and adi ∈ Laj .
Thus, assume di = dj . Let d′i and d′j denote the distance from i and j to the
second closest larger power of two, e.g. if i = 13, then d′i = 32 − i = 19.
These two numbers must be unequal since the gaps between powers of two
are strictly increasing. Thus, we are done by repeating the above argument.

 Exercise 55. Recall the master automatonM defined in section 2.1.1. Does
M have

(a) other states than ∅ and Σ∗ that can only reach themselves?

(b) states that cannot be reached from any other state?

(c) states that can reach all other states?

(d) states with infinitely many immediate predecessors?
(i.e., states L such that L′ a−→L for infinitely many states L′?)

(e) two states having the same successor for every letter of Σ?

(f) bottom strongly connected components with infinitely many states?
(A bottom strongly connected component is a maximal set of states S such
that for every state s ∈ S, the set of states reachable from S is exactly S.)

(g) bottom strongly connected components with arbitrarily many states?

Solution: Let L,L′ denote both a language and a regular expression for it.

(a) No. The only two such states are ∅ and Σ∗. If a state L can only reach
itself, then the canonical DFA for L has one state. There are two DFAs with
one state, differing in whether this state is final or not. They recognize the
languages Σ∗ and ∅, and so these are the only two states ofM .

SOLUTIONS FOR CHAPTER 2 388

(b) No. For every language L, consider the language L′ = a · L. We have
L′ ̸= L, because the shortest words of L are strictly shorter than the shortest
words of L′ The master automaton has a transition L′ a−→L. For example, in
Figure 2.4, we have aΣ+ b(ε+Σ2Σ)

a−→Σ.

(c) No. The states reachable from a state L are the states of the canonical DFA
for L, and there are only finitely many of them.

(d) It depends. If Σ has at least two elements, then every language of the form
a·L+b·L′′, where a ̸= b and L′′ is arbitrary, has a transition a·L+b·L′′ a−→L,
and so every language L has infinitely many predecessors. If the alphabet
contains only one letter, say a, then L has exactly two predecessors, namely
the languages aL and aL+ ε.

(e) Yes. Let L be any regular language such that ε ∈ L. Languages L and L\{ε}
have the same successors for every letter in the alphabet. In Figure 2.4, we
have Σ

a−→ ε, and Σ+ ε
a−→ ε which is not depicted.

(f) No. If there were, then there would be states that can reach infinitely many
other states.

(g) Yes. Fix n ≥ 0 and a ∈ Σ. For every 0 ≤ m < n, let Lm be the language
of all words w ∈ Σ∗ such that the number of a’s in w is congruent to m
modulo n. The set of languages {L0, . . . , Lm} is a bottom strongly connected
component of the master automaton. For example, over Σ = {a, b}, there
is a bottom strongly connected component consisting of words with an odd
number of a’s, and words with an even number of a’s:

b∗a(b+ (ab∗a))∗ (b+ (ab∗a))∗

a

a

bb

 Exercise 56. Recall the master automaton M defined in section 2.1.1. A
symmetry is a bijection f on the states of the master automaton such that L a−→L′

iff f(L)
a−→ f(L′). Loosely speaking, after applying f , we still obtain the same

graph. Show that the bijection given by f(L) = L is a symmetry.

Solution: We have La = (L)a since

w ∈ La iff w /∈ La iff aw /∈ L iff aw ∈ L iff w ∈ (L)a.

Let us show L
a−→L′ iff L

a−→L′. Assume L a−→L′. We have L′ = La. Further,
L

a−→(L)a holds by definition of the master automaton. Since (L)a = La = f(La),
we get L a−→L′. Now, assume L a−→L′. By the result we have just proved, we
have L a−→L′, and so L a−→L′. Observe, however, that the symmetry exchanges

SOLUTIONS FOR CHAPTER 2 389

final and non-final states. Indeed, we have ε ∈ L iff ε /∈ L. In Figure 2.4, this
symmetry is graphically represented as a reflection on the horizontal axis.

⋆ Exercise 57. Recall that weakly acyclic DFAs were introduced in exercise 35.
Show that weakly acyclic DFAs are closed under minimization, that is, prove that
the unique minimal DFA equivalent to a given weakly acyclic DFA is also weakly
acyclic.

Solution: Let A = (Q,Σ, δ, q0, F) be a weakly acyclic DFA. Given two states
p, q ∈ Q, we write p ⪯ q if p w−−→ q for some word w ∈ Σ∗. As shown in Exer-
cise 35(a), the relation ⪯ is a partial order.

Let B be the minimal DFA equivalent to A. For the sake of contradiction, sup-
pose that B is not weakly acyclic. By Exercise 35(a), B has a cycle of length at
least two. Since the states ofB are equivalence classes of the language partition of
A, this cycle contains two distinct states Q1, Q2 ⊆ Q. Since B is minimal, we have
L (Q1) ̸= L (Q2), and L (Q1) ̸= ∅ ̸= L (Q2). By definition of B, q w1−−→ r

w2−−→ s
holds in A for some q, s ∈ Q1, r ∈ Q2, and words w1, w2 ∈ Σ∗. By definition
of ⪯, we have q ⪯ r ⪯ s. Moreover, we have q ̸= s because otherwise A would
not be weakly acyclic. Since q, s ∈ Q1 and r ∈ Q2, we have L (q) = L (s) and
L (q) ̸= L (r) ̸= L (s). We show that this leads to a contradiction.

Let w = w1w2, and let Γ ⊆ Σ be the set of letters that occur in w. Let smax

be the maximal state of A w.r.t. ⪯ such that q wn

−−→ smax for some n ≥ 1. We have
L (q)w = L (s) = L (q). Therefore, by repeating this identity n times, we obtain
L (q) = L (q)w

n

= L (smax). Further, since smax is maximal, we have smax
w−−→ smax.

Finally, since A is weakly acyclic, smax
a−→ smax for every letter a ∈ Γ. So L (q) =

L (smax) = Γ∗L for some nonempty language L. Since L (r) = L (q)w1 and w1 ∈
Γ∗, we have L (r) = Γ∗L. Thus, L (q) = L (r), which is a contradiction.

Solutions for Chapter 3

 Exercise 60. Give a regular expression for the words over {0, 1} that do not
contain 010 as a subword.

Solution: Different solutions are possible, e.g. (1+00∗11)∗(0∗+00∗1) which we
can obtain as follows. First, we construct an NFA for the words containing 010 as
subword:

q0 q1 q2 q3

0, 1 0, 1

0 1 0

Determinization and complementation yield:

q0 q0, q1 q0, q2 q0, q1, q3 q0, q2, q3 q0, q3

1 0 0 1

0 1 0 1
1

0

1 0

We safely remove the three rightmost states as they cannot reach final states:

1 0

0 1

1

We further turn the automaton into an NFA-ε, which can then be converted into a
regular expression:

390

SOLUTIONS FOR CHAPTER 3 391

1 0

ε 0 1

1

εεε

We may now convert the automaton into a regular expression. After removing one
state, we obtain:

1

ε

ε+ 00∗ ε

00∗1

1

After removing a second state, we obtain:

ε

1 + 00∗11

ε+ 00∗ + 00∗1

After removing the last state, we obtain the final expression (1+00∗11)∗(ε+00∗+
00∗1) which can be simplified to (1 + 00∗11)∗(0∗ + 00∗1):

(1 + 00∗11)∗(ε+ 00∗ + 00∗1)

 Exercise 61. In example 1.9, we presented an automaton that recognizes
words over alphabet Σ = {−, ·, 0, 1, . . . , 9} that encode real numbers with a finite
decimal part, for example, 37, 10.503, and −0.234 are accepted, but 002, −0, and
3.10000000 are not. This language is described by these four properties:

SOLUTIONS FOR CHAPTER 3 392

(a) a word encoding a number consists of an integer part, followed by a possibly
empty fractional part; the integer part consists of an optional minus sign,
followed by a nonempty sequence of digits;

(b) if the first digit of the integer part is 0, then it is the only digit of the integer
part;

(c) if the fractional part is nonempty, then it starts with “.,” followed by a nonempty
sequence of digits that does not end with 0; and

(d) if the integer part is −0, then the fractional part is nonempty.

We seek to obtain the automaton presented in example 1.9 in a more modular
and algorithmic way. More precisely, give an automaton for each of the above
properties, construct the pairing of these automata, and minimize the resulting
automaton.

Solution: LetD = {0, 1, . . . 9} and letD+ = D\{0}. We represent properties (a)
to (d) respectively by the following automata:

p0 p1 p2 p3 p4

A:
− D . D

D
D D

q0

q1

q2

B:
0

Σ \ {0}

.

Σ

r0 r1 r2

C:
.

Σ \ {.} 0 D+

D+

0

s0 s1 s2 s3 s4

s5

D:

Σ \ {−}

− 0 . D

D+

D

Σ

By pairing all four automata, we obtain the following automaton:

SOLUTIONS FOR CHAPTER 3 393

p0, q0, r0, s0 p2, q2, r0, s5

p2, q1, r0, s5

p1, q2, r0, s1

p3, q2, r1, s5

p2, q2, r0, s2

p4, q2, r2, s5

p4, q2, r1, s5

p3, q2, r1, s3

p4, q2, r2, s4

p4, q2, r1, s4

D+

0

−

D

.

.

D+

0

.

0

D+

0

D+

D+

0

0

D+

0

D+

D+

0

The hatched and solid states aboves respectively have the same residuals. Hence,
they can be merged. This leads to the following minimal automaton, which is ex-
actly the one of Example 1.9:

D+

0

−

0

D+

·

·

·

D 0 D+

D+

0

⋆ Exercise 63. Find a family of NFAs {An}n≥1 with O(n) states such that
every NFA recognizing the complement of L (An) has at least 2n states.

Hint: See exercise 21.

Solution: Let Ln = {ww : w ∈ {0, 1}n}. The language Ln is made of the set Xn

of all words of length different from 2n, plus the set Yn of all words w such that
the i-th and (i+ n)-th letter of w differ for some 1 ≤ i ≤ n. Note that Xn and Yn
are not disjoint. We give NFAs for these two languages for the case n = 3, from
which the general construction can be easily deduced. Here is a NFA recognizing
X3:

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

0, 1

Let us construct an NFA for Y3. The NFA nondeterministically chooses a po-
sition 1 ≤ i ≤ 3, and the letter at that position: if the letter is 0, it moves up,

SOLUTIONS FOR CHAPTER 3 394

otherwise down. The NFA then reads two more letters, and checks that the next
letter is the opposite of the one it chose:

0

0, 1

1

0, 1

0

1

0, 1

0, 1

0

1

0, 1

0, 1

1

0

0, 1

 Exercise 65. Consider the variant of IntersNFA in which line 7

if (q1 ∈ F1) and (q2 ∈ F2) then add [q1, q2] to F

is replaced by

if (q1 ∈ F1) or (q2 ∈ F2) then add [q1, q2] to F

Let A1⊗A2 be the result of applying this variant to two NFAs A1 and A2. An NFA
A = (Q,Σ, δ,Q0, F) is complete if δ(q, a) ̸= ∅ for all q ∈ Q and all a ∈ Σ.

• Prove the following: if A1 and A2 are complete NFAs, then L (A1 ⊗A2) =
L (A1) ∪ L (L2).

• Give NFAs A1 and A2 that are not complete and such that L (A1 ⊗A2) =
L (A1) ∪ L (L2).

Solution:

• Let A1 = (Q1,Σ, δ1, Q01, F1) and A2 = (Q2,Σ, δ2, Q02, F2) be complete
NFAs. Note that any word can be read in both automata by completeness.
Hence, if A1 accepts a word w, then A2 can read it (regardless of whether it
is accepted or not), and vice versa. Thus, we have:

w ∈ L (A1) ∪ L (A2)

⇐⇒ ∃q01
w−→ q1, q02

w−→ q2, q01 ∈ Q01, q02 ∈ Q02, (q1 ∈ F1 ∨ q2 ∈ F2)

⇐⇒ ∃[q01, q02]
w−→ [q1, q2] and [q1, q2] ∈ F.

• The two first NFAs below accept (a+ b)∗a and (a+ b)∗b respectively, and the
resulting third NFA correctly accepts (a+ b)∗(a+ b):

SOLUTIONS FOR CHAPTER 3 395

p0 p1

A1:
a, b

a q0 q1

A2:
a, b

b

p0, q0

p1, q0

p0, q1

A1 ⊗A2:

a, b

a

b

 Exercise 66. The even part of a word w = a1a2 · · · an over alphabet Σ is
the word a2a4 · · · a2·⌊n/2⌋. Given an NFA A, construct an NFA A′ such that L (A′)
is the even parts of the words of L (A).

Solution: Let A = (Q,Σ, δ,Q0, F). We define the NFA A′ = (Q,Σ, δ′, Q0, F
′) as

follows. For every, q ∈ Q and a, b ∈ Σ, we let δ′(q, b) = δ̂(q, ab). By taking F ′ = F ,
we would obtain an automaton A′ that accepts the even parts of the even-length
words of L (A). To deal with odd-length words, we instead set F ′ = F ∪ {q ∈ Q :
δ(q, a) ∩ F ̸= ∅ for some a ∈ Σ}. For example:

A:
a, b a a

b

A′:
a

b

b

 Exercise 67. Let Li = {w ∈ {a}∗ : the length of w is divisible by i}.

(a) Construct an NFA for L := L4 ∪ L6 with a single initial state and at most
eleven states.

(b) Construct the minimal DFA for L.

Solution: The NFA is as follows:

SOLUTIONS FOR CHAPTER 3 396

aa

a a

aaa

a

a

a

a

a

We construct DFAs for L4 (four states) and L6 (six states), construct the union
by taking the pairing (24 states), and minimize. The resulting minimal DFA has
states Q = {0, 1, . . . , 11} organized in a circle, i.e. where δ(i, a) = (i+ 1) mod 12.
Its final states are F = {0, 4, 6, 8}.

 Exercise 68. Modify algorithm Empty so it returns a witness when the au-
tomaton is nonempty, that is, a word accepted by the automaton. Explain how
could you further return a shortest witness. What is the complexity of your proce-
dure?

Solution: We can perform a breadth-first search of the automaton from the set
of initial states. If the search terminates without finding any final state, then we
return “empty”. Otherwise, we halt the search as soon as some final state qf is
found.

During the search, each time a state q is discovered via a transition p a−→ q, we
store pred[q] = (p, a). This allows to reconstruct a shortest path (labeled by some
word) backwards from qf to some initial state q0. The procedure runs in linear
time w.r.t. the number of states and transitions. Note that if there is a total order
on the letters, e.g. a < b < c < · · · < z, then prioritizing them in that order will
further yield a shortest certificate with respect to the lexicographical order.

⋆ Exercise 72. Let Σ1,Σ2 be two alphabets. A homomorphism is a map
h : Σ∗1 → Σ∗2 such that h(ε) = ε and h(uv) = h(u)h(v) for every u, v ∈ Σ∗1. Ob-
serve that if Σ1 = {a1, . . . , an}, then h is completely determined by the values
h(a1), . . . , h(an). Let h : Σ∗1 → Σ∗2 be a homomorphism.

(a) Construct an NFA for the language h(L (A)) = {h(w) : w ∈ L (A)} where A
is an NFA over Σ1.

(b) Construct an NFA for h−1(L (A)) = {w ∈ Σ∗1 : h(w) ∈ L (A)} where A is an
NFA over Σ2.

(c) Recall that the language {0n1n : n ∈ N} is not regular. Use the preceding
results to show that {(01k2)n3n : k, n ∈ N} is also not regular.

Solution:

(a) We consider A = (Q,Σ1, δ, q0, F) to be a DFA as we could otherwise deter-
minize it. We construct a finite automatonA′ = (Q,Σ2, δ

′, q0, F)whose tran-
sitions are labeled by words over Σ2, more precisely by the words h(Σ1) =
{h(a) : a ∈ Σ1}. Note that this set is finite asΣ1 is finite. We set δ′(q, h(a)) =

SOLUTIONS FOR CHAPTER 3 397

δ(q, a) for all a ∈ Σ1. In other words, we apply h to the edge labels of the

graph underlying A, i.e., if q a−→ q′ in A, then q
h(a)−−−→ q′ in A′.

Let us show that L (A′) = h(L (A)).

⊇) Consider some word w = a1a2 · · · an ∈ L (A). There is an accepting
run of A on w, i.e.,

q0
a1−→ q1

a2−→ · · · an−−→ qn with qn ∈ F.

By definition of δ′, we have qi
h(ai)−−−→ qi+1 in A′ for all transitions along

this run. So w′ = h(w) is accepted by A′, and so h(L (A)) ⊆ L (A′).
⊆) Let w′ ∈ L (A′). There is some accepting run of A′

q0
u1−→ q1

u2−→ · · · un−−→ qn with qn ∈ F and ui ∈ h(Σ1).

By definition of δ′, for every transition qi
ui−→ qi+1 of A′, there is some

letter ai ∈ Σ1 with h(ai) = ui such that qi
ai−→ qi+1 in A. By construc-

tion, the following is an accepting run of A:

q0
a1−→ q1

a2−→ · · · al−→ qn with qn ∈ F.

Therefore, a1a2 · · · an ∈ L (A) and h(a1a2 . . . an) = w′. So, L (A′) ⊆
h(L (A)).

(b) We consider A′ = (Q,Σ2, δ, q0, F) to be a DFA as we could otherwise deter-
minize it. We construct a finite automaton A accepting h−1(L (A′)). Intu-
itively, a transition of A labeled by a ∈ Σ1 summarizes the behavior of A′
when reading the word h(a). Let

δ(q, a) = δ̂′(q, h(a)) for all a ∈ Σ1.

Let A = (Q,Σ1, δ, q0, F). We claim that δ̂(q0, w) = δ̂′(q0, h(w)) for every
w ∈ Σ1. Its validity shows that L (A) = h−1(L (A′)) as desired. Let us
prove the claim by induction on |w|. If |w| = 0, then w = ε and the claim is
obvious. If |w| > 0, then w = ua for some u ∈ Σ∗1 and a ∈ Σ1. We have:

δ̂(q0, w) = δ(δ̂(q0, u), a)

= δ(δ̂′(q0, h(u)), a) (by induction hypothesis)

= δ̂′(δ̂′(q0, h(u)), h(a)) (by def. of δ)

= δ̂′(q0, h(u)h(a))

= δ̂′(q0, h(ua)) (since h is a homomorphism)

= δ̂′(q0, h(w)).

(c) Let L = {(01k2)n3n : k, n ≥ 0}. For the sake of contradiction, suppose that
L is regular, i.e., that there exists some finite automaton A with L = L (A).
Let h : {0, 1, 2, 3}∗ → {0, 1}∗ be the homomorphism uniquely determined by

h(0) = 0, h(1) = ε, h(2) = ε and h(3) = 1.

We have h(L) = {0n1n : n ≥ 0}. By the preceding results, there is a finite
automaton A′ with L (A′) = {0n1n : n ≥ 0}, which is a contradiction.

SOLUTIONS FOR CHAPTER 3 398

 Exercise 74. Given alphabets Σ and ∆, a substitution is a map f : Σ →
2∆

∗
assigning to each letter a ∈ Σ a language La ⊆ ∆∗. A substitution f can be

canonically extended to amap 2Σ
∗ → 2∆

∗
by defining f(ε) = ε, f(wa) = f(w)f(a),

and f(L) =
∪
w∈L f(w). Note that a homomorphism can be seen as the special case

of a substitution in which all Las are singletons.
Let Σ = {Name, Tel, :, #}, let ∆ = {A, . . . , Z, 0, 1, . . . , 9, :,#}, and let f be the

substitution:

f(Name) = (A+ · · ·+ Z)∗

f(:) = {:}
f(Tel) = 0049(1 + . . .+ 9)(0 + 1 + . . .+ 9)10 +

00420(1 + . . .+ 9)(0 + 1 + . . .+ 9)8

f(#) = {#}

(a) Draw a DFA recognizing L = Name:Tel(#Tel)∗.

(b) Sketch an NFA recognizing f(L).

(c) Give an algorithm that takes as input an NFA A, a substitution f , and for ev-
ery a ∈ Σ an NFA recognizing f(a) and returns an NFA recognizing f(L (A)).

Solution:

(a)

Name : Tel

#

(b)

ε

A, . . . , Z

ε : 0 0 4 2 0

9

0, . . . , 9 0, . . . , 9

0, . . . , 9

0, . . . , 9

#

0, . . . , 9

(c) As suggested by the above example, for replace each transition p a−→ q we:
remove the transition, make a copy of the NFA for f(a), add ε-transitions
from p to its initial states, and add ε-transitions from its final states to q.
Once this is done, we can remove the ε-transitions.

SOLUTIONS FOR CHAPTER 3 399

 Exercise 75. Let A1 and A2 be two NFAs with n1 and n2 states. Let

B = NFAtoDFA(IntersNFA(A1, A2)),

C = IntersDFA(NFAtoDFA(A1),NFAtoDFA(A2)).

A superficial analysis shows that B and C have O(2n1·n2) and O(2n1+n2) states,
respectively, wrongly suggesting that C might be more compact than B. Show
that, in fact, B and C are isomorphic and hence have the same number of states.

Solution: The following claims follow easily from the definitions of NFAtoDFA
and IntersNFA:

• Let A = (Q,Σ, δ,Q0, F) ba an NFA. A set Q′ ⊆ Q is a state of NFAtoDFA(A)
iff there is a word w ∈ Σ∗ such that Q′ = δ(Q0, w).

• Let A1 = (Q1,Σ, δ1, Q01, F1) and A2 = (Q2,Σ, δ2, Q02, F2) be two NFAs. A
pair [q1, q2] ∈ Q1 × Q2 is a state of IntersNFA(A1, A2) iff there is a word
w ∈ Σ∗ such that q1 ∈ δ1(Q01, w) and q2 ∈ δ2(Q02, w).

Combining the claims we obtain:

(a) A pair [Q′1, Q′2] ∈ P(Q1)×P(Q2) is a state of C iff there is w ∈ Σ∗ such that

[Q′1, Q
′
2] = [δ1(Q01, w), δ2(Q02, w)] .

(b) A set Q′ ∈ P(Q1 ×Q2) is a state of B iff there is w ∈ Σ∗ such that

Q′ = δ1(Q01, w)× δ2(Q02, w).

By (a) and (b), the map P(Q1) × P(Q2) → P(Q1 × Q2) defined by [Q′1, Q
′
2] 7→

Q′1×Q′2 is a bijection between the states ofB and C. Moreover, the map preserves
transitions; indeed, by definitions of NFAtoDFA and IntersNFA, we have:

• [Q′1, Q
′
2]

a−→(Q′′1 , Q
′′
2) in C iff there is w ∈ Σ∗ such that

[Q′1, Q
′
2] = [δ1(Q01, w), δ2(Q02, w)] and

[Q′′1 , Q
′′
2] = [δ1(Q01, wa), δ2(Q02, wa)] .

• Q′
a−→Q′′ in B iff there is w ∈ Σ∗ such that

Q′ = δ1(Q01, w)× δ2(Q02, w) and Q′′ = δ1(Q01, wa)× δ2(Q02, wa).

The mapping also preserves initial and final states, and so it is an isomorphism
between B and C.

⋆ Exercise 76. Let A = (Q,Σ, δ, q0, F) be a DFA. A word w ∈ Σ∗ is a synchro-
nizing word of A if reading w from any state of A leads to a common state, that is,
if there exists q ∈ Q such that for every p ∈ Q, p w−→ q. A DFA is synchronizing if it
has a synchronizing word.

SOLUTIONS FOR CHAPTER 3 400

(a) Show that the following DFA is synchronizing:

p q

r s

a

b

a

b
a

b

a

b

(b) Give a DFA that is not synchronizing.

(c) Give an exponential time algorithm to decide whether a DFA is synchroniz-
ing.

Hint: Use the powerset construction.

(d) Show that a DFA A = (Q,Σ, δ, q0, F) is synchronizing iff for every p, q ∈ Q,
there exist w ∈ Σ∗ and r ∈ Q such that p w−−→ r and q w−−→ r.

(e) Give a polynomial time algorithm to test whether a DFA is synchronizing.
Hint: Use ((d)).

(f) Show that ((d)) implies that every synchronizing DFA with n states has a
synchronizing word of length at most (n2 − 1)(n− 1).

Hint: You might need to reason in terms of pairing.

(g) Show that the upper bound obtained in ((f)) is not tight by finding a syn-
chronizing word of length (4− 1)2 for the following DFA:

q0 q1

q3 q2

a

b

a

b

a, b

a

b

Solution:

SOLUTIONS FOR CHAPTER 3 401

(a) ba is a synchronizing word:

p
b−→ p

a−→ r ,

q
b−→ s

a−→ r ,

r
b−→ s

a−→ r ,

s
b−→ s

a−→ r .

(b) The following DFA is not synchronizing:

q0 q1

a

a

(c) Let A = (Q,Σ, δ, q0, F) be a DFA, and let Aq = (Q,Σ, δ, q, F) for every q ∈
Q. A word w is synchronizing for A iff reading w from each automaton
Aq leads to the same state. Therefore, we build a DFA B that simulates
every automaton Aq simultaneously and tests whether a common state can
be reached. More formally, let B = (P(Q),Σ, δ′, {Q}, F ′) where

• δ′(Q′, a) = {δ(q, a) : q ∈ Q′}, and
• F ′ = {{q} : q ∈ Q}.

Automaton A is synchronizing iff L (B) ̸= ∅. It is possible to construct B and
test L (B) ̸= ∅ simultaneously by adapting NFAtoDFA:

IsSynchronizing(A)
Input: DFA A = (Q,Σ, δ, q0, F)
Output: A is synchronizing?
1 if |Q| = 1 then return true
2 Q,← ∅;W ← {Q}
3 whileW ̸= ∅ do
4 pick Q′ fromW
5 add Q′ to Q
6 for all a ∈ Σ do
7 Q′′ ← {δ(q, a) : q ∈ Q′}
8 if |Q′′| = 1 then return true
9 if Q′′ /∈ Q then add Q′′ toW

10 return false

(d) ⇒) Immediate.
⇐) Let Q = {q0, q1, . . . , qn}. For every 1 ≤ i, j ≤ n, let w(i, j) ∈ Σ∗ be such
that δ̂(qi, w(i, j)) = δ̂(qj , w(i, j)). Let us define the following sequence of
words:

u1 = w(q0, q1)

uℓ = w(δ̂(qℓ, u1u2 · · ·uℓ−1), δ̂(qℓ−1, u1u2 · · ·uℓ−1)) for every 2 ≤ ℓ ≤ n.

SOLUTIONS FOR CHAPTER 3 402

We claim that u1u2 · · ·un is a synchronizing word. To see that, let us prove
by induction on ℓ that for every 1 ≤ i, j ≤ ℓ,

δ̂(qi, u1u2 · · ·uℓ) = δ̂(qj , u1u2 · · ·uℓ).

For ℓ = 1, the claim holds by definition of u1. Let 2 ≤ ℓ ≤ n. Assume that
the claim holds for ℓ− 1. Let 1 ≤ i, j ≤ ℓ. If i, j < ℓ, then

δ̂(qi, u1u2 · · ·uℓ) = δ̂(δ̂(qi, u1u2 · · ·uℓ−1), uℓ)

= δ̂(δ̂(qj , u1u2 · · ·uℓ−1), uℓ) (by induction hypothesis)

= δ̂(qj , u1u2 · · ·uℓ).

If i = ℓ and j < ℓ, then

δ̂(qi, u1u2 · · ·uℓ) = δ̂(δ̂(qi, u1u2 · · ·uℓ−1), uℓ)

= δ̂(δ̂(qi−1, u1u2 · · ·uℓ−1), uℓ) (by definition of uℓ)

= δ̂(δ̂(qj , u1u2 · · ·uℓ−1), uℓ) (by induction hypothesis)

= δ̂(qj , u1u2 · · ·uℓ).

The case were i < ℓ and i = ℓ is symmetric, and the case where i = j = ℓ is
trivial.

(e) We use the approach used in ((c)), but instead of simulating every automaton
Aq at once, we simulate all pairs Ap and Aq. From ((d)), this is sufficient.
The adapted algorithm is as follows:

IsSynchronizing(A)
Input: DFA A = (Q,Σ, δ, q0, F)
Output: A is synchronizing?
1 for all p, q ∈ Q s.t. p ̸= q do
2 if ¬PairSynchronizable(p, q) then return false
3 return true

4 PairSynchronizable(p, q)
5 Q,← ∅;W ← {{p, q}}
6 whileW ̸= ∅ do
7 pick Q′ fromW
8 add Q′ to Q
9 for all a ∈ Σ do

10 Q′′ ← {δ(q, a) : q ∈ Q′}
11 if |Q′′| = 1 then return true
12 if Q′′ /∈ Q then add Q′′ toW
13 return false

The for loop at line 1 is iterated at most |Q|2 times. The while loop of the
subprocedure is iterated at most |Q|2, and the for loop within it is iterated at

SOLUTIONS FOR CHAPTER 3 403

most |Σ| times. Hence, the total running time of the algorithm is in O(|Q|4 ·
|Σ|).
Note that our algorithm runs in time O(|Q|4 · |Σ|) and computes a synchro-
nizing word of length O(|Q|3), if there exists one. It is possible to do better.
An algorithm presented in [Epp90] computes a synchronizing word of length
O(|Q|3), if there exists one, in time O(|Q|3 + |Q|2 · |Σ|).

(f) We say that a word w is (p, q)-synchronizing if δ̂(p, w) = δ̂(q, w). In the proof
of ((d)), we have built a synchronizing word w = u1u2 · · ·u|Q|−1 where each
ui is a (p, q)-synchronizing word for some p, q ∈ Q. We claim that if there
exists a (p, q)-synchronizing word, then there exists one of length at most
|Q|2 − 1. This leads to the overall (|Q| − 1)(|Q|2 − 1) upper bound. To see
that the claim holds, assume for the sake of contradiction that every (p, q)-
synchronizing word has length at least |Q|2. Let w be such a minimal word.
Let r = δ̂(p, w). We have

p
w−−→ r,

q
w−−→ r.

This yields the following run in the pairing of A and itself:[
p
q

]
w−−→
[
r
r

]
.

Since |w(p, q)| ≥ |Q|2, by the pigeonhole principle, there exist s, t ∈ Q,
x, z ∈ Σ∗ and y ∈ Σ+ such that w = xyz and[

p
q

]
x−→
[
s
t

]
y−→
[
s
t

]
z−→
[
r
r

]
.

Hence, xz is a smaller (p, q)-synchronizing word, which is a contradiction.

Note that is possible to get a slightly better upper bound. If there exist s, t ∈
Q, x, z ∈ Σ∗ and y ∈ Σ+ such that w = xyz and[

p
q

]
x−→
[
s
t

]
y−→
[
t
s

]
z−→
[
r
r

]
,

then xz is a also a shorter (p, q)-synchronizing word. Moreover, if there exist
s ∈ Q, x ∈ Σ∗ and y ∈ Σ+ such that w = xy and[

p
q

]
x−→
[
s
s

]
z−→
[
r
r

]
,

then x is a shorter (p, q)-synchronizing word. Thus, at most
(
n
2

)
states of the

form [s t] appear along the path of a minimal (p, q)-synchronizing word, fol-
lowed by a state of the form [r r]. Therefore, a minimal (p, q)-synchronizing
word is of size at most

(
n
2

)
= (n2−n)/2. Overall, this yields a synchronizing

word of length at most (n− 1)((n2 − n)/2) = n3/2− n2 + n/2.

SOLUTIONS FOR CHAPTER 3 404

(g) ba3ba3b is such a word. It can be obtained, e.g., from the algorithm designed
in ((c)):

q0, q1,
q2, q3

q0, q1,
q2

q1,
q2, q3

q0,
q2, q3

q0, q1,
q3

q0, q1q1,
q2q2, q3

q0,
q3

q0

b

a a a

b

aaa

b

a

b

b

a

bb

b

b

b

a

For the interested reader, note that the Černý conjecture states that every
synchronizing DFA has a synchronizing word of length at most (|Q| − 1)2.
Since 1964, no one has been able to prove or disprove this conjecture. To
this day, the best upper bound on the length of minimal synchronizing words
is ((|Q|3 − |Q|)/6)− 1 (see [Pin83]).

⋆ Exercise 77.

(a) Prove that the following problem is PSPACE-complete:

Given: DFAs A1, . . . , An over the same alphabet Σ;
Decide: whether

∩n
i=1 L (Ai) = ∅.

Hint: Reduce from the acceptance problem for deterministic linearly bounded
automata.

SOLUTIONS FOR CHAPTER 3 405

(b) Prove that if the DFAs are acyclic, but the alphabet is arbitrary, then the
problem is coNP-complete. Here, acyclic means that the graph induced by
transitions has no cycle, apart from a self-loop on a trap state. Hint: Reduce
from 3-SAT.

(c) Prove that if Σ is a one-letter alphabet, then the problem is coNP-complete.

Solution: (a) Recall that a linearly bounded automaton is a deterministic Turing
machine whose head never leaves the part of the tape containing the input (plus
possibly two cells to the left and to the right of the input, so that the machine can
recognize when it has reached the “border”). The automaton accepts an input w
if its run on w visits some final state.

Given a linearly bounded automaton M and an input w = a1 · · · an, we con-
struct DFAs A1, . . . , An such that M accepts w iff

∩n
i=1 L (Ai) = ∅. Let Q be the

set of states of M , and let ΣM be its alphabet. The transition function of M is of
the form δ : Q × ΣM → Q × ΣM × {L,R}, where L and R stand for “move left”
and “move right”. The common alphabet Σ of the DFAs A1, . . . , An contains all
tuples (x, q, a, q′, a′, L) such that 0 < x ≤ n and δ(q, a) = (q′, a′, L), and all tuples
(x, q, a, q′, a′, R) such that 0 ≤ x < n and δ(q, a) = (q′, a′, R). Intuitively, a letter
of Σ contains all the information about a “move” ofM : x, q, and a are respectively
the current position of the head, the current state, and the letter being currently
read; q′ and a′ are the new state and the new letter, and R or L give the direction
of the move.

The states of the DFA Ai are the tuples (x, q, a)where 0 ≤ x ≤ n+1, q ∈ Q and
a ∈ ΣM , plus a trap state t. Intuitively, Ai is in state (x, q, a) if the head currently
reads the x-th cell, the current state of M is q, and the current letter on the i-th
cell is a. The initial state of Ai is (1, q0, ai), where q0 is the initial state ofM , and
ai is the i-th letter of the input word w. The final states ofAi are the tuples (x, q, a)
such that q is a final state ofM .

The transition function δi ofAi is defined as follows. First, we define δi(t, α) = t
for every letter α ∈ Σ (trap state). Let σ = (x, q, a) be a state of Ai, and let
α = (y, q1, a1, q2, a2, D) be a letter of Σ. We only consider the case where D = R;
the case D = L is analogous. We say that σ and α match if x = y, q = q1 and
either x ̸= i, or x = i and a = a1. We define δi(σ, α) as follows:

• If σ and α match and x ̸= i, then δi(σ, α) = (x+ 1, q2, a).
Intuitively, as the head is not on the i-the cell, after the move the i-th cell
still contains an a.

• If σ and α match and x = i, a = a1, then δi(σ, α) = (i+ 1, q2, a2).
Intuitively, since the head writes on the i-th cell, we update its contents to
a2.

• If σ and α do not match, then δi(σ, α) = t (the trap state).
Intuitively, this corresponds to a “malfunction”: M executes a “wrong” letter.

By construction,M can execute a sequence of moves leading to a configuration
with the head on cell x, state q, and tape contents b1 . . . bn iff the run of each Ai on
the word corresponding to this sequence of moves leads to the state (x, q, bi). IfM

SOLUTIONS FOR CHAPTER 3 406

accepts x, then, after the accepting sequence of moves, each Ai has reached a final
state, and so

∩n
i=1 L (Ai) ̸= ∅. If M does not accept x, then for every word of Σ∗

one of two cases holds: either the word does not correspond to a legal sequence
of moves, in which case after reading it at least one Ai is in its trap state, or it
corresponds to a legal sequence of moves, in which case after reading it none of
the Ai is in a final state. So we have

∩n
i=1 L (Ai) = ∅.

(b) For themembership in coNP, observe that an acyclic DFAwithm states can only
accept words of length at mostm− 1. Therefore, the set

∩n
i=1 L (Ai) is nonempty

iff it contains a word of length at most m− 1, where m is the maximal number of
states ofA1, . . . , An. Consider the nondeterministic algorithm that guesses a word
of length at mostm−1 and checks whether it is accepted by all ofA1, . . . , An. Since
the algorithm runs in polynomial time, the emptiness problem is in coNP.

To prove coNP-hardness, we reduce 3-SAT to the nonemptiness problem. Let
φ = C1∧· · ·∧Cm be a Boolean formula in CNF over the variablesX = {x1, . . . , xn},
where each clause Ci contains exactly three literals. For every clause Ci, let Li ⊆
{0, 1}n be the language of truth assignments to the variables of X that satisfy Ci.
For example, if n = 5 and Ci = (x1 ∨ x3 ∨ ¬x4), then Li is the language of the
following regular expression:

1(0 + 1)4 + (0 + 1)21(0 + 1)2 + (0 + 1)30(0 + 1).

It is easy to construct a DFA Ai with O(n) states recognizing Li. Therefore, the
words of

∩n
i=1 L (Ai) are the truth assignments that satisfy all clauses of φ, and so∩n

i=1 L (Ai) ̸= ∅ iff φ is satisfiable.
(c) Let φ be a formula as in (b), and let p1, . . . , pn be the first n prime numbers. We
encode a truth assignment B = b1 . . . bn ∈ {0, 1}n as the number B̂ =

∑n
i=1 p

bi
i .

Observe that different assignments are encoded as different numbers because each
number has a unique prime decomposition.

For every clause Ci, let Ni be the numbers that are divisible by the prime num-
ber corresponding to some positive literal of Ci, or non-divisible by the prime
number of some negative literal of Ci. For example, let us reconsider n = 5 and
Ci = (x1 ∨ x3 ∨ ¬x4). Since the first, third, and fourth prime numbers are 2, 5,
and 7, the set Ni contains the numbers that are divisible by 2, or divisible by 5, or
not divisible by 7. It follows that a number belongs to Ni iff it is a multiple of the
encoding of some assignment satisfying Ci.

Let Li = {ak : k ∈ Ni}. We sketch how to construct a DFAAi recognizing Li by
means of the above example. First, we construct three DFAs with 2, 5, and 7 states,
recognizing the languages of words whose length is divisible by 2 and 5, and not
divisible by 7. Then, we construct a DFA with 2 · 5 · 7 = 70 states recognizing the
union of these languages. In general, if the literals of Ci are pi1 , pi2 , pi3 then the
resulting DFA has pi1 · pi2 · pi3 states.

It follows from this construction that
∩n
i=1 L (Ai) ̸= ∅ iffφ is satisfiable. Indeed,

we have ak ∈
∩n
i=1 L (Ai), iff the truth assignment that sets xi to true iff pi divides

k is a satisfying assignment of φ. It remains to show that the DFAs have polynomi-
ally mny states. For this, we use a well-known bound on the size of the n-th prime
number (see the prime number theorem): pn < n(logn + log logn) ≤ 2n logn.
Consequently, Ai has at most O(n3 logn3) states, and we are done.

 Exercise 78. Let A = (Q,Σ, δ,Q0, F) be an NFA. Show that, with the

SOLUTIONS FOR CHAPTER 3 407

universal accepting condition of exercise 21, automaton A′ = (Q,Σ, δ, q0, Q \ F)
recognizes the complement of L (A).

Solution: Note that A and A′ have exactly the same runs on a given word w.
Thus:

A accepts w
⇐⇒ some run of A on w leads to a state of F
⇐⇒ it is not the case that all runs of A′ lead to a state of Q \ F
⇐⇒ A′ does not accept w.

 Exercise 79. Recall the model of alternating automata introduced in exer-
cise 22.

(a) Show that alternating automata can be complemented by exchanging exis-
tential and universal states, as well as final and nonfinal states. More pre-
cisely, let A = (Q1, Q2,Σ, δ, q0, F) be an alternating automaton, where Q1

andQ2 are respectively the sets of existential and universal states and where
δ : (Q1 ∪ Q2) × Σ → P(Q1 ∪ Q2). Show that the alternating automaton
A = (Q2, Q1,Σ, δ, q0, Q \ F) recognizes the complement of the language
recognized by A.

(b) Give linear time algorithms that take two alternating automata recognizing
languages L1 and L2 and that deliver a third alternating automaton recog-
nizing L1 ∪ L2 and L1 ∩ L2.

Hint: The algorithms are very similar to UnionNFA.

(c) Show that testing emptiness for alternating automata is PSPACE-complete.
Hint: Use exercise 77.

Solution:

(a) For every state q and each automaton B, let LB(q) be the set of words ac-
cepted by the automaton with the same structure as B, but having q as ini-
tial state. We prove that for every state q and word w, the following holds:
w ∈ LA(q) iff w /∈ LA(q). We proceed by induction on |w|.
If |w| = 0, then w = ε. We have ε ∈ LA(q) iff q is a final state of A iff q is
not a final state of A iff ε /∈ LA(q). If |w| > 0, then w = aw′ for some letter
a and word w′. Assume that q is an existential state of A, and so a universal
state of A (the other case is analogous). We have:

aw′ ∈ LA(q) ⇐⇒
∨

q′∈δ(q,a)

w′ ∈ LA(q′) (as q is an exist. state of A)

⇐⇒
∨

q′∈δ(q,a)

w′ /∈ LA(q
′) (by induction hypothesis)

⇐⇒ ¬
∧

q′∈δ(q,a)

w′ ∈ LA(q
′) (by De Morgan’s law)

⇐⇒ aw′ /∈ LA(q) (as q is a univ. state of A).

SOLUTIONS FOR CHAPTER 3 408

(b) Let q01 and q02 be the initial states of the two alternating automata, and let
δ1, δ2 be their transition functions. For union, we put the two automata side
by side; add a fresh initial existential state q0, and add transitions from q0
to all states in δ1(q01, a) ∪ δ2(q02, a) for every letter a. For intersection, we
proceed in the same way, but making q0 universal instead of existential.

(c) We reduce from the following problem, which is shown PSPACE-complete in
Exercise 77:

Given: DFAs A1, . . . , An over the same alphabet Σ,
Decide: whether

∩n
i=1 L (Ai) = ∅.

More precisely, given DFAs A1, . . . , An, we consider them as alternating au-
tomata made of existential states. We then construct an alternating automa-
ton for their intersection using repeatedly the construction of (b). The re-
sulting automaton has an empty language iff

∩n
i=1 L (Ai) = ∅.

 Exercise 80. Recall that weakly acyclic DFAs were introduced in exercise 35.
Show that if A is a weakly acyclic DFA, then CompDFA(A) is also weakly acyclic,
and, that for every binary boolean operator ⊙, if A1 and A2 are weakly acyclic
DFAs, then BinOp[⊙](A1, A2) is also weakly acyclic.

Solution: The first part follows immediately from the fact that the graphs of
A and CompDFA(A) coincide. For the second part, assume that A1 and A2 are
weakly acyclic, but B = BinOp[⊙](A1, A2) is not. By Exercise 35(a), B has a
cycle of length at least two. Let [q1, q2] and [r1, r2] be distinct states of the cycle,
and let w, v be words such that [q1, q2]

w−−→[r1, r2]
v−→[q1, q2]. Assume without loss

of generality that q1 ̸= r1. By definition of B, we have q1
w1−−→ r1

w1−−→ q1 in A1.
Thus, A1 has a cycle containing at least two distinct states, contradicting that A1

is weakly acyclic.

Solutions for Chapter 4

 Exercise 81. Use ideas from the main text to design an algorithm for the
pattern matching problem that identifies a matched [i, j]-factor of the text, where
position j is minimal and where position i is as close to j as possible, that is,
maximal w.r.t. j. Run your algorithm on text t = caabac and pattern p = a+(b +
c)a+ + bac. What is the complexity of your algorithm?

Solution: Let A = (Q,Σ, δ,Q0, F) be an NFA for p. Let us assume that ε ̸∈ L (A)
and L (A) ̸= ∅ as we can otherwise simply report (0, 0) or ⊥. Let A′ be the NFA
obtained by adding a fresh initial state qwait to A; by makingQ0 non initial; and by
allowing qwait to either self-loop on a letter or move to where this letter would lead
from Q0. More formally, let A′ = (Q ∪ {qwait},Σ, δ′, {qwait}, F) where δ′ extends δ
with δ′(qwait, a) = {qwait} ∪ δ(Q0, a) for each a ∈ Σ. Note that L (A′) = L (Σ∗p).

We give an algorithm that constructs A′ from p and reads the text until a final
state q is reached. The moment at which q is reached determines the minimal
position j. In order to find the position i, we could store the predecessor of each
discovered state, and go back from q to an ancestor p ∈ Q whose predecessor
is qwait. This corresponds to the moment where we moved to NFA A and started
matching the pattern. There may exist many such moments due to nondetermin-
ism. Since we want the maximal i w.r.t. j, we more carefully store the maximal
moments we moved from qwait to A:

409

SOLUTIONS FOR CHAPTER 4 410

FindFactorNFA(t, p)
Input: text t = a1 · · · an ∈ Σ+, pattern p
Output: indices (i, j) s.t. the [i, j]-factor of t matches p, j is minimal and i
is maximal w.r.t. j; or ⊥ if no such factor exists.
1 A← RegtoNFA(p)
2 construct A′ from A

3 initialize start[q]← −∞ for each state q of A′

4

5 S ← {qwait}
6 for all k = 0 to n− 1 do
7 S′ ← ∅
8 for all p ∈ S do
9 for all q ∈ δ′(p, ak+1) do
10 add q to S′

11 if p = qwait and q ̸= qwait then start[q]← k

12 else if p ̸= qwait then start[q]← max(start[q], start[p])
13

14 for all q ∈ S′ do
15 if q ∈ F then return (start[q], k + 1)

16 S ← S′

17 return ⊥
The algorithm takes the same time as solution 1 from the main text, i.e. O(k(k +
m)2+nm2). Indeed, the construction of A′ from A and the initialization of “start”
can be done in linear time. The rest is as in solution 1, but with the extra constant
time checks and bookkeeping operations.

Let us illustrate the algorithm on text t = caabac and pattern p = a+(b +
c)a+ + bac. The automaton A′ is as follows, where the original NFA A is depicted
in a darker shade (with states q0 and q4 formerly initial):

qwait q0 q1 q2 q3

q4 q5 q6 q7

a, b, c

a

a

b

a

a b, c a

a

b a c

Schematically, reading the five first letters of t = caabac in A′ yields this trace:

SOLUTIONS FOR CHAPTER 4 411

qwait qwait qwait

q0

q1

qwait

q0

q1

qwait

q5

q2

qwait

q6

q3

q0

q1

c a

a

a

a

a

a

a

a

b

b

b

a

a

a

a

a

In other words, we can see column k of the above graph as the contents of S at
iteration k, and each arc (p, σ, q) indicates the discovery of state q from state p via
letter σ. We stop as soon as we discover a final state, here q3. Paths from qwait to
q3, with no intermediate occurrence of qwait, correspond to factors that match the
pattern. In our case, they are: aaba (factor [1, 5]) and aba (factor [2, 5]). We would
like to return the latter as 2 > 1. Hence, the algorithm memorizes the latest “start
moment” of each state. Schematically, these numbers would evolve as follows:

qwait qwait qwait

q0

q1

qwait

q0

q1

qwait

q5

q2

qwait

q6

q3

q0

q1

−∞ −∞ −∞ −∞ −∞ −∞

1 2

1 2

3

2 2

3

4

4

c a

a

a

a

a

a

a

a

b

b

b

a

a

a

a

a

Observe that suffix bac of the text (factor [3, 6]) is also a match. It is not detected
as we stop as soon as possible. It would be discovered if we were to read the last
letter c and discover state q7.

 Exercise 83. Suppose we have an algorithm that solves the pattern match-
ing problem—that is, one that finds the first [i, j]-factor (w.r.t. j) of a text t that
matches a pattern p. How can we use it as a black box to find the last [i, j]-factor
w.r.t. i?

SOLUTIONS FOR CHAPTER 4 412

Solution: We first construct the reverse of p inductively using these rules:

∅R = ∅ (r1r2)
R = rR2 r

R
1

εR = ε (r1 + r2)
R = rR1 + rR2

aR = a (r∗)R = (rR)∗.

We then solve the pattern matching problem for text tR and pattern pR. If the
procedure (as a black box) reports [i, j], then we report [|t| − j, |t| − i].

 Exercise 84. Use the ideas of exercises 81 and 83 to obtain an algorithm that
solves the pattern matching problem, but this time by finding the first [i, j]-factor
w.r.t. i (instead of j).

Solution: The algorithm of Exercise 81 stops as soon as it finds a final state. We
can easily adapt it to stop at the last encountered final state. This would yield a
factor [i, j] that matches the pattern and where j is maximal and i is as close to i as
possible. Using the idea of Exercise 83, we can run our new procedure on tR and
pR. This will yield a factor [i, j] that matches the pattern and where i is minimal
and j is as close to i as possible.

 Exercise 86. We have shown that lazy DFAs for a word pattern may need
more than n steps to read a text of length n but not more than 2n +m, where m
is the length of the pattern. Find a text t and a word pattern p such that the run
of Bp on t takes at most n steps and the run of Cp takes at least 2n− 1 steps.

Hint: A simple pattern of the form ak is sufficient.

Solution: Let t = an−1b and p = an. The automata Bp and Cp are as follows:

Bp:

0 0, 1 0, 1, 2 0, 1, . . . , n
a a

a

b
b

b

b

a

Cp:

0 1 2 n− 1 n
a;R a;R a;R

b;R

b;N b;N a, b;N

a;R

b;N

SOLUTIONS FOR CHAPTER 4 413

The runs over t on Bp and Cp are respectively:

{0} a−→{0, 1} a−→{0, 1, 2} a−→· · · a−→{0, 1, . . . , n− 1} b−→{0},

and
0

a−→ 1
a−→ 2

a−→· · · a−→(n− 1)
b−→(n− 2)

b−→(n− 3)
b−→· · · b−→ 0.

 Exercise 87. Give an algorithm that, given a text t and a word pattern p,
counts the number of occurrences of p in t. Try to obtain a complexity ofO(|t|+|p|).

Solution: We could “slide a window” and count the number of occurrences of p.
However, this would not run in linear time. Instead, we construct a lazy DFA Cp
for p and read t in C. We increment a counter each time the final state is reached.

Note that we technically have to count the number of times the final state is
reached with R (right move), not from N (no move). However, there is no transi-
tion to the final state with N . Indeed, “no moves” occur when a state delegates to
its tail. Moreover, the final state contains n, while a tail cannot contain n since it
is the largest number.

 Exercise 88. Two-way DFAs are an extension of lazy automata where the
reading head is also allowed to move left. Formally, a two-way DFA (2DFA) is a
tuple A = (Q,Σ, δ, q0, F), where δ : Q × (Σ ∪ {⊢,⊣}) → Q × {L,N,R}. Given a
word w ∈ Σ∗, A starts in q0 with its reading tape initialized with ⊢ w ⊣ and its
reading head pointing on ⊢. When reading a letter, A moves the head according
to δ (Left, No move, Right). Moving left on ⊢ or right on ⊣ does not move the
reading head. A accepts w if, and only if, it reaches ⊣ in a state of F .

(a) Let n ∈ N. Give a 2DFA that accepts (a+ b)
∗
a(a+ b)

n.

(b) Give a 2DFA that does not terminate on any input.

(c) Describe an algorithm to test whether a given 2DFA A accepts a given word
w.

(d) Let A1, A2, . . . , An be DFAs over a common alphabet. Give a 2DFA B such
that

L (B) = L (A1) ∩ L (A2) ∩ · · · ∩ L (An) .

Solution:

(a) The following 2DFA accepts (a+ b)
∗
a(a+ b)

n. Transitions not drawn lead
to a trap state without moving the head.

p q r1 r2 rn s

⊢;R
a;R
b;R

⊣;L
a;L
b;L

a;L
b;L a;R

a;R
b;R
⊣;N

a;L
b;L

SOLUTIONS FOR CHAPTER 4 414

(b)

⊢;N
a;N
⊣;N

(c) From (b), we know that simply reading an input word is not sufficient since
the automaton could loop forever. Instead, we keep track of all configura-
tions that are encountered when reading the input word w. A configuration
is a pair (q, i) where q is a state and 0 ≤ i ≤ |w| + 1 is a position of the
reading head. If (qf , |w|+1) when qf ∈ F is encountered, then the automa-
ton accepts w. If a configuration is seen twice, then the automaton loops
forever.
We obtain the following algorithm:

Input: 2DFA A = (Q,Σ, δ, q0, F) and w ∈ Σ∗

Output: w ∈ L (A)?
1 W ← ∅; q ← q0; i← 0

2 while (q, i) ̸∈W do
3 if q ∈ F and i = |w|+ 1 then return true
4

5 if i = 0 then q, d← δ(q,⊢)
6 else if i = |w|+ 1 then q, d← δ(q,⊣)
7 else q, d← δ(q, wi)

8

9 if d = L and i > 0 then i← i− 1

10 else if d = R and i ≤ |w| then i← i+ 1

11 return false

(d) We build a 2DFA B that first simulates A1 on w. If a final state of A1 is
reached in ⊣, thenB rewinds the tape. AutomatonB then repeat this process
on A2, . . . , An. If every Ai accepts w, then B finally moves the reading head
to ⊣ in a final state. The construction looks as follows:

SOLUTIONS FOR CHAPTER 4 415

q1,0

q1,f

q′1,f

A1

qn,0

qn,f

q′n,f

An

⊢;R

⊣;L

⊣;L

Σ;L

⊣;L

⊣;L

Σ;L

⊢;R

Σ,⊣;R

a;R

b;R

c;R

d;R

⊢;R

Let Ai = (Qi,Σ, δi, qi,0, Fi). Formally, B is defined as B = (Q,Σ, δ, {p}, {r})
where

• Q = {p, s} ∪Q1 ∪Q2 ∪ · · · ∪Qn ∪ {ri : 1 ≤ i ≤ n},

• δ(q, a) =

(q1,0, R) if q = p and a = ⊢,
(δi(q, a), R) if q ∈ Qi and a ∈ Σ,

(ri, L) if q ∈ Fi and a = ⊣,
(ri, L) if q = ri and a ∈ Σ,

(qi+1,0, R) if q = ri, a = ⊢ and 1 ≤ i < n,

(s,R) if q = rn, a = ⊢,
(s,R) if q = s, a ∈ Σ ∪ {⊣}.

It is known that the intersection problem, which is defined as follows, is PSPACE-
complete [Koz77]:

Given: DFAs A1, A2, . . . , An,
Decide: whether L (A1) ∩ L (A2) ∩ · · · ∩ L (An).

We have seen how to build, in polynomial time, a 2DFA B such that L (B) =
L (A1) ∩ L (A2) ∩ · · · ∩ L (An). Thus, testing emptiness for 2DFAs is “at least as
hard” as the intersection problem, i.e. it is PSPACE-hard. In fact, the emptiness
problem for 2DFAs is PSPACE-complete [GJ79, Hun73].

Solutions for Chapter 5

 Exercise 90. In phone dials, letters are mapped into digits as follows:

ABC 7→ 2 DEF 7→ 3 GHI 7→ 4 JKL 7→ 5
MNO 7→ 6 PQRS 7→ 7 TUV 7→ 8 WXYZ 7→ 9

This map can be used to assign a telephone number to a given word. For instance,
the number for AUTOMATON is 288662866.

Consider the problem of, given a telephone number (for simplicity, we assume
that it contains neither 1 nor 0), finding the set of English words that are mapped
into it. For instance, the set of words mapping to 233 contains at least ADD, BED,
and BEE. LetN be a given DFA over alphabet {A, . . . , Z} that recognizes the set of
all English words. Given a number n, explain how to construct an NFA recognizing
the set of all words mapped to n.

Solution: Let R be the set of all pairs (m,w) where m is a number, and w is a
word mapped to m, and let E be the set of English words. We are looking for an
NFA recognizing Post({n}, R) ∩ E.

LetAn be the obvious DFA over {2, . . . 9} recognizing the number n The relation
R is recognized by the transducer TR with one state q0, both initial and final, and
transitions

(q0, [2, A], q0), (q0, [2, B], q0), . . . , (q0, [9, Y], q0), (q0, [9, Z], q0).

Thus, the NFA we are looking for can be computed as InterNFA(Post(An, TR), N).

 Exercise 91. As we have seen, the application of the Post and Pre operations
to transducers requires to compute the padding closure in order to guarantee that
the resulting automaton accepts either all or none of the encodings of an object.
The padding closure has been defined for encodings where padding occurs on the
right—that is, w belongs to the padding closure of an NFA A iff w#k ∈ L (A) for
some k ∈ N. However, in some natural encodings, like themost-significant-bit-first
encoding of natural numbers, padding occurs on the left. Give an algorithm for
computing the padding closure of an NFA when padding occurs on the left (i.e.,
where we consider #kw).

416

SOLUTIONS FOR CHAPTER 5 417

Solution: Instead of enlarging the set of final states as done by PadClosure, we
symmetrically enlarge the set of initial states Q0 to the set

Q′0 = {q : q0
0n−−→ q for some q0 ∈ Q0, n ∈ N}.

This modification yields the following algorithm:

PadClosure′(A,#)
Input: NFA A = (Σ× Σ, Q, δ,Q0, F)
Output: new set Q′0 of initial states
1 W ← Q0; Q′0 ← ∅;
2 whileW ̸= ∅ do
3 pick q fromW

4 add q to Q′0
5 for all (q,#, q′) ∈ δ do
6 if q′ /∈ Q′0 then add q′ toW
7 return Q′0

For example, the NFA depicted below on the left recognizes the set of numbers
{1, 3} under MSBF encodings (# = 0). Its padding closure, which recognizes the
same set, is depicted on the right:

0

0

0 1 1

1

0

0

0 1 1

1

 Exercise 93. Let U = N be the universe of natural numbers, and consider
MSBF encodings. Give transducers for the sets of pairs (n,m) ∈ N2 such that

(a) m = n+ 1,

(b) m = ⌊n/2⌋,

(c) n ≤ 2m.

Solution:

(a) Two words wn and wn+1 are MSBF encodings of n and n + 1 of the same
length iff there is a (possibly empty) word w and some k ≥ 0 such that
wn = w01k and wn+1 = w10k. Thus, the transducer is as follows:

[
0
0

]
,

[
1
1

]
[
0
1

]
[
1
0

]

SOLUTIONS FOR CHAPTER 5 418

(b) The transducer has to recognize all pairs of words of the form [0kwb, 0k0w]
where w ∈ {0, 1}∗ and b ∈ {0, 1} since dividing by 2 shifts the bits to the
right.
The transducer is shown below. It reads [0, 0]s until it finds the first 1 of sn
(if any). From this moment on, it moves between the two states labeled by
0 and 1. The intuitive meaning of state 0 is “the last bit of n I have read
was a 0”, and similarly for state 1. The transitions are then given by the
requirement that the next bit of m must be equal to the last bit of n. So,
for instance, δ(1, [0, 1]) = 0 because the next bit of m must be a 1, and after
reading a 0 the last bit of n read by the transducer is a 0.

1 0

[
0
0

]
[
1
0

] [
0
1

][
1
1

]

[
1
0

]

[
0
0

]

(c) We first construct the two transducers T1 and T2 respectively below for rela-
tions {(n, k) : n ≤ k} and {(k,m) : k = 2m}:

p q

[
0
0

]
,

[
1
1

]
[
0
1

] Σ

r s

[
0
0

] [
1
0

]

[
0
1

]

[
1
1

]

Then, we compute the transducer T1 ◦ T2 below for relation {(n,m) : n ≤
2m}:

p, r p, s

q, sq, r

[
0
0

] [
1
1

]

[
0
1

]
,

[
1
1

][
0
0

]
,

[
1
0

]

[
0
0

] [
0
1

]

[
1
0

]

[
0
1

]

[
0
1

]
,

[
1
1

]

[
0
1

]
,

[
1
1

]

SOLUTIONS FOR CHAPTER 5 419

 Exercise 94. Let U be some universe of objects, and let us fix an encoding of
U over Σ∗. Prove or disprove: if a relationR ⊆ U×U is regular, then the following
language is regular:

LR = {wxwy : (wx, wy) encodes a pair (x, y) ∈ R}.

Solution: False. Let U = {a, b}∗, and consider the identity encoding, i.e., a
word w ∈ {a, b}∗ is encoded by itself and its paddings. The identity relation
R = {[w,w] : w ∈ {a, b}∗} is regular. Indeed, it is recognized by a transducer with
a single state q, both initial and final. However, we have LR = {ww : w ∈ {a, b}∗},
which is not regular.

 Exercise 96. We have defined transducers as NFAs whose transitions are
labeled by pairs of symbols (a, b) ∈ Σ × Σ. With this definition, transducers can
only accept pairs of words (a1 · · · an, b1 · · · bn) of the same length, which is not
suitable for many applications.

An ε-transducer is an NFA whose transitions are labeled by elements of (Σ ∪
{ε})× (Σ ∪ {ε}). An ε-transducer accepts a pair (w,w′) of words if it has a run

q0
(a1,b1)−−−−→ q1

(a2,b2)−−−−→ · · · (an,bn)−−−−−→ qn with ai, bi ∈ Σ ∪ {ε}

such that w = a1 · · · an and w′ = b1 · · · bn. Note that |w| ≤ n and |w′| ≤ n. The
relation accepted by the ε-transducer T is denoted by L (T). The following figure
depicts an ε-transducer over alphabet {a, b} that, intuitively, duplicates the letters
of a word, for example, on input aba, it outputs aabbaa.

(a, a)

(b, b)

(ε, a)

(ε, b)

Give an algorithm Postε(A, T) that, given an NFA A and an ε-transducer T , both
over a common alphabet Σ, returns an NFA recognizing the language

postTε
(A) = {w : ∃w′ ∈ L (A) such that (w′, w) ∈ L (T)} .

Hint: View ε as an additional letter.

SOLUTIONS FOR CHAPTER 5 420

Solution: Given an alphabet Σ, let Σε = Σ ∪ {ε}, where we consider ε as a
symbol, not as the representation of the empty word. Let Tε be the standard
transducer over Σε obtained from T by considering ε as another alphabet letter.
So, for instance, if T is the ε-transducer above, then Tε accepts, for instance, the
pair (aεbε, aabb). Further, let Aε be be NFA over Σε obtained from A by adding to
each state q of A a loop (q, ε, q). Clearly, we have

L (Aε) =
∪

a1···an∈L(A)

ε∗a1ε
∗ · · · ε∗anε∗

and therefore
postTε

(A) = projΣ(postTε
(Aε)).

This equation leads to the following algorithm: first we construct Aε; then we
construct the NFA Bε = Post(Aε, Tε), where Post is the algorithm defined in the
chapter; finally, we construct an NFA B recognizing the projection of L (Bε) onto
Σ. Since computing the projection is equivalent to considering ε as the empty
word, we can take B = NFAεtoNFA(Bε), where we consider Bε as an NFA-ε. Thus,
more compactly:

Postε(A, T) = NFAεtoNFA(Post(Aε, Tε)).

⋆ Exercise 97. In exercise 96, we have shown how to compute preimages
and postimages of relations described by ε-transducers. In this exercise, we show
that, unfortunately, and unlike standard transducers, ε-transducers are not closed
under intersection.

(a) Construct ε-transducers T1 and T2 recognizing the relations

R1 = {(anbm, c2n) : n,m ≥ 0} and R2 = {(anbm, c2m) : n,m ≥ 0}.

(b) Show that no ε-transducer recognizes R1 ∩R2.

Solution:

(a)

(a, c)

(b, ε)
(ε, c)

(b, ε)

(a, ε)

(b, c)

(ε, c)

(b, c)

SOLUTIONS FOR CHAPTER 5 421

(b) We have R1 ∩ R2 = {(anbn, c2n) : n ≥ 0}. For the sake of contradiction,
suppose there exists an ε-transducer T recognizing R1 ∩ R2. Let us replace
each transition of the form

q
(x,y)−−−−→ q′ by q x−→ q′, where x, y ∈ Σ ∪ {ε}.

We obtain an NFA recognizing the language {anbn : n ≥ 0}, which is not reg-
ular. Thus, we derive a contradiction, and hence no ε-transducer recognizes
R1 ∪R2.

 Exercise 98. Consider transducers whose transitions are labeled by ele-
ments of (Σ∪{ε})×Σ∗. Intuitively, at each transition, these transducers read one
letter or no letter, and write a string of arbitrary length. These transducers can be
used to perform operations on strings like, for instance, capitalizing all the words
in the string: if the transducer reads, say, “singing in the rain,” it writes “Singing
In The Rain.” Sketch ε-transducers for the following operations, each of which is
informally defined by means of two or three examples. In each example, when
the transducer reads the string on the left, it writes the string on the right.

Company\Code\index.html Company\Code
Company\Docs\Spec\specs.doc Company\Docs\Spec

International Business Machines IBM
Principles Of Programming Languages POPL

Oege De Moor Oege De Moor
Kathleen Fisher AT&T Labs Kathleen Fisher AT&T Labs

Eran Yahav Yahav, E.
Bill Gates Gates, B.

004989273452 +49 89 273452
(00)4989273452 +49 89 273452

273452 +49 89 273452

Solution: We give informal descriptions of the behaviour of the ε-transducers.

(a) Here, x ranges over all symbols and y over all symbols but the backslash:

(x, x)

(\, ε)

(y, ε)

(b) Here, X ranges over uppercase letters, and x over lowercase letters:

SOLUTIONS FOR CHAPTER 5 422

(X,X)

(x, ε)

(c) Here, x ranges over all symbols but the space symbol. In order to prevent
trailing spaces we remember seeing a space and output it before the next
letter:

(x, x)

(_ , ε)
(_ , ε)

(x, _x)

(d) We assume that the string is always of the form Firstname Lastname. Here,
x ranges over all letters:

· · · · · · · · · · · ·

(A, ε)

(Z, ε)

(x, ε)

(_ , _)

(x, x)

(ε, ,) (ε, _) (ε,A)
(ε, .)

(x, ε)

(_ , _)

(x, x)

(ε, ,) (ε, _) (ε,A)
(ε, .)

(e)
[(, ε] [0, ε] [0, ε]

[), ε]

[0, ε]
[0, ε] [4, +4] [9, 9_] [8, 8] [9, 9_]

[0, 0], [1, 1], . . . , [9, 9]

[1, +49�89_ 1], . . . , [9, +49�89_ 9]

 Exercise 100. Transducers can be used to capture the behavior of simple
programs. For example, consider this program P and its control-flow diagram:

SOLUTIONS FOR CHAPTER 5 423

bool x, y init 0
x←?

write x
while true do

read y until y = x ∧ y
if x = y then write y end
x←x− 1 or y←x+ y

if x ̸= y then write x end

1

2

3

4

5
6

78

9 10

x←?

write x

read y

y = x ∧ y

y ̸= x ∧ y

x ̸= y

x = y

write y

y←x+ yx←x− 1

x ̸= y

write x

x = y

Program P communicates with the environment through its two boolean vari-
ables, both initialized to 0. The instruction end finishes the execution of P . The
I/O-relation of P is the set of pairs (wI , wO) ∈ {0, 1}∗ × {0, 1}∗ such that there is
an execution of P during which P reads the sequence wI of values and writes the
sequence wO.

Let [i, x, y] denote the configuration of P in which P is at node i of the control-
flow diagram, and the values of its two boolean variables are x and y, respec-
tively. The initial configuration of P is [1, 0, 0]. By executing the first instruction,
P moves nondeterministically to one of the configurations [2, 0, 0] and [2, 1, 0]; no
input symbol is read and no output symbol is written. Similarly, by executing its
second instruction, the program P moves from [2, 1, 0] to [3, 1, 0] while reading
nothing and writing 1.

(a) Give an ε-transducer recognizing the I/O-relation of P .

(b) Can an overflow error occur? That is, can a configuration be reached in
which the value of x or y is not 0 or 1?

(c) Can node 10 of the control-flow graph be reached?

(d) What are the possible values of x upon termination, that is, upon reaching
end?

(e) Is there an execution during which P reads 101 and writes 01?

(f) Let I and O be regular sets of inputs and outputs, respectively. Think of O
as a set of dangerous outputs that we want to avoid. We wish to prove that
the inputs from I are safe, that is, when P is fed inputs from I, none of the
dangerous outputs can occur. Describe an algorithm that decides, given I
and O, whether there are i ∈ I and o ∈ O such that (i, o) belongs to the
I/O-relation of P .

SOLUTIONS FOR CHAPTER 5 424

Solution:

(a) The states of the transducer are the reachable configurations of P :

[1, 0, 0]

[2, 0, 0]

[3, 0, 0]

[4, 0, 0]

[4, 0, 1]

[5, 0, 0]

[3, 0, 1]

[6, 0, 0]

[7, 0, 0]

[2, 1, 0]

[3, 1, 0]

[4, 1, 0] [4, 1, 1]

[5, 1, 0] [5, 1, 1]

[8, 1, 0] [6, 1, 1]

[9, 0, 0] [7, 1, 1]

[3, 1, 1]

[9, 1, 1]

ε/ε ε/ε

ε/0

0/ε

1/ε

ε/ε

ε/ε

ε/0

ε/ε1/ε

0/ε

ε/1

0/ε 1/ε

ε/ε

ε/ε

ε/ε

ε/ε

ε/ε

ε/ε

ε/ε

ε/1

ε/ε

0/ε 1/ε

(b) No.

(c) No. The node is redundant. In fact, the last line of P can be removed without
changing the behaviour.

(d) 0 and 1, because the reachable final configurations are [7, 0, 0] and [7, 1, 1].

(e) Let T be transducer for P , and let AI and AO be NFAs recognizing I and O,
respectively. A possible algorithm for the task is

EmptyNFA(IntersNFA(Postε(AI , T), A0)).

Solutions for Chapter 6

 Exercise 102. Give an efficient algorithm that receives as input the minimal
DFA of a fixed-length language and returns the number of words it contains.

Solution: The algorithm recursively computes the number of words accepted by
each state q of the DFA. If q = q∅, then the number is 0, and if q = qε, then it is 1.
Otherwise, let Σ = {a1, . . . , an} be the alphabet of the DFA; the number of words
accepted by q is the sum of the number of words accepted by the ai-successor of
q. In pseudocode, we obtain:

number(q)
Input: state q
Output: number of words recognized from q

1 if G(q) is not empty then return G(q)
2 if q = q∅ then return 0

3 else if q = qε then return 1

4 else
5 G(q)← number(qa1) + · · ·+ number(qan)
6 return G(q)

 Exercise 103. The algorithm for fixed-length universality given in table 28
has a best-case runtime equal to the length of the input state q. Give an improved
algorithm that only needs O(|Σ|) time for inputs q such that L (q) is not fixed-size
universal.

Solution: Let q be the input to the algorithm, and consider the set of states
{qa : a ∈ Σ}. If the set contains two distinct states qa and qb, then, since every state
recognizes a different language, either qa or qb is not fixed-length universal, and
we can conclude that q is not fixed-length universal. So the algorithm computes
qa for every a ∈ Σ in time O(|Σ|). If at least two states are different, then the
algorithm returns false. If all states are equal to the same state, say q′, then the
algorithm call itself recursively with input q′. In pseudocode, we obtain:

425

SOLUTIONS FOR CHAPTER 6 426

univ′(q)
Input: state q
Output: true if L (q) is fixed-length universal,

false otherwise
1 if q = q∅ then return false
2 else if q = qε then return true
3 else
4 q′ ← qa1

5 for all i = 2, . . . ,m do
6 if qai ̸= q′ then return false
7 return univ’(q′)

 Exercise 106.

(a) Give an algorithm to compute L (p) · L (q) given states p and q of the fixed-
length master automaton.

(b) Give an algorithm to compute both the length and size of L (q) given a state
q of the fixed-length master automaton.

(c) The length and size of L (q) could be obtained in constant time if they were
simply stored in the fixed-length master automaton table. Give a new im-
plementation of make for this representation.

Solution:

(a) Let L and L′ be fixed-length languages. We have

L · L′ =

∅ if L = ∅,
L′ if L = {ε},∪
a∈Σ

a · La · L′ otherwise.

These identities give rise to the following algorithm:

concat(p, q)
Input: states p and q
Output: state r such that L (r) = L (p) · L (q)
1 if G(p, q) is not empty then return G(p, q)
2 if p = q∅ then return q∅
3 else if p = qε then return q
4 else
5 for all a ∈ Σ do
6 sa ← concat(pa, q)
7 G(p, q)← make(s)
8 return G(p, q)

SOLUTIONS FOR CHAPTER 6 427

(b) Let L be a fixed-length language. We have

length(L) =

∞ if L = ∅,
0 if L = {ε},
length(La) + 1 for any a ∈ Σ s.t. La ̸= ∅ otherwise.

and

|L| =

0 if L = ∅,
1 if L = {ε},∑
a∈Σ |La| otherwise.

These identities give rise to the following algorithm:

len-size(q)
Input: states q
Output: length and size of L (q)
1 if G(q) is not empty then return G(q)
2 if p = q∅ then return (∞, 0)
3 else if p = qε then return (0, 1)

4 else
5 k ←∞
6 n← 0

7 for all a ∈ Σ do
8 k′, n′ ← len-size(qa)
9 if k′ ̸=∞ then k ← k′ + 1

10 n← n+ n′

11 G(q)← (k, n)

12 return G(q)

(c) Let q be a state of the fixed-length master automaton. We denote the length
and the size of q respectively by len(q) and |q|. These values are encoded in
two new columns of the table. We set

len(q∅) = ∞, |q∅| = 0,

len(qε) = 0, |qε| = 1.

From the observations made in (b), we obtain the following algorithm:

make′(q)
Input: mapping s from Σ to the fixed-length master automaton states
Output: state q s.t. L (q)a = sa for each a ∈ Σ

1 if Table contains s then return associated state
2 r ← new state number
3 k ←∞
4 n← 0

5 for all a ∈ Σ do
6 if sa ̸= q∅ then k ← |sa|+ 1

7 n← n+ len(sa)
8 Table(r)← (s, k, n)

9 return r

SOLUTIONS FOR CHAPTER 6 428

 Exercise 107. Let k ∈ N>0. Let flip : {0, 1}k → {0, 1}k be the function that
inverts the bits of its input, for example, flip(010) = 101. Let val : {0, 1}k → N
be such that val(w) is the number represented by w with the “least significant bit
first” encoding.

(a) Describe the minimal transducer that accepts

Lk =
{
[x, y] ∈ ({0, 1} × {0, 1})k : val(y) = val(flip(x)) + 1 mod 2k

}
.

(b) Build the state r of the fixed-length master transducer for L3 and the state
q of the fixed-length master automaton for {010, 110}.

(c) Adapt the algorithm pre seen in the chapter to compute post(r, q).

Solution:

(a) Let [x, y] ∈ Lk. We flip the bits of x while adding 1. If x1 = 1, then ¬x = 0,
and so adding 1 to val(flip(x)) results in y1 = 1. Thus, for every 1 < i ≤ k,
we have yi = ¬xi. If x1 = 0, then ¬x1 = 1. Adding 1 yields y1 = 0 with
a carry. This carry is propagated as long as ¬xi = 1, and thus as long as
xi = 0. When some position j with xj = 1 is encountered, the carry is
“consumed”, and we flip the remaining bits of x. These observations give
rise to the following minimal transducer for Lk:

q0 q1 q2 qk−1

p1 p2 pk−1 pk

[
0
0

] [
0
0

]
[
0
0

]
,
[
1
1

]

[
0
1

]
,
[
1
0

] [
0
1

]
,
[
1
0

]
[
1
1

] [
1
1

]

[
0
0

]

[
0
1

]
,
[
1
0

]
[
1
1

]

(b) The minimal transducer accepting L3 is

6 4 2

5 3 rε

r∅[
0
0

] [
0
0

]
[
0
0

]
,
[
1
1

]

[
0
1

]
,
[
1
0

] [
0
1

]
,
[
1
0

]
[
1
1

] [
1
1

]

State 4 of the following fragment of the fixed-length master automaton ac-
cepts {010, 110}:

SOLUTIONS FOR CHAPTER 6 429

qε q∅

2 3

4

0, 1

0, 1

0
1

0

1

0, 1

(c) We can establish the following identities similar to those obtained for pre:

postR(L) =

∅ if R = ∅ or L = ∅,

{ε} if R = {[ε, ε]} and L = {ε},∪
a,b∈Σ

b · postR[a,b](La) otherwise.

To see that these identities hold, let b ∈ Σ and v ∈ Σk for some k ∈ N. We
have,

bv ∈ postR(L) ⇐⇒ ∃a ∈ Σ, u ∈ Σk s.t. au ∈ L and [au, bv] ∈ R

⇐⇒ ∃a ∈ Σ, u ∈ La s.t. [au, bv] ∈ R

⇐⇒ ∃a ∈ Σ, u ∈ La s.t. [u v] ∈ R[a,b]

⇐⇒ ∃a ∈ Σ s.t. v ∈ PostR[a,b](La)

⇐⇒ v ∈
∪
a∈Σ

PostR[a,b](La)

⇐⇒ bv ∈
∪
a∈Σ

b · PostR[a,b](La).

We obtain the following algorithm:

SOLUTIONS FOR CHAPTER 6 430

post(r, q)
Input: states r and q of the fixed-length master transducer and
automaton
Output: PostR(L (q)) where R = L (r)
1 if G(r, q) is not empty then return G(r, q)
2 else if r = r∅ or q = q∅ then return q∅
3 else if r = rε and q = qε then return qε
4 else
5 for all b ∈ Σ do
6 p← q∅
7 for all a ∈ Σ do
8 p← union(p, post(r[a,b], qa))
9 sb ← p

10 G(r, q)← make(s)
11 return G(r, q)

Note that the transducer forL3 has a “strong” deterministic property. Indeed,
for each state r and b ∈ {0, 1}, if r[a,b] ̸= r∅ then r[¬a,b] = r∅. Hence, for a
fixed b ∈ {0, 1}, at most one post(r[a,b], qa) can differ from q∅ at line 8 of the
algorithm. Thus, unions made on this transducer are trivial, and executing
post(6, 4) yields the following computation tree:

post(6, 4)

make(post(4, 3), post(5, 3))

make(post(2, q∅), post(3, 2)) make(post(3, 2), post(3, q∅))

make(post(rε, q∅), post(rε, qε))
q∅q∅

q∅ qε

G(3, 2)

5

6

5

7

8

Calling post(6, 4) adds the following rows to the fixed-length master automa-
ton table and returns 8:

Ident. 0-succ 1-succ

5 q∅ qε
6 q∅ 5
7 5 q∅
8 6 7

The new fixed-length master automaton fragment:

SOLUTIONS FOR CHAPTER 6 431

qε q∅

2 3

4

5

6

78Post(L3, {010, 110})

0, 1

0, 1

0
1

0

1

0, 1 0

1
0

1

1

0

0

1

 Exercise 109. Given X ⊆ {0, 1, . . . , 2k − 1}, where k ≥ 1, let AX be the
minimal DFA recognizing the “least-significant-bit-first” encodings of length k of
the elements of X.

(a) Let X + 1 = {x + 1 mod 2k : x ∈ X}. Give an algorithm that on input AX
produces AX+1.

(b) Let AX = (Q, {0, 1}, δ, q0, F). What is the set of numbers recognized by the
automaton A′ = (Q, {0, 1}, δ′, q0, F), where δ′(q, b) = δ(q, 1− b)?

Solution:

(a) The following recursive algorithm takes as input the initial state ofAX (from
the fixed-length master automaton), and returns the state for AX+1:

Add1(q)
Input: state q recognizing a set X of numbers
Output: state of the same length as q recognizing X + 1

1 if G(q) is not empty then return G(q)
2 if q = q∅ or q = qε then return q
3 else
4 r0 ← Add1(q1)
5 r1 ← q0

6 G(q)← make(r0, r1)
7 return G(q)

SOLUTIONS FOR CHAPTER 6 432

(b) Automaton A′ recognizes a word b1 · · · bk iff AX recognizes (1− b1) · · · (1−
bk). Thus, the set of numbers Y recognized by A′ is Y = {(2k − 1)− x : x ∈
X}.

 Exercise 110. Recall that weakly acyclic languages and DFAs have been
introduced in exercise 35. Recall that the relation ⪯ on the states of a weakly
acyclic DFA, defined by q ⪯ q′ iff δ(q, w) = q′ for some word w, is a partial order.
Show that:

(a) Every fixed-length language is weakly acyclic.

(b) If L is weakly acyclic, then Lw is also weakly acyclic for every w ∈ Σ∗.

Given weakly acyclic languages L and L′, let L ⪯L L′ denote that L = (L′)w for
some word w. Show that:

(c) ⪯L is a partial order on the set of all weakly acyclic languages.

(d) ⪯L has no infinite descending chains.

(e) The only two minimal languages w.r.t. ⪯L are ∅ and Σ∗.

Recall that, by exercise 57, the minimal DFA recognizing a given weakly acyclic
language is weakly acyclic. We define the weakly acyclic master automaton over
alphabet Σ as M = (QM ,Σ, δM , FM), where

• QM is the set of all weakly acyclic languages over Σ;

• δ : QM ×Σ→ QM is given by δ(L, a) = La for every q ∈ QM and a ∈ Σ; and

• L ∈ FM iff ε ∈ L.

Prove the following result, which generalizes the corresponding one for fixed-
length languages:

(f) For every weakly acyclic language L, the language recognized from the state
L of the weakly acyclic master automaton M is L.

Solution:

(a) Let L be a fixed-length language of length n. We prove that L is weakly
acyclic by induction on n. If n = 0, then L = ∅ or L = {ε}, which are
clearly weakly acyclic. If n > 0, then La has length n − 1 for every a ∈ Σ
and by induction hypothesis it is weakly acyclic. So there is a weakly acyclic
DFA Aa recognizing La. Let qa0 be the initial state of Aa, and let A be the
DFA obtained by putting the DFAs Aa side by side, adding a new initial state
q0, and adding transitions q0

a−→ qa0 for every a ∈ Σ. We have L (A) = L.
Further, since all of the Aa are weakly acyclic, so is A, and therefore L is
weakly acyclic.

SOLUTIONS FOR CHAPTER 6 433

(b) Let A = (Q,Σ, δ, q0, F) be a weakly acyclic DFA recognizing L, and let q be
the state such that δ(q0, w) = q. We have L (q) = Lw. Let Aq be the DFA
obtained by removing from A all states not reachable from q, and making
q the initial state. Clearly, we have L (Aq) = Lw. Since removing states
from a weakly acyclic DFA cannot destroy weak acyclicity, Aq is also weakly
acyclic.

(c) The relation ⪯L is clearly reflexive and transitive. We show that it is also
antisymmetric. Let L,L′ ⊆ Σ∗ be weakly acylic languages, and let w,w′ ∈
Σ∗ be words such that L′ = Lw and L = (L′)w

′
. We prove that L = L′.

Let A = (Q,Σ, δ, q0, F) be the minimal weakly acyclic DFA recognizing L.
Let q be the state such that δ(q0, w) = q. Since A is minimal, q0 and q are
the unique states of A such that L (q0) = L and L (q) = L′. So we have
δ(q, w) = q0, which implies q0 ⪯ q ⪯ q0. Since ⪯ is a partial order, q0 = q
follows, and so L = L′.

(d) This follows from (c) and the fact that a regular language has finitely many
residuals.

(e) By definition of ⪯L, a language L is minimal w.r.t. ⪯L iff L = La for every
a ∈ Σ. Thus, either L = ∅ or L = Σ∗.

(f) By (d) and (e), it suffices to show that the property holds for L = ∅ and
L = Σ∗, and that if La satisfies the property for every a ∈ Σ such that
La ̸= L, then L satisfies it too. For L = ∅, observe that L = La, and so every
transition leaving L is a self-loop. Further, L is not final. Thus, the language
accepted from L is ∅. The proof for L = Σ∗ is similar. Finally, assume that
the language recognized from every state La such that La ̸= L is La. Let EL
be defined as {ε} if ε ∈ L, and ∅ otherwise. The language recognized from
L is

EL ∪

 ∪
a∈Σ,La ̸=L

aLa

 ∪
 ∪
a∈Σ,La=L

aL

= EL ∪

 ∪
a∈Σ,La ̸=L

aLa

 ∪
 ∪
a∈Σ,La=L

aLa

= EL ∪

∪
a∈Σ

aLa

= L.

 Exercise 111. Recall that exercise 110 establishes that weakly acyclic lan-
guages can be represented by a weakly acyclic master automaton. A state q of the
weakly acyclic master automaton can be represented by a table as follows. A node
is a triple ⟨q, s, b⟩, where

• q is a state identifier;

SOLUTIONS FOR CHAPTER 6 434

• s = (α1, . . . , αm) is the successor tuple of the node, where for every 1 ≤ i ≤
m, the component αi is either a state identifier or the special symbol self;
and

• b ∈ {0, 1} indicates whether the state is accepting (b = 1) or not (b = 0).

For example, if Σ = {a, b} and q is an accepting state satisfying δ(q, a) = q′ and
δ(q, b) = q, then q is represented by the triple ⟨q, s, b⟩, where s = (q′, self) and
b = 1. The state identifiers of the states for the languages ∅ and Σ∗ are denoted
respectively by q∅ and qΣ∗ .

Given a table T that represents a fragment of the weakly acyclic master au-
tomaton, the procedure make(s, b) returns the state identifier of the unique state
of T having s as successor tuple and b as boolean flag, if such a state exists; other-
wise, it adds a new node ⟨q, s, b⟩ to T , where q is a fresh identifier, and it returns
q.

(a) Give an algorithm to compute L (q1) ∩ L (q2) given states q1 and q2 of the
weakly acyclic master automaton.

(b) Give an algorithm to compute L (q1) ∪ L (q2) given states q1 and q2 of the
weakly acyclic master automaton.

(c) Give an algorithm to compute L (q) given a state q of the weakly acyclic
master automaton.

Solution:

(a) The following properties lead to the recursive algorithm inter(q1, q2) shown
below:

• if L1 = ∅ or L2 = ∅, then L1 ∩ L2 = ∅;
• if L1 = Σ∗ and L2 = Σ∗, then L1 ∩ L2 = Σ∗;
• if L1, L2 /∈ {∅,Σ∗}, then L1∩L2 = (L1∩L2∩{ε})∪

∪
a∈Σ a ·(L1∩L2)

a.

inter(q1, q2)
Input: states q1, q2 of the weakly acyclic master automaton
Output: state recognizing L (q1) ∩ L (q2)
1 if G(q1, q2) is not empty then return G(q1, q2)
2 if q1 = q∅ or q2 = q∅ then return q∅
3 else if q1 = qΣ∗ and q2 = qΣ∗ then return qΣ∗

4 else /* q1, q2 /∈ {q∅, qΣ∗} */
5 for all i = 1, . . . ,m do
6 if qai1 = qai2 = self then ri ← self
7 else if qai1 = self then ri ← inter(q1, qai2)

8 else if qai2 = self then ri ← inter(qai1 , q2)
9 else ri ← inter(qai1 , q

ai
2)

10 b← qb1 ∧ qb2
11 G(q1, q2)← make(r1, . . . , rm, b)
12 return G(q1, q2)

SOLUTIONS FOR CHAPTER 6 435

(b) The following properties lead to the recursive algorithm union(q1, q2) shown
below:

• if L1 = ∅ and L2 = ∅, then L1 ∪ L2 = ∅;
• if L1 = Σ∗ or L2 = Σ∗, then L1 ∪ L2 = Σ∗;
• if L1, L2 /∈ {∅,Σ∗}, then L1 ∪L2 = ((L1 ∩ {ε})∪ (L2 ∩ {ε}))∪

∪
a∈Σ a ·

(L1 ∪ L2)
a.

union(q1, q2)
Input: states q1, q2 of the weakly acyclic master automaton
Output: state recognizing L (q1) ∪ L (q2)
1 if G(q1, q2) is not empty then return G(q1, q2)
2 if q1 = q∅ and q2 = q∅ then return q∅
3 else if q1 = qΣ∗ or q2 = qΣ∗ then return qΣ∗

4 else /* q1, q2 /∈ {q∅, qΣ∗} */
5 for all i = 1, . . . ,m do
6 if qai1 = qai2 = self then ri ← self
7 else if qai1 = self then ri ← union(q1, qai2)

8 else if qai2 = self then ri ← union(qai1 , q2)
9 else ri ← union(qai1 , q

ai
2)

10 b← qb1 ∨ qb2
11 G(q1, q2)← make(r1, . . . , rm, b)
12 return G(q1, q2)

(c) The following properties lead to the recursive algorithm comp(q) shown be-
low:

• if L = ∅, then L = Σ∗;
• if L = Σ∗, then L = ∅;
• if L /∈ {∅,Σ∗}, then L = (L ∩ {ε}) ∪

∪
a∈Σ a

(
L
)a.

comp(q)
Input: state q of the weakly acyclic master automaton
Output: state recognizing L (q)
1 if G(q) is not empty then return G(q)
2 if q = q∅ then return qΣ∗

3 if q = qΣ∗ then return q∅
4 else /* q /∈ {q∅, qΣ∗} */
5 for all i = 1, . . . ,m do
6 if qai = self then ri ← self
7 else ri ← comp(qai)
8 b← ¬qb
9 G(q)← make(r1, . . . , rm, b)
10 return G(q1, q2)

SOLUTIONS FOR CHAPTER 6 436

 Exercise 112. Recall that we can associate a language to a boolean formula
as done in exercise 108. Show that the following problem is NP-hard:

Given: a boolean formula φ.

Decide: whether the minimal DFA for L (φ) has more than one state.

Solution: We give a reduction from the NP-complete problem SAT. Recall that
this problem asks whether a given Boolean formula ψ is satisfiable. Let x1, . . . , xn
be the formulas that occur within ψ, and let y be a new variable. Let φ = ψ∧y. We
claim that ψ is satisfiable iff the minimal DFA for L (φ) has more than one state.
⇒) If ψ is satisfiable, then there exists w ∈ {0, 1}n such that ψ(w) = true.

Thus, w1 ∈ L (φ). Note that w0 /∈ L (φ) as φ requires y to be true. Consequently,
L (φ) is neither empty, nor universal, which means that its minimal DFA has more
than one state.

⇐) If the minimal DFA for φ has more than one state, then L (φ) ̸= ∅. This
means there exists w ∈ {0, 1}n such that φ(w, 1) = true. In particular, this implies
that ψ(w) = true.

Solutions for Chapter 7

 Exercise 113. Exhibit a family {Pn}n≥1 of sequential programs (like pro-
gram 1) satisfying the following conditions:

• Pn has O(n) boolean variables, O(n) lines, and exactly one initial configu-
ration; and

• Pn has at least 2n reachable configurations.

Solution: If nondeterminism is allowed, then we can simply define Pn as a pro-
gram that nondeterministically sets variables x1, . . . , xn to 0 or 1, and terminates:

1 for all 1 ≤ i ≤ n do
2 xi ← 0 or xi ← 1

3 end

If we require the program to be deterministic, then we can take Pn as a program
that repeatedly increases an n-bit counter, where xi contains the value of the i-th
least significant bit. For instance, if n = 3 then the program visits the sequence
of variable valuations 000, 001, 010, . . . , 110, 111. To increase a valuation, the pro-
gram goes over all bits with value 1, setting them to 0, and then sets the first bit
with value 0 (if any) to 1:

1 for all 0 ≤ i < n do xi ← 0

2 while true do
3 for all 0 ≤ i < n do
4 xi ← 1− xi
5 if xi = 1 then break
6 end

These two programs have a constant number of lines, but the iterator of the loop
is not a boolean variable. If we want to strictly adhere to the specification of the

437

SOLUTIONS FOR CHAPTER 7 438

exercise (only boolean variables), then we can just replace the loop by a chain of
if-then-else instructions.

 Exercise 114. When applied to program 1, algorithm SysAut outputs the
system automaton shown in the middle of figure 7.1. Give an algorithm SysAut′
that outputs the automaton depicted at the bottom.

Solution: First we modify line 14 of SysAut so that it adds transition

[q1, . . . , qn]
[q1,...,qn]−−−−−−→[q′1, . . . , q

′
n] rather than [q1, . . . , qn]

[q′1,...,q
′
n]−−−−−−→[q′1, . . . , q

′
n].

We must further drop the initial state i. However, every reachable configuration
c without any successor must now have an outgoing transition, labeled with c,
leading to a final state f . We introduce a flag no_successor to determine if a con-
figuration has some successor or not. The resulting algorithm is depicted below.
The flag is set to false right after adding the first successor at line 15. If the con-
figuration has no successors, then we add the new transition at line 17:

SysAut′(A1, . . . , An)
Input: a network of automata ⟨A1, . . . An⟩, where

A1 = (Q1,Σ1, δ1, Q01, Q1), . . . , An = (Qn,Σn, δn, Q0n, Qn)
Output: a system automaton S = (Q,Σ, δ,Q0, F)

1 Q, δ, F ← ∅
2 Q0 ← Q01 × · · · ×Q0n

3 W ← Q0

4 whileW ̸= ∅ do
5 pick [q1, . . . , qn] fromW

6 add [q1, . . . , qn] to Q
7 add [q1, . . . , qn] to F
8 no_successors← true
9 for all a ∈ Σ1 ∪ . . . ∪ Σn do

10 for all i ∈ [1..n] do
11 if a ∈ Σi then Q′i ← δi(qi, a) else Q′i = {qi}
12 for all [q′1, . . . , q′n] ∈ Q′1 × . . .×Q′n do
13 if [q′1, . . . , q′n] /∈ Q then add [q′1, . . . , q

′
n] toW

14 add ([q1, . . . , qn], [q1, . . . , qn], [q
′
1, . . . , q

′
n]) to δ

15 no_successors← false
16 if no_successors = true then
17 add f to Q; add f to F ; add ([q1, . . . , qn], [q1, . . . , qn], f) to δ
18 return (Q,Σ, δ,Q0, F)

⋆ Exercise 117. Consider two processes (process 0 and process 1) being
executed through the following generic mutual exclusion algorithm:

SOLUTIONS FOR CHAPTER 7 439

1 while true do
2 enter(process_id)
3 critical section
4 leave(process_id)
5 for arbitrarily many iterations do
6 noncritical section
7 end

(a) Consider the following implementations of enter and leave:

1 x← 0

2 proc enter(i)
3 while x = 1− i do
4 pass
5 proc leave(i)
6 x← 1− i

(i) Design a network of automata capturing the executions of the two pro-
cesses.

(ii) Build the asynchronous product of the network.
(iii) Show that both processes cannot reach their critical sections at the same

time.
(iv) If a process wants to enter its critical section, is it always the case that

it can eventually enter it? Hint: Reason in terms of infinite executions.

(b) Consider the following alternative implementations of enter and leave:

1 x0 ← false
2 x1 ← false
3 proc enter(i)
4 xi ← true
5 while x1−i do
6 pass
7 proc leave(i)
8 xi ← false

(i) Design a network of automata capturing the executions of the two pro-
cesses.

(ii) Say whether a deadlock can occur, that is, can both processes get stuck
trying to enter their critical sections?

Solution:

(a)

(i)

SOLUTIONS FOR CHAPTER 7 440

0 1

x = 0

x← 0

x = 1

x← 1

x← 1

x← 0

e0 c0 ℓ0 nc0
x = 0

x = 1

c0 x← 1

x← 1

nc0

nc0

e1 c1 ℓ1 nc1
x = 1

x = 0

c1 x← 0

x← 0

nc1

nc1

Note that the above network forces the processes to read the contents of
x simultaneously. To avoid this, we can add new disjoint actions x = 0′

and x = 1′ as follows:

0 1

x = 0, x = 0′

x← 0

x = 1, x = 1′

x← 1

x← 1

x← 0

e0 c0 ℓ0 nc0
x = 0

x = 1

c0 x← 1

x← 1

nc0

nc0

e1 c1 ℓ1 nc1
x = 1′

x = 0′

c1 x← 0

x← 0

nc1

nc1

(ii)

SOLUTIONS FOR CHAPTER 7 441

0, e0, e1 0, c0, e1 0, ℓ0, e1 1, nc0, e1

1, e0, e11, e0, c11, e0, ℓ10, e0, nc1

x = 0 c0 x← 1

x← 1

nc0

nc0

x = 1c1x← 0

nc1

nc1

x← 0

For the second solution where asynchronous reads are allowed, we ob-
tain the following automaton:

0, e0, e1 0, c0, e1 0, ℓ0, e1 1, nc0, e1

1, e0, e11, e0, c11, e0, ℓ10, e0, nc1

1, nc0, c11, nc0, ℓ10, nc0, nc10, nc0, e1

0, c0, nc1 0, ℓ0, nc1 1, nc0, nc1 1, e0, nc1

x = 0 c0 x← 1

x← 1

nc0

nc0

x = 1′c1x← 0

nc1

nc1

x← 0

x = 1′

c1

nc0

nc0

x← 0

x← 0

nc0

nc0nc0, nc1

nc0

nc1

nc0, x = 0′

nc0

x = 0

nc1

nc1

c0

nc1

nc1

x← 1

x← 1

nc0, nc1

nc0

nc1

nc1

nc1, x = 1

x = 0′ x = 0′ x = 0′

x = 1x = 1x = 1

(iii) Both processes can reach their critical section at the same time iff the
asynchronous product contains a state of the form (x, c0, c1). Since it
contains none, this behaviour cannot occur. It also cannot occur in our
second modeling.

SOLUTIONS FOR CHAPTER 7 442

(iv) No. Consider the following infinite run:

(0, e0, e1)
x=0−−→ (0, c0, e1)

c0−→ (0, ℓ0, e1)
x←1−−−→ (1, nc0, e1)

nc0−−→ (1, nc0, e1)
nc0−−→ · · ·

illustrated below:

0, e0, e1 0, c0, e1 0, ℓ0, e1 1, nc0, e1

1, e0, e11, e0, c11, e0, ℓ10, e0, nc1

x = 0 c0 x← 1

x← 1

nc0

nc0

x = 1c1x← 0

nc1

nc1

x← 0

The second process remains in e1 throughout this infinite run, so it
never enters its critical section. Since we have restricted x to be read at
the same time, a process can stay in its non critical section as long as it
wants while the other one cannot do anything.
In our secondmodeling, this infinite run still occurs as illustrated below.
However, here the second process is not stuck since it could take transi-
tion (1, nc0, e1)

x=1′−−−→ (1, nc0, c1) to reach its critical section. Therefore,
the colored infinite run only occurs if the process scheduler can let a
process i run forever even though process 1− i could make progress.

SOLUTIONS FOR CHAPTER 7 443

0, e0, e1 0, c0, e1 0, ℓ0, e1 1, nc0, e1

1, e0, e11, e0, c11, e0, ℓ10, e0, nc1

1, nc0, c11, nc0, ℓ10, nc0, nc10, nc0, e1

0, c0, nc1 0, ℓ0, nc1 1, nc0, nc1 1, e0, nc1

x = 0 c0 x← 1

x← 1

nc0

nc0

x = 1′c1x← 0

nc1

nc1

x← 0

x = 1′

c1

nc0

nc0

x← 0

x← 0

nc0

nc0nc0, nc1

nc0

nc1

nc0, x = 0′

nc0

x = 0

nc1

nc1

c0

nc1

nc1

x← 1

x← 1

nc0, nc1

nc0

nc1

nc1

nc1, x = 1

x = 0′ x = 0′ x = 0′

x = 1x = 1x = 1

(b) (i)

SOLUTIONS FOR CHAPTER 7 444

f t

x0 = 0

x0 ← 0

x0 = 1

x0 ← 1

x0 ← 1

x0 ← 0

f t

x1 = 0

x1 ← 0

x1 = 1

x1 ← 1

x1 ← 1

x1 ← 0

e0 e′0 c0 ℓ0 nc0
x0 ← t

x1 = t

x1 = f c0 x0 ← f

x0 ← f

nc0

nc0

e1 e′1 c1 ℓ1 nc1
x1 ← t

x0 = t

x0 = f c1 x1 ← f

x1 ← f

nc1

nc1

(ii) Yes, consider this fragment of the asynchronous product of the network:

f, f, e0, e1 t, f, e′0, e1 t, t, e′0, e
′
1

x0 ← t x1 ← t

x0 = t

x1 = t

When (t, t, e′0, e
′
1) is reached, both processes are still trying to enter their

critical section, and it is impossible to move to a new state.

 Exercise 118. Consider a circular railway divided into eight tracks: 0 →
1 → . . . → 7 → 0. Three trains, modeled by three automata T1, T2, and T3,
circulate on the railway. Each automaton Ti is defined as follows:

• states: {qi,0, . . . , qi,7};

• alphabet: {enter[i, j] : 0 ≤ j ≤ 7}, where enter[i, j]models that train i enters
track j;

• transition relation: {(qi,j , enter[i, j⊕1], qi,j⊕1) : 0 ≤ j ≤ 7}, where⊕ denotes
addition mod 8;

• initial state: qi,2i (i.e., initially the trains occupy tracks 2, 4, and 6).

SOLUTIONS FOR CHAPTER 7 445

Describe automata C0, . . . , C7, called local controllers, that ensure that two
trains can never be on the same track or adjacent tracks, that is, there must al-
ways be at least one empty track between two trains. Each controller Cj can only
have knowledge of the state of tracks j⊖1, j, and j⊕1; there must be no deadlocks;
and every train must eventually visit every track. More formally, the network of
automata A = ⟨C0, . . . , C7, T1, T2, T3⟩ must satisfy the following specification:

(a) Cj only knows the state of local tracks: Cj has alphabet {enter[i, j ⊖ 1],
enter[i, j], enter[i, j ⊕ 1] : 1 ≤ i ≤ 3};

(b) no deadlock and each train eventually visits every segment:

L (A) |Σi= (enter[i, 2i] enter[i, 2i⊕ 1] · · · enter[i, 2i⊕ 7])∗

for each i ∈ {1, 2, 3}; and

(c) no two trains on the same or adjacent tracks: for every word w ∈ L (A), it
is the case that w = u enter[i, j] enter[i′, j′] v and i′ ̸= i implies |j − j′| /∈
{0, 1, 7}.

Solution: Let us write x ̸=? y as a shorthand for ¬(x = y ∧ x ̸= ?), i.e. x ̸= y
or x = ? = y. We define the states of Cj as triples assigning a track number from
{j⊖1, j, j⊕1, ?} to each train, where ? stands for an unknown track number w.r.t.
the knowledge of the local controller:

Qj = {x ∈ {j ⊖ 1, j, j ⊕ 1, ?}3 : x1 ̸=? x2, x1 ̸=? x3, x2 ̸=? x3,

{x1, x2, x3} \ {?} ∈ {∅, {j ⊖ 1}, {j}, {j ⊕ 1}, {j ⊖ 1, j ⊕ 1}}.

The constraints ensure that no two trains are either on the same track or on
adjacent tracks w.r.t. {j ⊖ 1, j, j ⊕ 1}. The sole initial state of Cj is defined as
(fj(1), fj(2), fj(3)) where

fj(i) =

{
2i if 2i ∈ {j ⊖ 1, j, j ⊕ 1},
? otherwise.

The transition relation of Cj is defined as δ(x, enter[i, k]) = y where yi = k and
yℓ = xℓ for ℓ ̸= i. Note that an invalid move, e.g. train 1 moving to track j while
train 2 is on track j ⊕ 1, leads to an implicit trap state as no such state belongs to
Qj .

The definition of Cj takes care of (a) and (c). Item (b) follows by definition of
T1, T2 and T3.

Solutions for Chapter 8

 Exercise 119. Give formulations in plain English of the languages described
by the following formulas of FO({a, b}), and give a corresponding regular expres-
sion:

(a) ∃x first(x)

(b) ∀x false

(c) [¬∃x∃y (x < y ∧ Qa(x) ∧ Qb(y))] ∧ [∀x (Qb(x) → ∃y x < y ∧ Qa(y))] ∧
[∃x ¬∃y x < y]

Solution:

(a) All nonempty words: (a+ b)(a+ b)∗.

(b) The empty word: ε.

(c) The first conjunct expresses that no a precedes an occurrence of b. The
corresponding regular expression is b∗a∗. The second conjunct states that
every b is followed (immediately or not) by an a; this excludes the words of
b+. Finally, the third conjunct expresses that there is a last letter (which, by
the second conjunct, must be an a). So, the overall expression is b∗a+.

 Exercise 120. Let Σ = {a, b}.

(a) Give a formula φn(x, y) from FO(Σ), of size O(n), that holds iff y = x+ 2n.
Note that the abbreviation y = x+k of page 186 has length O(k) and hence
cannot be directly used.

(b) Give a sentence from FO(Σ), of size O(n), for the language Ln = {ww : w ∈
Σ∗ and |w| = 2n}.

(c) Show that the minimal DFA accepting Ln has at least 22
n

states.
Hint: Consider residuals.

446

SOLUTIONS FOR CHAPTER 8 447

Solution:

(a) To simplify the notation, let us write “y = x + 2n” for “φn(x, y).” We can
define y = x+ 2n inductively as follows:

(y = x+ 2n) := ∃t
(
t = x+ 2n−1 ∧ y = t+ 2n−1

)
.

However, since the formula for n is roughly twice as long as the formula for
n − 1, this yields a formula of exponential size. It can be made linear by
rewriting it in the following way:

(y = x+ 2n)

= ∃t ∀x′ ∀y′
(
(x′ = x ∧ y′ = t)→ y′ = x′ + 2n−1

)
∧(

(x′ = t ∧ y′ = y)→ y′ = x′ + 2n−1
)

= ∃t ∀x′ ∀y′
(
¬(x′ = x ∧ y′ = t) ∨ y′ = x′ + 2n−1

)
∧(

¬(x′ = t ∧ y′ = y) ∨ y′ = x′ + 2n−1
)

= ∃t ∀x′ ∀y′ (¬(x′ = x ∧ y′ = t) ∧ ¬(x′ = t ∧ y′ = y)) ∨ y′ = x′ + 2n−1

= ∃t ∀x′ ∀y′ ((x′ = x ∧ y′ = t) ∨ (x′ = t ∧ y′ = y))→ y′ = x′ + 2n−1.

(b)

word has length 2n + 2n︷ ︸︸ ︷
(∃x, y, y′, z first(x) ∧ y = x+ 2n ∧ y′ = y + 1 ∧ z = y′ + 2n ∧ last(z))

∧

∀x ∀y ∧
σ∈{a,b}

(Qσ(x) ∧ y = x+ 2n)→ Qσ(y)

︸ ︷︷ ︸

word is of the form ww

.

(c) Let u, v ∈ {a, b}∗ be distinct words such that |u| = |v| = 2n. We have uu ∈ Ln
and vu ̸∈ Ln. Thus, all words of length 2n belong to distinct residuals. There
are 22

n

such words, hence Ln has at least 22
n

residuals.

⋆ Exercise 121. The nesting depth d(φ) of a formula φ of FO({a}) is defined
inductively as follows:

• d(Qa(x)) = d(x < y) = 0,

• d(¬ψ) = d(ψ),

• d(φ1 ∨ φ2) = max{d(φ1), d(φ2)}, and

• d(∃x ψ) = 1 + d(ψ).

Prove that every formula φ from FO({a}) of nesting depth n is equivalent to a
formula f of QF having the same free variables as φ, and such that every constant
k appearing in f satisfies k ≤ 2n. Hint: Modify suitably the proof of theorem 8.17.

SOLUTIONS FOR CHAPTER 8 448

Solution: We prove the claim by induction on the structure of formula φ. If it is
of the form Qa(x), then the claim trivially holds as Qa(x) is a tautology over {a},
and no constant is involved. If φ(x, y) = x < y, then d(φ) = 0 and φ ≡ x < y + 0.
If φ = ¬ψ, then, by induction hypothesis, ψ to a formula f of QF with constants
of at most 2d, where d is the depth of ψ, and hence of φ. By De Morgan’s rule, we
can remove the negation, e.g. ¬(x < k) becomes x ≥ k. If φ = φ1 ∨ φ2, then the
claim follows immediately by induction hypothesis.

Let us now consider the case where φ = ∃x ψ. Let d and d+ 1 be the nesting
depth of ψ and φ respectively. By induction hypothesis, ψ is equivalent to a formula
f of QF whose constants are at most 2d, and we can further assume that f is in
disjunctive normal form, say f = f1∨ . . .∨fn. Thus, φ ≡ ∃xf1∨∃xf2∨ . . .∨∃xfn,
and so it suffices to find a formula gi of QF equivalent to ∃xfi, and whose constants
are of size at most 2d+1. The formula gi is a conjunction defined as follows. All
conjuncts of fi not containing x are also conjuncts of gi; for every conjunct of fi of
the form x ≥ k or x ≥ y+ k, the formula gi contains a conjunct last ≥ k; for every
two conjuncts of fi containing x, the formula gi contains a conjunct obtained
by “quantifying x away.” We only explain this by means of an example: if the
conjuncts are x ≥ k1 and y ≥ x+k2, then gi has the conjunct y ≥ k1+k2. It is easy
to see that gi ≡ ∃x fi. Moreover, since the constants in the new conjuncts are the
sum of the two old constants, the new constants are bounded by 2 ·2d = 2d+1.

 Exercise 124. Give a formula Odd_card(X) from MSO(Σ) expressing that
the set of positions X has odd cardinality. Hint: Follow the pattern of Even(X).

Solution: We first give formulas First(x,X) and Last(x,X) expressing that x is
the first andlast position among those of X. We also give a formula Next(x, y,X)
expressing that y is the successor of x in X. It is then easy to give a formula
Odd(Y,X) expressing that Y is the set of odd positions of X. More precisely,
Y contains the first position among those of X, the third, the fifth, etc. Finally,
formula Odd_card(X) expresses that the last position of X belongs to the set of
odd positions of X.

First(x,X) := (x ∈ X) ∧ ∀y (y < x)→ (y /∈ X),

Last(x,X) := (x ∈ X) ∧ ∀y (y > x)→ (y /∈ X),

Next(x, y,X) := (x ∈ X) ∧ (y ∈ X) ∧ (x < y) ∧
¬∃z (x < z) ∧ (z < y) ∧ (z ∈ X),

Odd(Y,X) := ∀x (x ∈ Y ↔
(
First(x,X) ∨
∃z ∃u (z ∈ Y) ∧ Next(z, u,X) ∧ Next(u, x,X)

)
,

Odd_card(X) := ∃Y
(
Odd(Y,X) ∧ ∀x Last(x,X)→ (x ∈ Y)

)
.

 Exercise 125. Give formulas of MSO({a, b}) that define the following lan-
guages:

(a) aa∗b∗,

(b) the set of words with an odd number of occurrences of a, and

SOLUTIONS FOR CHAPTER 8 449

(c) the set of words such that every two bs with no other b in between are sep-
arated by a block of as of odd length.

Solution: We use the macros defined in the chapter and the solution of Exer-
cise 124:

(a) ∃x Qa(x) ∧ [∀x∀y (Qa(x) ∧Qb(y))→ (x < y)],

(b) ∃X [∀x (x ∈ X)↔ Qa(x)] ∧ Odd_card(X),

(c) ∀X [Block(X) ∧ ∀x Qb(x)↔ (First(x,X) ∨ Last(x,X))]→ Odd_card(X).

 Exercise 126. Given a formula φ fromMSO(Σ) and a second-order variable
X not occurring in φ, show how to construct a formula φX withX as an additional
free variable expressing “the projection of the word onto the positions ofX satisfies
φ.” Formally, φX must satisfy the following property: for every interpretation V
of φX , we have (w,V) |= φX iff (w|V(X),V) |= φ, where w|V(X) denotes the result
of deleting from w the letters at all positions that do not belong to V(X).

Solution: We first define two macros:

∃x ∈ X ψ := ∃x (x ∈ X ∧ ψ),
∃Y ⊆ X ψ := ∃Y (∀x (x ∈ Y)→ (x ∈ X ∧ ψ)).

Now we define φX inductively as follows:

• If φ is of the form Qa(x), x < y, x ∈ X, ¬ψ or φ1 ∨ φ2, then φX = φ;

• If φ = ∃x ψ, then φX = ∃x ∈ X ψX ;

• If φ = ∃Y ψ, then φX = ∃Y ⊆ X ψX .

 Exercise 128. Consider the logic PureMSO(Σ) with syntax

φ ::= X ⊆ Qa | X < Y | X ⊆ Y | ¬φ | φ ∨ φ | ∃X φ.

Note that formulas of PureMSO(Σ) do not contain first-order variables. The satis-
faction relation of PureMSO(Σ) is given by

(w,V) |= X ⊆ Qa iff w[p] = a for every p ∈ V(X),
(w,V) |= X < Y iff p < p′ for every p ∈ V(X), p′ ∈ V(Y),
(w,V) |= X ⊆ Y iff V(X) ⊆ V(Y),

with the rest as for MSO(Σ).
Prove that MSO(Σ) and PureMSO(Σ) have the same expressive power for sen-

tences—that is, show that for every sentence ϕ of MSO(Σ), there is an equivalent
sentence ψ of PureMSO(Σ) and vice versa.

SOLUTIONS FOR CHAPTER 8 450

Solution: ⇐) Let ψ be a sentence of PureMSO(Σ). Let ϕ be the sentence of
MSO(Σ) obtained by replacing every subformula of ψ of the form

X ⊆ Y by ∀x (x ∈ X → x ∈ Y),
X ⊆ Qa by ∀x (x ∈ X → Qa(x)),
X < Y by ∀x∀y (x ∈ X ∧ y ∈ Y)→ (x < y).

Clearly, ϕ and ψ are equivalent.
⇒) Let Sing(X) := ∃x ∈ X ∀y ∈ X (x = y) express that X is a singleton. Let

ϕ be a sentence of MSO(Σ). Assume without loss of generality that for every first-
order variable x, the second-order variableX does not appear in ϕ (otherwise, re-
name second-order variables appropriately). Let ψ be the sentence of PureMSO(Σ)
obtained by replacing every subformula of ϕ of the form

Qa(x) by X ⊆ Qa,
x < y by X < Y ,
x ∈ Y by X ⊆ Y ,
∃x ψ′ by ∃X (Sing(X) ∧ ψ′[x/X]),

where ψ′[x/X] is the result of substituting X for x in ψ′.

Clearly, ϕ and ψ are equivalent.

 Exercise 129. Recall the syntax of MSO(Σ):

φ := Qa(x) | x < y | x ∈ X | ¬φ | φ ∨ φ | ∃x φ | ∃X φ.

We have introduced y = x+1 (“y is the successor position of x”) as an abbreviation:

(y = x+ 1) := (x < y) ∧ ¬∃z (x < z ∧ z < y).

Consider now the variant MSO′(Σ) in which, instead of an abbreviation, y = x+1
is part of the syntax and replaces x < y. In other words, the syntax of MSO′(Σ) is

φ := Qa(x) | y = x+ 1 | x ∈ X | ¬φ | φ ∨ φ | ∃x φ | ∃X φ.

Prove that MSO′(Σ) has the same expressive power as MSO(Σ).

Solution: It suffices to give a formula of MSO′(Σ) with the same meaning as
x < y. Observe that x < y holds iff there is a set Y of positions containing y and
satisfying the following property: every z ∈ Y is either the successor of x, or the
successor of another element of Y . Formally:

(x < y) := ∃Y [y ∈ Y] ∧ [(∀z ∈ Y ((z = x+ 1) ∨ ∃u ∈ Y (z = u+ 1))].

 Exercise 131. Consider a formula φ(X) of MSO(Σ) that does not contain
any occurrence of predicates of the form Qa(x). Given two interpretations that
assign the same set of positions to X, we have that either both interpretations
satisfy φ(X), or none of them does. Thus, we can speak of the sets of natural
numbers satisfying φ(X).

This observation can be used to automatically prove some (very) simple prop-
erties of the natural numbers. Consider, for instance, the following “conjecture”:

SOLUTIONS FOR CHAPTER 8 451

every finite set of natural numbers has a minimal element.3 The conjecture holds
iff the formula

Has_min(X) := ∃x ∈ X ∀y ∈ X (x ≤ y)

is satisfied by every interpretation in which X is nonempty. Construct an automa-
ton for Has_min(X), and check that it recognizes all nonempty sets.

Solution: After replacing abbreviations we obtain the equivalent formula

∃x [x ∈ X ∧ (¬∃y (y ∈ X ∧ y < x))].

The DFA for formula ¬∃y (y ∈ X ∧ y < x), where the encoding of x is at the top,
and the encoding for X is at the bottom, is as follows:

[
0
0

]
[
1
0

]
,

[
1
1

] [
0
0

]
, . . . ,

[
1
1

]

In words, this DFA checks that the 1 marking position x comes before or at the
same time as the ones encoding the elements ofX. Intersecting this DFA with one
for formula x ∈ X yields [

0
0

]
[
1
1

] [
0
0

]
, . . . ,

[
1
1

]

After projection onto X (second row), we get a DFA for Has_min(X):

0

1
0, 1

In words, this DFA recognizes all words with at least one 1, which corresponds to
nonempty sets.

3Of course, it also holds for all infinite set, but we cannot prove it using MSO over finite words.

Solutions for Chapter 9

 Exercise 133. Express the following expressions in Presburger arithmetic:

(a) x = 0 and y = 1 (if 0 and 1 were not part of the syntax),

(b) z = max(x, y) and z = min(x, y).

Solution:

(a) x = x+ x and (x ≤ y) ∧ ¬[∃z ¬(z ≤ x) ∧ ¬(y ≤ z)],

(b) [(y ≤ x)→ (z = x)) ∧ ((x ≤ y)→ (z = y)] and [(y ≤ x)→ (z = y)) ∧ ((x ≤
y)→ (z = x)].

 Exercise 134. How can one determine algorithmically whether two formu-
las from Presburger arithmetic have the same solutions?

Solution: Given two formulas φ1 and φ2 over the same free variables, we can
construct automata A1 and A2 respectively for φ1 and φ2. It then suffices to check
whether L (A1) = L (A2), which can be done e.g. by testing L (A1) ∩ L (A2) = ∅
and L (A1) ∩A2 = ∅ using the pairing of A1 and A2.

 Exercise 136. Construct an automaton for the Presburger formula ∃y (x =
3y) using the algorithms of the chapter.

Solution: Let us rewrite the formula as ∃y (x− 3y = 0). We first use algorithm
EqtoDFA to obtain an automaton for the expression x− 3y = 0:

Iter. Current automaton W

0
0

{0}

452

SOLUTIONS FOR CHAPTER 9 453

1
0 1

[
0
0

] [
1
1

]
{1}

2 0 1 2

[
0
0

] [
1
1

]

[
1
0

]

[
0
1

]
{2}

3 0 1 2

[
0
0

] [
1
1

]

[
1
0

]

[
1
1

][
0
1

]

[
0
0

] ∅

It remains to project the automaton on x, i.e. on the first component of the letters.
We obtain:

0 1 2

0

1

1

1

0

0

⋆ Exercise 137. Algorithm AFtoDFA yields a DFA that recognizes solutions
of a linear inequation encoded using the LSBF encoding. We may also use the
most-significant-bit-first encoding, for example,

MSBF
([

2
3

])
=

[
0
0

]∗ [
1
1

] [
0
1

]
.

(a) Construct a DFA for 2x − y ≤ 2, w.r.t. MSBF encodings, by considering the
reversal of the DFA given in figure 9.1 for LSBF encodings.

(b) Rename the states of the DFA obtained in (a) by their minimal state number,
and explicitly introduce a trap state named 3. Compare values 2x− y and q
for tuples [x, y] that lead to a state q. What do you observe?

SOLUTIONS FOR CHAPTER 9 454

(c) Adapt algorithm AFtoDFA to the MSBF encoding.
Hint: Design an infinite automaton obtained from a · c = q and make it finite
based on (b).

Solution:

(a) Let us consider the DFA from Figure 9.1. By reversing its transitions, making
its accepting states initial, and making its initial states accepting, we obtain
this NFA:

2

1

0

−1 −2

[
0
0

]
,

[
0
1

]

[
0
0

]
,

[
1
1

]
[
1
0

]
,

[
1
1

]
[
0
1

]

[
0
1

]
[
0
0

]
,

[
0
1

] [
0
0

]
,

[
1
1

][
1
0

]

[
1
0

]
,

[
1
1

]

[
0
0

]
,

[
0
1

]
[
1
0

]
,

[
1
1

]
[
1
0

]

By determinizing the above NFA, we obtain this DFA:

0, 1, 2 −1, 0, 1, 2 −2,−1, 0, 1, 2

2 1, 2

[
0
0

]

[
1
0

] [
1
1

]

[
0
1

]
[
1
1

]
[
0
0

]
,

[
0
1

]
[
1
0

]

[
0
0

]
,

[
0
1

]
,

[
1
0

]
,

[
1
1

]

[
0
1

][
0
0

]

(b) By renaming the states of the DFA obtained in (a) by their minimal number,
and by adding a trap state 3, we obtain this DFA:

0−1−2 1 2 3

[
0
0

]

[
1
0

]

[
1
1

]
[
0
1

]

[
1
1

]
[
0
0

]
,

[
0
1

] [
1
0

]

Σ

[
0
1

]
[
0
0

]
Σ

Σ

SOLUTIONS FOR CHAPTER 9 455

By inspection, we observe that the tuples [x, y] that lead to state q ∈ {−1, 0, 1,
2} are those that satisfy 2x− y = q. For example, the word [001001, 010011]
leads to state−1, and it encodes [9, 19]which yields 2·9−19 = 18−19 = −1.
Furthermore, the tuples that lead to states q = −2 and q = 3 are those that
respectively satisfy 2x− y ≤ −2 and 2x− y ≥ 3.

(c) We consider the language recognized by some state q of an automaton A to
be the language recognized by A when making q its unique accepting state.
The hint and the observation of (b) suggest to construct an automaton for
a · c ≤ b that satisfies the following property:

q ∈ Z recognizes the encodings of the tuples c ∈ Nn s.t. a · c = q. (14.5)

Let Σ = {0, 1}n. Given a state q ∈ Z and a letter ζ ∈ Σ, let us determine the
target state q′ of the transition (q, ζ, q′) of the automaton. A word w ∈ Σ∗

is recognized by q iff the word wζ is recognized by q′. Since we use the
msbf encoding, if c ∈ Nn is the tuple of natural numbers encoded by w,
then the tuple encoded by wζ is 2c + ζ. Thus, c ∈ Nn is recognized by q
iff 2c + ζ is recognized by q′. Therefore, in order to satisfy property (14.5)
we must choose q′ so that a · c = q iff a · (2c + ζ) = q′. Consequently,
q′ = 2(a · c) + a · ζ = 2q + a · ζ and so we define the transition function of
the automaton by δ(q, ζ) = 2q + a · ζ. We observe that a state is final iff it
recognizes tuples c such that a · c = q for q ≤ b, hence we make all states
q ≤ b final. We choose 0 as the initial state since a · (0, . . . , 0) = 0.
The resulting automaton is infinite. For example, let us reconsider 2x−y ≤ 2.
We have:

0
[1,0]−−−→ 2

[0,0]−−−→ 4
[0,0]−−−→ 8

[0,0]−−−→· · · , and

0
[0,1]−−−→−1 [0,0]−−−→−2 [0,0]−−−→−4 [0,0]−−−→· · · .

Nonetheless, once we reach −2 or 3, the next states are irrelevant: either we
accept or reject forever. Indeed, from −2 and 3, only numbers respectively
from (−∞, 2] and [3,+∞) can be generated. More generally, let

∆− =
∑

1≤i≤n

min(ai, 0)︸ ︷︷ ︸
sum of negative coefficients

and ∆+ =
∑

1≤i≤n

max(ai, 0)︸ ︷︷ ︸
sum of positive coefficients

.

It can be shown that states from [max(b + 1,−∆−),+∞) can only reach
states from this set, and that states from (−∞,min(b,−∆+)] can only reach
states from this set. For example, for 2x − y ≤ 2, we obtain the previously
identified numbers:

max(b+ 1,−∆−) = max(2 + 1,−(−1)) = 3,

min(b,−∆+) = min(2,−2) = −2.

This leads to the algorithm AFtoDFA′(φ) below, where for clarity the state
corresponding to k ∈ Z is denoted by sk:

SOLUTIONS FOR CHAPTER 9 456

AFtoDFA′(φ)
Input: Atomic formula φ = a · x ≤ b
Output: DFA Aφ = (Q,Σ, δ, q0, F) such that L (Aφ) = L (φ)
1 Q, δ, F ← ∅; q0 ← s0
2 W ← {s0}
3 hi← max(b+ 1,−

∑
1≤i≤nmin(ai, 0))

4 lo← min(b,−
∑

1≤i≤nmax(ai, 0))
5 whileW ̸= ∅ do
6 pick sk fromW

7 add sk to Q
8 if k ≤ b then add sk to F
9 for all ζ ∈ {0, 1}n do
10 j ← 2k + a · ζ
11 if j ≥ hi then j ← hi
12 if j ≤ lo then j ← lo
13 if sj /∈ Q then add sj toW
14 add (sk, ζ, sj) to δ

Let us now prove that it is indeed correct to “finitize” the states as we did.
Let w ∈ Σ∗ and ζ ∈ Σ. Assume that a · val(w) ≥ max(b + 1,−∆−). First,
note that w is rejected since val(w) > b. Moreover, we have a · val(wζ) ≥
max(b+ 1,−∆−) since:

a · val(wζ) = 2 · a · val(w) + a · val(ζ)
≥ 2 ·max(b+ 1,−∆−) + a · val(ζ)

≥ 2 ·max(b+ 1,−∆−) +
∑

1≤i≤n

min(ai, 0)

= 2 ·max(b+ 1,−∆−) + ∆−

= max(2(b+ 1),−∆−)
≥ max(b+ 1,−∆−) (by −∆− ≥ 0).

Thus, it is correct to “merge” all states from [max(b + 1,−∆−),+∞) into a
rejecting trap state.
Now, assume that a · val(w) ≤ min(b,−∆+). First, note that w is accepted
since val(w) ≤ b. Moreover, we have a · val(wζ) ≤ min(b,−∆+) since:

a · val(wζ) = 2 · a · val(w) + a · val(ζ)
≤ 2 ·min(b,−∆+) + a · val(ζ)

≤ 2 ·min(b,−∆+) +
∑

1≤i≤n

max(ai, 0)

= 2 ·min(b,−∆+) + ∆+

= min(2b,−∆+)

≥ min(b,−∆+) (by −∆+ ≤ 0).

So, it is correct to “merge” all states from (−∞,min(b,−∆+)] into a self-
accepting state.

SOLUTIONS FOR CHAPTER 9 457

⋆ Exercise 138. Suppose it is late and you are craving for chicken nuggets.
Since you are stuck in the subway, you have no idea how hungry you will be when
reaching the restaurant. Since nuggets are only sold in boxes of 6, 9, and 20,
you wonder if it will be possible to buy exactly the amount of nuggets you will
be craving for when arriving. You also wonder whether it is always possible to
buy an exact number of nuggets if one is hungry enough. Luckily, you can answer
these questions since you are quite knowledgeable about Presburger arithmetic
and automata theory.

For every finite set S ⊆ N, we say that number n ∈ N is an S-number if n can be
obtained as a linear combination of elements of S. For example, if S = {6, 9, 20},
then 67 is an S-number since 67 = 3 · 6 + 1 · 9 + 2 · 20, but 25 is not. For some
sets S, there are only finitely many numbers that are not S-numbers. When this is
the case, we say that the largest number that is not an S-number is the Frobenius
number of S. For example, 7 is the Frobenius number of {3, 5}, and S = {2, 4} has
no Frobenius number.

To answer your questions, it suffices to come up with algorithms for Frobenius
numbers and to instantiate them with S = {6, 9, 20}.

(a) Give an algorithm that decides, on input n ∈ N and a finite set S ⊆finite N,
whether n is an S-number.

(b) Give an algorithm that decides, on input S ⊆finite N, whether S has a Frobe-
nius number.

(c) Give an algorithm that computes, on input S ⊆finite N, the Frobenius number
of S (assuming it exists).

(d) Show that S = {6, 9, 20} has a Frobenius number, and identify it.

Solution:

(a) Let S = {a1, a2, . . . , ak}. A number n ∈ N is an S-number iff there exist
x1, x2, . . . , xk ∈ N such that n = a1x1+a2x2+ . . .+akxk which is equivalent
to n−a1x1−a2x2− . . .−akxk = 0. Therefore, given S, we do the following:

(i) Construct a transducer A that accepts the solutions of y−a1x1−a2x2−
. . .− akxk = 0 using algorithm EqtoDFA;

(ii) Construct an automaton B obtained by projecting A onto y;
(iii) Test whether lsbf(n) is accepted by B;
(iv) Return true iff lsbf(n) is accepted.

Note that A is a DFA, but B might be an NFA due to the projection.

(b) Let B the automaton constructed in (a). Observe that S has a Frobenius
number iff {n ∈ N : lsbf(n) ̸∈ L (B)} is finite. This suggests to complement
B. Since B is an NFA, we first convert it to a DFA B′ and then complement
B′. Let C be the resulting DFA.
To test whether S has a Frobenius number, it is now tempting to test whether
L (C) is finite. This is however incorrect. Indeed, every natural number has

SOLUTIONS FOR CHAPTER 9 458

infinitely many lsbf encodings, e.g. 2 is encoded by 010∗. Thus, L (C)will be
infinite even if C accepts finitely many numbers. To address this issue, we
prune L (C) by keeping only the minimal encoding of each number accepted
byC. Note that an lsbf encoding is minimal iff it does not contain any trailing
0. Thus, we can construct a DFA M that accepts the set of minimal lsbf
encodings:

0

1 2

0 1

0

1

0

1

To prune L (C) of the redundant lsbf encodings, we construct a new DFA D
obtained by intersecting C withM .
It remains to test whether L (D) is finite. By construction, every state ofD is
reachable from the initial state. However, due to our transformations, it may
be the case that some states of D cannot reach a final state. We may remove
these states in linear time. This can be done by (implicitly) reversing the arcs
ofD (seen as graph) and then performing a depth-first search from the final
states. The states which are not explored by the search are removed from
D. Let D′ be the resulting DFA. Testing whether L (D′) is finite amounts to
testing whether D′ contains no cycle. This can be done in linear time using
a depth-first search.
The overall algorithm is as follows:

(i) Convert B to a DFA B′,
(ii) Obtain a new DFA C by complementing B′,
(iii) Obtain a new DFA D by intersecting C withM ,
(iv) Obtain a new DFA D′ by removing every state of D that cannot reach

some final state,
(v) Test whether D′ contains a cycle.
(vi) Return true iff D′ contains no cycle.

Let us show that it is indeed the case that L (D′) is finite iff D′ has no
cycle; or, equivalently, that L (D′) is infinite iff D′ contains a cycle. Let
D′ = (Q, {0, 1}, δ, q0, F).
⇒) Assume L (D′) is infinite. By assumption, D′ accepts a word w such that
|w| = m for somem > |Q|. Let q0, q1, . . . , qm ∈ Q be such that q0

w1−−→ q1
w2−−→

q2 · · ·
wm−−→ qm. By the pigeonhole principle, there exist 0 ≤ i < j ≤ m such

that qi = qj . Thus, D′ contains the cycle

qi
wi+1−−−→ qi+1

wi+2−−−→ · · · wj−−→ qi.

SOLUTIONS FOR CHAPTER 9 459

⇐) Assume D′ contains a cycle q v−→ q for some q ∈ Q and v ∈ {0, 1}+. By
construction of D′, state q is reachable from q0, and q can reach some final
state qf ∈ F . Therefore, there exist u,w ∈ {0, 1}∗ such that

q0
u−→ q

v−→ q
w−→ qf .

Since q v−→ q can be iterated arbitrarily many times, every word of uv∗w is
accepted by D′, which implies that L (D′) is infinite.

(c) Assume S has a Frobenius number. Let D′ be the DFA obtained in (b). The
Frobenius number of S is the largest natural number n accepted by D′. By
assumption, L (D′) is finite. Thus, we could find n by using a brute force
approach where we go through all words accepted by D′. It is however
possible to find n much more efficiently with dynamic programming.
Observe that D′ is acyclic. Therefore, we may compute a topological order-
ing q0, q1, . . . , qm of Q. For every 0 ≤ i ≤ m, let

ℓi = argmaxw∈Li
value(w),

where Li = {w ∈ {0, 1}∗ : q0
w−→ qi}. Due to the topological ordering, each

ℓi can be computed as follows:

ℓi =

ε if i = 0,

argmaxw∈W value(w), where
W = {ℓj · a : 0 ≤ j < i, a ∈ {0, 1}, δ(qj , a) = qi}

if i > 0.

Once each ℓi is computed, we can easily derive n since n = max{value(ℓi) :
qi ∈ F}.
Note that to test whether value(u) ≥ value(v), it is not necessary to convert
u and v to their numerical values. Instead, the test can be carried by testing
whether u is greater or equal to v under the colexicographic ordering, i.e.
uR ⪰lex v

R.

(d) By executing our procedure for S = {6, 9, 20}, we obtain a DFA D′ with
30 states and no cycle. Thus, S has a Frobenius number. By executing the
procedure described in (c), we obtain 43 as the Frobenius number of S.

 Exercise 140. Converting a Presburger formula over k variables into a DFA
yields an alphabet of 2k letters. In order to mitigate this combinatorial explosion,
one can instead label transitions with boolean expressions. For example, [0, 1] can
be written as ¬x∧y, and the set {[1, 0], [1, 1]} can be written as x. Such expressions
can internally be represented, for example, as binary decision diagrams.

(a) Give DFAs for formulas x < y and y < z, using boolean expressions rather
than letters.

(b) Construct a DFA for x < y < z.

SOLUTIONS FOR CHAPTER 9 460

Solution:

(a)

p0 p1

x ∨ ¬y

¬x ∧ y

¬x ∨ y

x ∧ ¬y

q0 q1

y ∨ ¬z

¬y ∧ z

¬y ∨ z

y ∧ ¬z

(b) We intersect the two above DFAs by taking the conjunction of expressions.
For example,

p0
x∨¬y−−−−→ p0 and q0

¬y∧z−−−−→ q1 yields (p0, q0)
(x∨¬y)∧(¬y∧z)−−−−−−−−−−−→(p0, q1).

The expression (x∨¬y)∧ (¬y∧z) can be simplified to ¬y∧z. By proceeding
this way and simplifying Boolean expressions, we obtain the following DFA
whose trap state is omitted for the sake of readability:

p0, q0 p0, q1

p1, q0 p1, q1

(x ∨ ¬y) ∧ (y ∨ ¬z)

¬y ∧ z

¬x ∧ y

¬y ∨ (x ∧ z)

x ∧ y ∧ ¬z

¬x ∧ y ∧ ¬z

¬x ∧ y ∧ zx ∧ ¬y ∧ ¬z

x ∧ ¬y ∧ z

y ∨ (¬x ∧ ¬z)

¬x ∧ ¬y ∧ z

x ∧ ¬y

y ∧ ¬z

(¬x ∨ y) ∧ (¬y ∨ z)

Note that the above DFA has 14 explicit transitions plus 3 implicit transitions
for the omitted trap states. The DFA we would obtain by using letters rather
than Boolean expressions would have 28 explicit transitions plus 12 implicit
transitions for the omitted trap states.

Solutions for Chapter 10

 Exercise 141. Construct Büchi automata and ω-regular expressions, as
small as possible, recognizing the following ω-languages over the alphabet {a, b, c}.
Recall that inf(w) is the set of letters of {a, b, c} that occur infinitely often in w.

(a) {w ∈ {a, b, c}ω : {a, b} ⊇ inf(w)},

(b) {w ∈ {a, b, c}ω : {a, b} = inf(w)},

(c) {w ∈ {a, b, c}ω : {a, b} ⊆ inf(w)}.

Solution: Let us first provide ω-regular expressions for the three languages:

(a) [(b+ c)∗a(a+ c)∗b]ω,

(b) (a+ b+ c)∗(a+ b)ω,

(c) (a+ b+ c)∗(aa∗bb∗)ω.

We now provide Büchi automata for the three languages.

(a) The automaton below recognizes all ω-words containing infinitely many a
and infinitely many b, and either finitely or infinitely many c. To show that
every such word is accepted by the automaton, we have to modify the ar-
gument of (b): now every word in the language contains infinitely many
subwords of ac∗b, and the automaton accepts the word by moving to q1 at
each of these subwords. For the converse, it is clear that every visit to q1 re-
quires to read an a and a b, and so every accepted word contains both letters
infinitely often. Note that we cannot remove q2 and add a self-loop labeled
by c to q1, because then the automaton would accept for instance acω.

461

SOLUTIONS FOR CHAPTER 10 462

q0

q1

q2

a, b, c a

b

c

c
b

(b) The automaton must recognize the set of ω-words containing only finitely
many c. We claim that the Büchi automaton below achieves this task. In-
deed, every word with finitely many occurrences of c is accepted: the au-
tomaton just moves to q1 after the last c. Conversely, every accepting run
must eventually move to q1, and so the word accepted contains only finitely
many c.

q0 q1

a, b, c

a, b

a, b

(c) The automaton must recognize the ω-words containing infinitely many a,
infinitely many b, but only finitely many c. Every such ω-word is accepted by
the automaton below: the automaton moves to q1 after the last c. The rest
of the word contains only a and b, both infinitely many times, and hence
infinitely many occurrences of ab. At each of them the automaton takes
the loop through q2. Conversely, every accepted word contains only finitely
many c, because after moving to q1 no further c can be read, and both in-
finitely many occurrences of a and b, because every accepting run must visit
q2 infinitely often, and each visit contributes an a and a b.

q0 q1 q2

a, b, c

a, b

a, b

a

b

 Exercise 145. Recall that every finite set of finite words is a regular language.
Prove that this does not hold for infinite words. More precisely:

(a) Prove that every nonempty ω-regular language contains an ultimately peri-
odic ω-word (i.e., an ω-word of the form uvω for some finite words u ∈ Σ∗

and v ∈ Σ+).

(b) Give an ω-word w such that {w} is not an ω-regular language. Hint:
Use (a).

SOLUTIONS FOR CHAPTER 10 463

Solution:

(a) Let L be a nonempty ω-regular language and let B = (Q, {0, 1}, δ,Q0, F)
be an NBA that recognizes L. Since Q is finite, there exist u ∈ Σ∗, v ∈ Σ+,
q0 ∈ Q0 and q ∈ F such that

q0
u−→ q

v−→ q.

Consequently, we have uvω ∈ L by iterating v from state q.

(b) Let w ∈ {0, 1}ω be the word given by

wi =

{
1 if i is a square,
0 otherwise.

We prove that w is not ultimately periodic, which, by (a), implies that {w}
is not ω-regular. For the sake of contradiction, suppose w = uvω for some
u ∈ {0, 1}∗ and v ∈ {0, 1}+. If v ∈ 0∗, then we obtain a contradiction. Thus,
there exists 1 ≤ i ≤ |v| such that vi = 1. Let m = |u| + i and n = |v|. By
definition of w,m+ j ·n is a square for every j ≥ 0. In particular, there exist
0 < a < b such that

m+ n · n = a2 and m+ n · n+ n = b2.

Note that a ≥ n. Moreover,

b2 = a2 + n ≤ a2 + a < a2 + 2a+ 1 = (a+ 1)2.

Therefore a2 < b2 < (a+ 1)2 which is a contradiction.

 Exercise 146. Consider the class of nondeterministic automata over ω-words
with the following acceptance condition: an infinite run is accepting iff it visits an
accepting state at least once. Show that no such automaton accepts the language
of all words over {a, b} containing infinitely many a and infinitely many b.

Solution: For the sake of contradiction, suppose there exists such an automaton
B = (Q, {a, b}, δ,Q0, F) recognizing L. Let n = |Q|. Since w = (abn)ω belongs to
L, there exist u, v ∈ {a, b}∗, q0 ∈ Q0, qacc ∈ F , and r0, r1, . . . , rn ∈ Q such that

q0
u−→ qacc

v−→ r0
b−→ r1

b−→· · · b−→ rn.

By the pigeonhole principle, there exist 0 ≤ i < j ≤ n such that ri = rj . Therefore,

q0
u−→ qacc

vbi−−→ ri
bj−i

−−−→ rj
bj−i

−−−→ rj
bj−i

−−−→· · · .

We conclude that uvbi(bj−i)ω is accepted by B, which is a contradiction as it con-
tains finitely many occurrences of a.

 Exercise 147. The limit of a language L ⊆ Σ∗ is the ω-language lim(L),
defined as follows: w ∈ lim(L) iff infinitely many prefixes of w are words of L
(e.g., the limit of (ab)∗ is {(ab)ω}).

SOLUTIONS FOR CHAPTER 10 464

(a) Determine the limit of the following regular languages over {a, b}:

(i) (a+ b)∗a,
(ii) the set of words containing an even number of a,
(iii) a∗b.

(b) Prove the following: An ω-language is recognizable by a deterministic Büchi
automaton iff it is the limit of a regular language.

(c) Exhibit a nonregular language whose limit is ω-regular.

(d) Exhibit a nonregular language whose limit is not ω-regular.

Solution:

(a) (i) The set of ω-words containing infinitely many a.
(ii) The set of ω-words containing infinitely many a, plus the set of ω-words

containing a finite even number of a.
(iii) The empty ω-language.

(b) Let B be a deterministic Büchi automaton recognizing an ω-language L.
Consider B as a DFA, and let L′ be the regular language recognized by B.
We show that L = lim(L′). If w ∈ lim(L′), then B (as a DFA) accepts
infinitely many prefixes of w. Since B is deterministic, the runs of B on
these prefixes are prefixes of the unique infinite run of B (as a DBA) on w.
So the infinite run visits accepting states infinitely often, and so w ∈ L. If
w ∈ L, then the unique run of B on w (as a DBA) visits accepting states
infinitely often, and so infinitely many prefixes of w are accepted by B (as a
DFA). Thus, w ∈ lim(L′).

(c) Let L = {an2

: n ≥ 0}. We have lim(L) = {aω}, which is ω-regular, although
L is not regular. Alternatively, if L = {anbn : n ≥ 0}, then lim(L) = ∅, which
is also ω-regular.

(d) Let L = {anbncm : n,m ≥ 0}. We have lim(L) = {anbncω : n ≥ 0}. Suppose
this language is ω-regular and hence recognized by a Büchi automaton B.
By the pigeonhole principle, there are distinct n1, n2 ∈ N and accepting runs
ρ1, ρ2 of B on an1bn1cω and an2bn2cω such that the state reached in ρ1 after
reading an1 and the state reached in ρ2 after reading an2 coincide. This
means that B accepts an1bn2cω, which contradicts the assumption that B
recognizes L.

 Exercise 148. Let L1 = (ab)ω and let L2 be the ω-language of all ω-words
over {a, b} containing infinitely many a and infinitely many b.

(a) Exhibit three different DBAs with three states recognizing L1.

(b) Exhibit six different DBAs with three states recognizing L2.

(c) Show that no DBA with at most two states recognizes L1 or L2.

SOLUTIONS FOR CHAPTER 10 465

Solution:

(a) We obtain three DBAs for L1 from the one below by making either q0, q1 or
both accepting:

q0

q1

q2

a

b
b

a

a, b

(b) Here are two different DBAs for L2. We obtain two further DBAs from each
of these automata by making either q1 or q2 the initial state.

q0 q1q2
a

b

b

ab

a

q0

q1

q2

a, b

b

a

a

b

(c) Assume there is a DBA B with at most two states recognizing L1. Since L1

is nonempty, B has at least one (reachable) accepting state q. Consider the
transitions leaving q labeled by a and b. If any of them leads to q again, then
B accepts an ω-word of the form waω or wbω for some finite word w. Since
no word of this form belongs to L1, we reach a contradiction. Thus, B must
have two states q and q′, and transitions

ta = q
a−→ q′ and tb = q

b−→ q′.

Consider any accepting run ρ of B. If the word accepted by the run does not
belong to L1, we are done. So assume it belongs to L1. Since ρ is accepting,
it contains some occurrence of ta or tb. Consider the run ρ′ obtained by
exchanging the first occurrence of one of them by the other (that is, if ta
occurs first, then replace it by tb, and vice versa). Then ρ′ is an accepting
run, and the word it accepts is the result of turning an a into a b, or vice

SOLUTIONS FOR CHAPTER 10 466

versa. In both cases, the resulting word does not belong to L1; so we each
again a contradiction, and we are done.

The proof for L2 is similar.

 Exercise 150. In definition 2.20, we introduced the quotient A/P of an NFA
A with respect to a partition P of its states. In lemma 2.22, we proved L (A) =
L (A/Pℓ) for the language partition Pℓ that puts two states q1, q2 in same the block
iff LA(q1) = LA(q2). Let B = (Q,Σ, δ,Q0, F) be an NBA. Given a partition P of
Q, define the quotient B/P of B with respect to P as for an NFA.

(a) Let Pℓ be the partition of Q that puts two states q1, q2 of B in same block
iff Lω,B(q1) = Lω,B(q2), where Lω,B(q) denotes the ω-language containing
the words accepted by B with q has initial state. Does Lω (B) = Lω (B/Pℓ)
always hold?

(b) Let CSR be the coarsest stable refinement of the equivalence relation with
equivalence classes {F,Q \ F}. Does Lω (A) = Lω (A/CSR) always hold?

Solution:

(a) No. The Büchi automaton below, which is even deterministic, is a counterex-
ample. All states accept the same language: the words containing infinitely
many a and infinitely many b. The quotient is an automaton with a single
state, both initial and accepting, that recognizes the set of all words.

q0

q1

q2

a

b

a

b

a

b

(b) Yes. The relation CSR partitions the set of states into blocks such that the
states of a block are either all accepting or all nonaccepting (because every
equivalence class of CSR is included in F or Q \ F). Moreover, since CSR is
stable, for every two states q, r of a block of CSR and for every (q, a, q′) ∈ δ,
there is a transition (r, a, r′) such that q′, r′ belong to the same block. This
implies L (q) = L (r), because every run

q
a1−−→ q1

a2−−→ q2 · · ·
an−−→ qn

can be “matched” by a run

r
a1−−→ r1

a2−−→ r2 · · ·
an−−→ rn

SOLUTIONS FOR CHAPTER 10 467

in such a way that, for every i ≥ 1, states qi, ri belong to the same block, and
so, in particular, qn is accepting iff rn is accepting, which implies a1 . . . an ∈
L (q) iff a1 . . . an ∈ L (r).
Observe that we not only have that qn and rn are both accepting or nonac-
cepting: the same holds for every pair qi, ri. Moreover, the property also
holds for ω-words: every infinite run

q
a1−−→ q1

a2−−→ q2
a3−−→ q3 · · ·

is “matched” by an infinite run

r
a1−−→ r1

a2−−→ r2
a3−−→ r3 · · ·

so that, for every i ≥ 1, states qi, ri are both accepting or non-accepting.
This immediately proves Lω (A) = Lω (A/CSR).

 Exercise 151. Let L be an ω-language over alphabet Σ, and let w ∈ Σ∗. The
w-residual of L is the ω-language Lw = {w′ ∈ Σω : ww′ ∈ L}. An ω-language L′
is a residual of L if L′ = Lw for some word w ∈ Σ∗. We show that the theorem
stating that a language of finite words is regular iff it has finitely many residuals
does not extend to ω-regular languages.

(a) Prove this statement: If L is an ω-regular language, then it has finitely many
residuals.

(b) Disprove this statement: Every ω-language with finitely many residuals is
ω-regular.

Hint: Consider a nonultimately periodic ω-word w and its language Tailw of
infinite tails.

Solution:

(a) Let B = (Q,Σ, δ,Q0, F) be an NBA that recognizes L. For every Q′ ⊆ Q, let
Lω (Q′) be the language recognized by B with Q′ as set of initial states. For
every w ∈ Σ∗, let

Qw = {q ∈ Q : q0
w−−→ q for some q0 ∈ Q0}.

Clearly, we have Lw = Lω (Qw). Therefore, L has at most 2|Q| residuals.

(b) Letw be some non-ultimately periodic ω-word, e.g. the one from the solution
of Exercise 145 or the digits of π. Let Tailw be the set of all infinite suffixes
of w, and define L = Σ∗ Tailw, where Σ is the alphabet of letters that appear
in w. We show the following:

• L has only one residual.
Let w1, w2 ∈ Σ∗. We prove Lw1 = Lw2 . Let w′ ∈ Lw1 . By the definition
of residual and of L, we have w1w

′ ∈ Σ∗Tailw. Note that Tailw is closed
under suffix, i.e. if an ω-word belongs to Tailw, then so do all their
suffixes. Thus, we have w′ = u v for some v ∈ Tailw. Consequently,
w2uv ∈ Σ∗Tailw, which implies w2w

′ ∈ L, and so w′ ∈ Lw2 .

SOLUTIONS FOR CHAPTER 10 468

• L is not ω-regular.

Assume L is ω-regular. By Exercise 145, L contains an ultimately peri-
odic word uvω. This means that some tail of w is of the form u′vω, and
hence w = u′′vω for some word u′′, contradicting the fact that w is not
ultimately periodic.

 Exercise 152. The solution to exercise 150(2) shows that the reduction al-
gorithm for NFAs that computes the partition CSR of a given NFA A and constructs
the quotient A/CSR can also be applied to NBAs. Generalize the algorithm so that
it works for NGAs.

Solution: Let B = (Q,Σ, δ, q0, {F1, . . . , Fn}) be an NGA. Let us consider the
following partition of Q. Two states q, r ∈ Q belong to the same block if:

for every i ∈ {1, . . . , n} either {q, r} ⊆ Fi or {q, r} ∩ Fi = ∅.

Let CSR′ be defined as the coarsest stable refinement of this partition. For every
two states q, r ∈ Q belonging to the same block of CSR′, we now have that every
infinite run

q
a1−−→ q1

a2−−→ q2
a3−−→ q3 · · ·

is “matched” by a run
r

a1−−→ r1
a2−−→ r2

a3−−→ r3 · · ·

so that for every i ≥ 1 and for every j ∈ {1, . . . , n} either {qi, ri} ⊆ Fj or {qi, ri}∩
Fj = ∅. Thus, we get Lω (B) = Lω

(
B/CSR′

)
.

 Exercise 154. Show that a parity condition (F1, F2, . . . , F2m) is equivalent
to the Streett condition {⟨∅, F1⟩, ⟨F2, F3⟩, . . . , ⟨F2m−2, F2m−1⟩}.

Solution: With the parity condition (F1, F2, . . . , F2m), a run ρ is accepting iff the
smallest index i satisfying inf ρ ∩ Fi ̸= ∅ is even. This is equivalent to: A run ρ is
accepting iff it is not the case that the minimal index i such that inf(ρ) ∩ Fi ̸= ∅ is
odd. In other words, ρ is accepting iff

not
(

inf(ρ) ∩ F1 ̸= ∅
or inf(ρ) ∩ F2 = ∅ and inf(ρ) ∩ F3 ̸= ∅,
or · · ·
or inf(ρ) ∩ F2m−2 = ∅ and inf(ρ) ∩ F2m−1 ̸= ∅

)
which can be rewritten as

inf(ρ) ∩ ∅ ̸= ∅ or inf(ρ) ∩ F1 = ∅,
and inf(ρ) ∩ F2 ̸= ∅ or inf(ρ) ∩ F3 = ∅,
and · · ·
and inf(ρ) ∩ F2m−2 ̸= ∅ or inf(ρ) ∩ F2m−1 = ∅.

This is exactly the Streett condition {⟨∅, F1⟩, ⟨F2, F3⟩, . . . , ⟨F2m−2, F2m−1⟩}.

Solutions for Chapter 11

 Exercise 155. Consider the two Büchi automata (NBAs) below. Interpret
them as generalized Büchi automata (NGAs), construct their intersection, and con-
vert the resulting NGA into an NBA.

p q r

A:

b

a

c

a

b

s t

B:

a

a, c

b

Solution: We first obtain the following NGA with acceptance condition G =
{F0, F1} depicted respectively as hatched and filled states:

p, s q, t

r, t q, s

a

a

b

a

c

By making two copies, we obtain the following equivalent NBA:

(p, s)0 (q, t)0

(r, t)0 (q, s)0

(q, t)1

(r, t)1 (q, s)1

a

a

b

a

c
a

b a

c

469

SOLUTIONS FOR CHAPTER 11 470

 Exercise 156. Let Lσ = {w ∈ {a, b, c}ω : w contains infinitely many σ’s}.
Give deterministic Büchi automata for languages La, Lb, and Lc; construct the
intersection of these automata interpreted as NGAs; and convert the resulting NGA
as a Büchi automaton.

Solution: The following Büchi automata respectively accept La, Lb and Lc:

p0 p1 q0 q1 r0 r1

b, c

a

a

b, c

a, c

b

b

a, c

a, b

c

c

a, b

By applying the intersection and conversion procedures, we obtain the following
deterministic Büchi automaton:

(p1, q0, r0)
0

(p0, q1, r0)
0

(p0, q0, r1)
0

(p0, q0, r0)
0

(p1, q0, r0)
1

(p0, q1, r0)
1

(p0, q0, r1)
1

(p1, q0, r0)
2

(p0, q1, r0)
2

(p0, q0, r1)
2

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

Note that La ∩ Lb ∩ Lb is accepted by a smaller DBA:

b, c
b, cb, c

a

b

c

a, ca, b

a

 Exercise 158. An ω-automaton has acceptance on transitions if the accep-
tance condition specifies which transitions must appear infinitely often in a run.
All classes of ω-automata (Büchi, Rabin, etc.) can be defined with acceptance on
transitions rather than states.

SOLUTIONS FOR CHAPTER 11 471

Give minimal deterministic automata, for the language of words over {a, b}
containing infinitelymany a and infinitelymany b, of the following kinds: (a) Büchi
(with state-based accepting condition), (b) generalized Büchi (with state-based
accepting condition), (c) Büchi with acceptance on transitions, and (d) generalized
Büchi with acceptance on transitions.

Solution: Automata (a), (b), (c) and (d) are respectively as follows, where col-
ored patterns indicate the sets of accepting states or transitions:

q0

q1

q2

a

b

a

b

a

b

q0

q1

a

b

b

a

q0

q1

a

b

b

a
q0

a

b

 Exercise 159. Consider the following Büchi automaton over Σ = {a, b}:

q0 q1

a, b b

b

(a) Sketch dag(ababω) and dag((ab)ω).

(b) Let rw be the ranking of dag(w) defined by

rw(q, i) =

1 if q = q0 and ⟨q0, i⟩ appears in dag(w),
0 if q = q1 and ⟨q1, i⟩ appears in dag(w),
⊥ otherwise.

Are rababω and r(ab)ω odd rankings?

(c) Show that rw is an odd ranking if and only if w ̸∈ Lω (B).

(d) Build a Büchi automaton accepting Lω (B) using the construction seen in the
chapter.

Hint: By (c), it is sufficient to use {0, 1} as ranks.

Solution:

(a) dag(ababω):

SOLUTIONS FOR CHAPTER 11 472

q0, 0 q0, 1 q0, 2

q1, 2

q0, 3 q0, 4

q1, 4

a b

b

a b

b

b

b

b

dag((ab)ω):

q0, 0 q0, 1 q0, 2

q1, 2

q0, 3 q0, 4

q1, 4

a b

b

a b

b

a

(b) • rababω is not an odd ranking since

⟨q0, 0⟩
a−→ ⟨q0, 1⟩

b−→ ⟨q0, 2⟩
a−→ ⟨q0, 3⟩

b−→ ⟨q1, 4⟩
b−→ ⟨q1, 5⟩

b−→ · · ·

is an infinite path of dag(ababω) not visiting odd nodes i.o.

• r(ab)ω is an odd ranking since it has a single infinite path:

⟨q0, 0⟩
a−→ ⟨q0, 1⟩

b−→ ⟨q0, 2⟩
a−→ ⟨q0, 3⟩

b−→ ⟨q0, 4⟩
a−→ ⟨q0, 5⟩

b−→ · · ·

which only visits odd nodes.

(c) ⇒) Let w ∈ Lω (B). We have w = ubω for some u ∈ {a, b}∗. This implies
that

⟨q0, 0⟩
u−→ ⟨q0, |u|⟩

b−→ ⟨q1, |u|+ 1⟩ b−→ ⟨q1, |u|+ 2⟩ b−→ · · ·

is an infinite path of dag(w). Since this path does not visit odd nodes in-
finitely often, r is not odd for dag(w).

⇐) Let w ̸∈ Lω (B). Suppose there exists an infinite path of dag(w) that
does not visit odd nodes infinitely often. At some point, this path must only
visit nodes of the form ⟨q1, i⟩. Thus, there exists u ∈ {a, b}∗ such that

⟨q0, 0⟩
u−→ ⟨q1, |u|⟩

b−→ ⟨q1, |u|+ 1⟩ b−→ ⟨q1, |u|+ 2⟩ b−→ · · · .

This implies that w = ubω ∈ Lω (B), which is contradiction.

(d) By (c), for every w ∈ {a, b}ω, if dag(w) has an odd ranking, then it has
one ranging over 0 and 1. Therefore, it suffices to execute CompNBA with
rankings ranging over 0 and 1. We obtain the following Büchi automaton:

SOLUTIONS FOR CHAPTER 11 473

1
⊥
∅

0
⊥
{q0}

0
0

{q0, q1}

1
0
{q1}

0
0
{q1}

0
⊥
∅

a a b

b

a
b

a

ba

b a

a b

a

Actually, by (c), it is sufficient to only explore the colored states as they
correspond to the family of rankings {rw : w ∈ Σω}.

⋆ Exercise 162. A Büchi automaton A = (Q,Σ, δ,Q0, F) is weak if no
strongly connected component (SCC) of A contains both accepting and nonac-
cepting states—that is, every SCC C ⊆ Q satisfies either C ⊆ F or C ⊆ Q \ F .

(a) Prove that a Büchi automaton A is weak iff for every run ρ either inf(ρ) ⊆ F
or inf(ρ) ⊆ Q \ F .

(b) Prove that the algorithms for union, intersection, and complementation of
DFAs are correct for weak DBAs. More precisely, show that the algorithms
return weak DBAs recognizing respectively the union, intersection, and com-
plement of the languages of the input automata.

Solution:

(a) For every run ρ, any two states of inf(ρ) are necessarily reachable from each
other, and hence inf(ρ) is contained in a SCC of A. Let Cρ be this SCC.
⇒) If A is weak, then either Cρ ⊆ F or Cρ ⊆ Q \ F , and so inf(ρ) ⊆ F or
inf(ρ) ⊆ Q \ F .
⇐) Assume that for every run ρ either inf(ρ) ⊆ F or inf(ρ) ⊆ Q \ F . Let C
be an SCC of A. There is a word w such that the run ρ of A on w satisfies
inf(ρ) = C. Therefore, we have C ⊆ F or C ⊆ Q \ F .

(b) We first consider the complementation algorithm CompDFA (Section 3.1.2).
Recall that the algorithm simply exchanges accepting and non-accepting
states. Let A = (Q,Σ, δ, q0, F) be a weak DBA, and let A = CompDFA(A).
Since the SCCs of A and A coincide, A is also a weak DBA. Moreover, for
every ω-word w, both A and A have the same run ρ on w. If A accepts w,
then by (a) we have inf(ρ) ⊆ F , and so A does not acept w. If A does not
accept w, then by (a) we have inf(ρ) ⊆ Q \ F , and so A accepts w.

SOLUTIONS FOR CHAPTER 11 474

We now consider the algorithm for intersection (the union is similar). Let
A1 = (Q1,Σ, δ1, q01, F1) and A2 = (Q2,Σ, δ2, q02, F2) be weak DBAs. Let us
recall the algorithm for intersection, i.e. the result of instantiating algorithm
BinOp (Section 3.1.3) with the boolean operator “and.” It constructs a de-
terministic automaton A with set of statesQ1×Q2, initial state [q01, q02] and
set of final states F1 × F2. Given an ω-word w, we have that:

ρ1 = q01
a1−−→ q11

a2−−→ q21 · · ·
an−−→ qn1 · · ·

ρ2 = q02
a1−−→ q12

a2−−→ q22 · · ·
an−−→ qn2 · · ·

are the (unique) runs of A1 and A2 on w if and only if

ρ =

[
q01
q02

]
a1−−→
[
q11
q12

]
a2−−→
[
q21
q22

]
· · · an−−→

[
qn1
qn2

]
· · ·

is the (unique) run of A on w.
We first show that A is weak. By (a), it suffices to show that for every run ρ
either inf(ρ) ⊆ F or inf(ρ) ⊆ Q \ F . Consider two cases:

• ρ only visits states of F finitely often. We immediately have inf(ρ) ⊆
Q \ F .

• ρ visits states of F infinitely often. Since F = F1 × F2, both ρ1 and ρ2
visit states of F1 and F2 infinitely often. Since A1 and A2 are weak,
we have inf(ρ1) ⊆ F1 and inf(ρ2) ⊆ F2. Thus, there are indices i1 and
i2 such that qj1 ∈ F1 for every j ≥ i1, and qj2 ∈ F2 for every j ≥ i2.
Taking i = max{i1, i2}, we get [qj1, qj2] ∈ F for every j ≥ i, and hence
inf(ρ) ⊆ F .

It remains to show that Lω (A) = Lω (A1) ∩ Lω (A2) holds. Let w ∈ Σω. Let
ρ1, ρ2 and ρ be respectively the runs of A1, A2 and A on a word w.
⊆) Assume w ∈ Lω (A). Since ρ is accepting, it visits F1×F2 infinitely often,
and hence ρ1 and ρ2 visit F1 and F2 infinitely often.
⊇) Assume w ∈ Lω (A1) ∩ Lω (A2). Since ρ1 and ρ2 are accepting, by (a),
we have inf(ρ1) ⊆ F1 and inf(ρ2) ⊆ F2. Thus, there are indices i1 and i2
such that q1j ∈ F1 for every j ≥ i1, and q2j ∈ F2 for every j ≥ i2. Taking
i = max{i1, i2}, we get [q1j , q2j] ∈ F for every j ≥ i, and hence ρ is an
accepting run of A. Thus, w ∈ Lω (A).

 Exercise 163. Give algorithms that directly complement deterministic
Muller and parity automata, without going through Büchi automata.

Solution: Let us consider the case of a deterministic Muller automaton A with
acceptance condition F = {F0, . . . , Fm−1} ⊆ 2Q. Since every ω-word w has a
single run ρw in A, we have w ̸∈ Lω (A) iff inf(ρw) ∈ 2Q \F . Thus, to complement
A, we change its acceptance condition to F ′ = 2Q \ F .

Let us consider the case of a deterministic parity automaton Awith acceptance
condition F1 ⊆ · · · ⊆ F2n. Since every ω-word w has a single run ρw in A, we have

w ∈ Lω (A) ⇐⇒ min{i : inf(ρw) ∩ Fi ̸= ∅} is even.

SOLUTIONS FOR CHAPTER 11 475

Thus, to complement A, it suffices to “swap the parity” of states. This can be
achieved by adding a new dummy state q⊥ to A and changing its acceptance con-
dition to {q⊥} ⊆ (F1 ∪ {q⊥}) ⊆ · · · ⊆ (F2n ∪ {q⊥}), where the purpose of q⊥ is to
keep the chain of inclusion required by the definition.

 Exercise 164. Let A = (Q,Σ, q0, δ, {⟨F0, G0⟩, . . . , ⟨Fm−1, Gm−1⟩}) be a
deterministic automaton. What is the relation between the languages recognized
by A seen as a deterministic Rabin automaton and seen as a deterministic Streett
automaton?

Solution: They accept the complement of their respective languages. Indeed,
their runs are unique due to determinism. Moreover, the acceptance condition of
a Street automaton is the negation of the acceptance condition of a Rabin automa-
ton.

⋆ Exercise 165. Consider Büchi automata with universal accepting condition
(UBA): an ω-word w is accepted if every run of the automaton on w is accepting,
that is, if every run of the automaton on w visits accepting states infinitely often.

Recall that automata on finite words with existential and universal accepting
conditions recognize the same languages (see exercise 21). Prove that this does
not hold for automata on ω-words by showing that, for every UBA, there is a DBA
that recognizes the same language. This implies that the ω-languages recognized
by UBAs are a proper subset of ω-regular languages.

Hint: On input w, the DBA checks that every path of dag(w) visits some final state
infinitely often. The states of the DBA are pairs (Q′, O) of sets of the UBA where
O ⊆ Q′ is a set of “owing” states. Loosely speaking, the transition relation is defined
to satisfy the following property: after reading a prefix w′ of w, the DBA is at the
state (Q′, O) given by

• Q′ is the set of states reached by the runs of the UBA on w′;

• O is the subset of states of Q′ that “owe” a visit to a final state of the UBA (see
the construction for the complement of a Büchi automaton).

Solution: This algorithm constructs a DBA from a given UBA by using the hint:

SOLUTIONS FOR CHAPTER 11 476

UBAtoDBA(A)
Input: Büchi automaton A = (Q,Σ, δ,Q0, F) with univ. accepting condition
Output: DBA B = (Q,Σ,∆, Q0,F) with L (B) = L (A)
1 Q,∆,F ← ∅
2 if q0 ∈ F then Q0 ← ({q0}, ∅)
3 else Q0 ← ({q0}, {q0})
4 W = {Q0}
5 whileW ̸= ∅ do
6 pick (Q′, O) fromW
7 add (Q′, O) to Q
8 if O = ∅ then add (Q′, O) to F
9 for all a ∈ Σ do

10 Q′′ ← δ(Q′, a)

11 if O = ∅ then
12 if (Q′′, Q′′ \ F) /∈ Q then add (Q′′, Q′′ \ F) toW
13 else
14 O′ ← δ(O, a)

15 if (Q′′, O′) /∈ Q then add (Q′′, O′) toW

Solutions for Chapter 12

 Exercise 166. Let B be the following Büchi automaton:

(a) Execute the emptiness algorithm NestedDFS on B. Assume that states are
picked in ascending order with respect to their indices.

(b) Recall that NestedDFS is a nondeterministic algorithm, and different choices
of runs may return different lassos. Which lassos of B can be found by
NestedDFS?

q0 q1

q2

q6

q3

q5 q4 q7 q8

a

b a

a

b

a

b

b

a

a b
a

(c) Show that NestedDFS is not optimal by exhibiting some search sequence on
B.

(d) Execute the SCC-based emptiness algorithm on B. Assume that states are
picked in ascending order with respect to their indices.

(e) Execute the SCC-based emptiness algorithm on B. Assume that transitions
labeled by a are picked before those labeled by b.

(f) Which lassos of B can be found by the SCC-based algorithm?

477

SOLUTIONS FOR CHAPTER 12 478

Solution:

(a) Procedure dfs1 visits q0, q1, q2, q3, q4, q5, q6, then calls dfs2 which visits q6,
q1, q2, q3, q4, q5, q6 and reports “non empty”.

(b) Since q7 does not belong to any lasso, only lassos that contain states q1 or q6
can be found. In every run of the algorithm, dfs1 blackens q6 before q1. The
only lasso that contains q6 is: q0, q1, q3, q4, q6, q1. Therefore, this is the only
lasso that can be found by the algorithm.

(c) The execution given in (a) shows that NestedDFS is not optimal since it re-
turns the lasso q0, q1, q3, q4, q6, q1 even though the lasso q0, q1, q2, q1 was al-
ready appearing in the explored subgraph.

(d) The algorithm reports “non empty” after the following execution:

Step Active states, visited states and ranks Stack

1

q0 q1

q2

q6

q3

q5 q4 q7 q8

1

(q0, {q0})

2

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2

(q1, {q1})
(q0, {q0})

3
q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2

3

(q2, {q2})
(q1, {q1})
(q0, {q0})

SOLUTIONS FOR CHAPTER 12 479

4
q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2

3

(q1, {q1, q2})
(q0, {q0})

(e) The algorithm reports “non empty” after the following execution:

Step Active states, visited states and ranks Stack

1

q0 q1

q2

q6

q3

q5 q4 q7 q8

1

(q0, {q0})

2

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2

(q1, {q1})
(q0, {q0})

3

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

(q3, {q3})
(q1, {q1})
(q0, {q0})

SOLUTIONS FOR CHAPTER 12 480

4

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4

(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

5

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4 5

(q7, {q7})
(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

6

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4 5 6

(q8, {q8})
(q7, {q7})
(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

7

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4 5 6

(q7, {q7})
(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

SOLUTIONS FOR CHAPTER 12 481

8

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4 5 6

(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

9

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4 5 67

(q5, {q5})
(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

10

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4 5 67

(q1, {q1, q3, q4, q5})

(q0, {q0})

(f) All of them. The lasso q0, q1, q2, q1 was found by the execution of (d). The
lasso q0, q1, q3, q4, q5, q1 was found by the execution of (e). The lasso q0, q1,
q3, q4, q6, q1 is found by the following execution:

Step Active states, visited states and ranks Stack

SOLUTIONS FOR CHAPTER 12 482

1

q0 q1

q2

q6

q3

q5 q4 q7 q8

1

(q0, {q0})

2

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2

(q1, {q1})
(q0, {q0})

3

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

(q3, {q3})
(q1, {q1})
(q0, {q0})

4

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4

(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

SOLUTIONS FOR CHAPTER 12 483

5

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4

5

(q6, {q6})
(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

5

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4

5 (q1, {q1, q3, q4, q6})

(q0, {q0})

 Exercise 167. Let A be an NBA, and let At be the sub-NBA of A containing
the states and transitions discovered by a DFS up to (and including) time t. Show
that if a state q belongs to some cycle of A, then it already belongs to some cycle
of Af [q].

Solution: Let π be a cycle containing q, and consider the snapshot of the DFS at
time f [q]. If π is entirely black, then π is a cycle of Af [q], and we are done. Thus,
assume that it contains at least one nonblack state. Let r be the last state of π such
that all states on the subpath from q to r are black. Such a node exists since q is
black. Let s be the successor of r in π, as depicted below:

q

r

s

Since r is black and s is not black, we have f [r] ≤ f [q] < f [s]. Moreover,
since all successors of r have been discovered at time f [r], we have d[s] < f [r].
Altogether, we obtain d[s] < f [r] ≤ f [q] < f [s]. By the parenthesis theorem,
intervals [d[q], f [q]] and [d[s], f [s]] are either disjoint, or one is a subinterval of the
other one. Consequently, since d[s] < f [q] < f [s], we must have d[s] < d[q] <
f [q] < f [s]. By the parenthesis theorem, q is a DFS-descendant of s.

SOLUTIONS FOR CHAPTER 12 484

Let π′ be the DFS-path from s to q. By the parenthesis theorem, each state p
along π′ is such that d[p] < d[q] < f [q] < f [p]. In particular, d[p] < f [q] means
that all states of π′ have been discovered at time f [q]. Let σ be the cycle obtained
by concatenating the prefix of π from q to r, transition (r, s), and π′, as depicted
in bold and color below:

q

r

s

π′

Recall that: the prefix of π is entirely black; the transition from r to s has been
explored; and all states of π′ have been discovered by time d[q] via π′. Thus, cycle
π′ belongs to Af [q].

 Exercise 169. Execute SCCsearch on the Büchi automaton below. When a
state has many outgoing transitions, pick letters in this order: a < b < c.

q0 q1 q2

q3 q4 q5

q6
a

b

a

ca

b

bc

b

a

b

Solution:

Active graph N

q0 q1 q2

q3 q4 q5

q6
a

b

a

ca

b

bc

b

a

b

[(q0, {q0})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

ca

b

bc

b

a

b

[(q0, {q0}); (q1, {q1})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

ca

b

bc

b

a

b

[(q0, {q0}); (q1, {q1}); (q2, {q2})]

SOLUTIONS FOR CHAPTER 12 485

q0 q1 q2

q3 q4 q5

q6
a

b

a

ca

b

bc

b

a

b

[(q0, {q0}); (q1, {q1, q2})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

bca

b

c

b

a

b

[(q0, {q0}); (q1, {q1, q2}); (q4, {q4})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

b

b

ca

b

c a

b

[(q0, {q0}); (q1, {q1, q2}); (q4, {q4});
(q5, {q5})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

b

b

aca

b

c

b

[(q0, {q0}); (q1, {q1, q2}); (q4, {q4});
(q5, {q5}); (q6, {q6})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

b

b

aca

b

c

b

[(q0, {q0}); (q1, {q1, q2}); (q4, {q4});
(q5, {q5})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

b

b

aca

b

c

b

[(q0, {q0}); (q1, {q1, q2}); (q4, {q4})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

bc

b

aca

b

b

[(q0, {q0}); (q1, {q1, q2, q4})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

c bc

b

aa

b

b

[(q0, {q0}); (q1, {q1, q2, q4}); (q3, {q3})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

ca bc

b

a

b

b [(q0, {q0}); (q1, {q1, q2, q3, q4})]

lasso detected via q3

 Exercise 170. Recall that SCCsearch runs in time O(|Q| + |δ|) if we con-
sider set unions as atomic. However, set unions are generally not constant-time
operations. Explain how beads can be implemented so that SCCsearch truly runs
in linear time.

SOLUTIONS FOR CHAPTER 12 486

Hint: Can two beads share a state?

Solution: First note that the beads of SCCsearch are disjoint sets, i.e. two beads
share no state in common. Moreover, we need to support these operations: (1)
initializing a trivial bead; (2) merging a bead into another one; (3) obtaining the
root of a bead; (4) iterating over the states of a bead. We have already taken
into account that operation (4) works in time O(|Q|) when analyzing case (vi) of
SCCsearch. Thus, we must implement operations (1) to (3) so that they operate
in constant time.

We implement a bead (r, C) as a linked list whose head is r and whose ele-
ments are those of C stored in an arbitrary order. We further keep a pointer to
the last state of the list, which we call the tail. The operations are respectively
implemented as follows:

(1) We set r as both the head and tail, and we set the successor of r as “null”.

(2) To mergeB′ = (r′, C ′) intoB = (r, C), we proceed as follows: the new head
is r; the new tail is the tail of B′; and the successor of the tail of B becomes
the head of B′, i.e. r′.

(3) We simply return the head.

(4) We iterate over the linked list from the head to the tail.

Operations (1) to (3) work in constant time as the head and tails are known.

Readers familiar with disjoint sets (also known as union-find) may have been
tempted to use this data structure instead. However, it yields quasilinear time,
typically O(n logn) or O(α(n) · n) where α is the (very slow-growing) inverse
Ackermann function. Disjoint sets turn out to be an overkill since we do not need
the “find” operation, i.e. we never query whether a given state belongs to a given
bead. This explains why we are able to obtain a better complexity.

⋆ Exercise 171. Recall that exercise 170 gives an implementation of SCCsearch
that truly works in linear time. Let us now take the memory usage into account.
Let at and bt denote, respectively, the number of active states and the number of
beads at time t. Let f(t) be the number of bits used at time t to store the current
beads. Let w be the size of an address.

The solution of exercise 170 satisfies f(t) = 2(at + bt)w. Indeed, it uses two
addresses per active state (one pointing to the state itself and one to its successor),
plus two extra addresses per bead (for the head and tail). Give an implementation
of SCCsearch that halves the memory usage—namely, one that runs in linear time
and satisfies f(t) = (at + bt)w.

Hint: Use two stacks, one for roots and one for active states.

Solution: Recall that the original implementation of SCCsearch uses stack N to
stores the beads. We get rid of N . Instead, we use a stack R to store the roots and
a stack V to store the active states. We implement the algorithm in such a way
that if q is the top of R and r1r2 · · · rkq in on V , then (q, {r1, r2, . . . , rk, q}) is the
current bead, i.e. it would be the top of N in the original implementation. We call

SOLUTIONS FOR CHAPTER 12 487

this a proper encoding of N . Such an encoding stores all beads together in V , and
the top element of R gives enough information to pop the current bead from V ,
i.e. it suffices to pop until we find the current root. This can be achieved with the
following pseudocode:

1 S,R, V ← ∅; n← 0

2 dfs(q0)
3 report EMP

4 proc dfs(q)
5 n← n+ 1; rank(q)← n

6 add q to S; act(q)← true; push q onto R; push q onto V
7 for all r ∈ δ(q) do
8 if r /∈ S then dfs(r)
9 else if act(r) then
10 repeat
11 pop s from R; if s ∈ F then report NEMP
12 until rank(s) ≤ rank(r)
13 push s onto R
14 if top(R) = q then
15 pop q from R

16 repeat
17 pop r from V ; act(r)← false
18 until r = q

Let us explain why this implementation is correct. We do so by arguing that
(R, V) remains a proper encoding of the original stack N throughout the execu-
tion:

• Line 6: Clearly “push q onto R; push q onto V ” properly implements “push
(q, {q}) onto N”.

• Lines 10–13: The difference with the original implementation is that there
is no explicit union of the beads. Let s be the state found after the repeat
loop. Suppose that prior to the loop, qℓ = s, R = q1 · · · qℓ · · · , and V =
r1,1 · · · r1,k1q1 · · · rℓ,1 · · · rℓ,kℓqℓ · · · . After executing the loop and pushing s,
we obtain R = qℓ · · · and V has not changed. Thus, the top element of
R correctly represents the bead obtained by merging beads (q1, {q1,1, . . . ,
q1,k1}), . . . , (qℓ, {qℓ,1, . . . , qℓ,kℓ}). Note that this cleverly avoids any explicit
union since V has not changed at all!

• Line 14: Since (R, V) is a proper encoding, we have “top(R) = q” iff q is the
top root in N .

• Lines 15–18: Since (R, V) is a proper encoding, all states from the top of V
down to state q correspond to the bead of q. Hence, the pop from R and the
repeat loop properly implement “pop (q, C) from N”.

It remains to consider the running time, and memory usage for the beads. The
algorithm runs in linear time. Indeed, the original analysis still applies, but now

SOLUTIONS FOR CHAPTER 12 488

without any set union to consider at all. Moreover, at time t, we have |V |+ |R| =
at + bt. Thus, by storing addresses on the stack (pointing to the states), we use
f(t) = (at + bt)w bits at time t.

 Exercise 173. Execute Emerson–Lei’s algorithm and MEL on this NBA:

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

Solution: Let us first execute Emerson–Lei’s algorithm:

Iter. L

1

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

2

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

3

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

4 Unchanged, report “non empty” since it contains q0

SOLUTIONS FOR CHAPTER 12 489

The very first iteration of MEL filters {q8, q9} via line 4 and {q4, q5, q6, q7} via
lines 5 and 6:

Iter. L

1

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

2 Unchanged, report “non empty” since it contains q0

 Exercise 175. This exercise deals with a variation of Emerson–Lei’s algo-
rithm.

(a) For every R,S ⊆ Q, let pre+(R,S) be the set of states q such that there is
a nonempty path π from q to some state of R where π only contains states
from S. Give an algorithm to compute pre+(R,S).

(b) Execute the algorithm from (a) on the following automaton, where states
from R and S are respectively solid and hatched:

(c) Show that the following modification of Emerson–Lei’s algorithm is correct:

SOLUTIONS FOR CHAPTER 12 490

MEL2(A)
Input: NBA A = (Q,Σ, δ,Q0, F)
Output: EMP if Lω (A) = ∅, NEMP otherwise
1 L← Q

2 repeat
3 OldL← L

4 L← pre+(L ∩ F,L)
5 until L = OldL
6 if q0 ∈ L then report NEMP
7 else report NEMP

(d) What is the difference between the sequences of sets computed by MEL and
MEL2?

Solution:

(a)

Input: NBA A = (Q,Σ, δ,Q0, F) and sets R,S ⊆ Q
Output: pre+(R,S)
1 L← R ∩ S
2 repeat
3 OldL← L

4 L← pre(L) ∩ S
5 until L = OldL
6 return L

(b)

Iter. L

0

SOLUTIONS FOR CHAPTER 12 491

1

2

3

4

(c) LetL[0] = L[0]′′ = Q, L[n+1] = pre+(L[n]∩F) andL[n+1]′′ = pre+(L[n]′′∩
F,L[n]′′). Emerson–Lei’s algorithm computes the fixpoint of the sequence
{L[n]}n≥0, while MEL2 computes the fixpoint of the sequence {L[n]′′}n≥0.
Let L[i] be the fixpoint of the first sequence. We claim that L[i] ⊆ L[n]′′ ⊆
L[n] holds for every n ≥ 0. This claim implies that MEL2 is correct. Indeed,
let L[j]′′ be the fixpoint of the second sequence. Let ℓ = max(i, j). We have

SOLUTIONS FOR CHAPTER 12 492

L[i] ⊆ L[ℓ]′′ ⊆ L[ℓ] = L[i]. Thus, L[i] = L[ℓ]′′ = L[j]′′ and hence the two
sequences have the same fixpoint.
It remains to show the claim. We proceed by induction. For n = 0, we
trivially have L[i] ⊆ Q = L[0]′′ = L[0]. Let n ≥ 0. By induction hypothesis,
we have L[i] ⊆ L[n]′′ ⊆ L[n]. Since L[i] is the fixpoint of the first sequence,
we have pre+(L[i]∩F) = L[i]. This implies pre+(L[i]∩F,L[i]) = L[i]. Thus,
the following holds:

L[i] = pre+(L[i] ∩ F,L[i]) ⊆ pre+(L[n]′′ ∩ F,L[n]′′) = L[n+ 1]′′.

Moreover, we have:

L[n+ 1]′′ = pre+(L[n]′′ ∩ F,L[n]′′) ⊆ pre+(L[n]′′ ∩ F)
⊆ pre+(L[n] ∩ F) = L[n+ 1].

(d) At each iteration, MEL2 computes set f(L) = pre+(L∩F,L), and MEL com-
putes set g(L) = pre+(inf(L) ∩ F). Set f(L) contains states that can reach
an accepting state from L via a nonempty path within L. Set g(L) contains
states that can reach an accepting state from L, from which there exists a
lasso within L. Therefore, f(L) and g(L) are incomparable.

Solutions for Chapter 13

 Exercise 176. Prove formally the following equivalences:

(a) ¬Xφ ≡ X¬φ

(b) ¬Fφ ≡ G¬φ

(c) ¬Gφ ≡ F¬φ

(d) XFφ ≡ FXφ

(e) XGφ ≡ GXφ

Solution:

(a)

σ |= ¬Xφ ⇐⇒ σ ̸|= Xφ
⇐⇒ σ1 ̸|= φ

⇐⇒ σ1 |= ¬φ
⇐⇒ σ |= X¬φ.

(b)

σ |= ¬Fφ ⇐⇒ ¬(σ |= Fφ)

⇐⇒ ¬(∃k ≥ 0 : σk |= φ)

⇐⇒ ∀k ≥ 0 ¬(σk |= φ)

⇐⇒ ∀k ≥ 0 (σk |= ¬φ)
⇐⇒ G¬φ.

(c)

σ |= ¬Gφ ⇐⇒ ¬(σ |= Gφ)

⇐⇒ ¬(∀k ≥ 0 (σk |= φ))

⇐⇒ ∃k ≥ 0 : ¬(σk |= φ)

⇐⇒ ∃k ≥ 0 : (σk |= ¬φ)
⇐⇒ F¬φ.

493

SOLUTIONS FOR CHAPTER 13 494

(d)

σ |= XFφ ⇐⇒ σ1 |= Fφ

⇐⇒ ∃k ≥ 0 : (σ1)k |= φ

⇐⇒ ∃k ≥ 0 : (σk)1 |= φ

⇐⇒ ∃k ≥ 0 : σk |= Xφ
⇐⇒ σ |= FXφ.

(e)

σ |= XGφ ⇐⇒ σ1 |= Gφ

⇐⇒ ∀k ≥ 0 ((σ1)k |= φ)

⇐⇒ ∀k ≥ 0 (σk |= Xφ)
⇐⇒ σ |= GXφ.

 Exercise 178. Let AP = {p, q} and Σ = 2AP . Give LTL formulas defining
the following languages:

(a) {p, q} ∅ Σω

(b) Σ∗ ({p}+ {p, q}) Σ∗ {q} Σω
(c) Σ∗ {q}ω

(d) {p}∗ {q}∗ ∅ω

Solution:

(a) (p ∧ q) ∧ X(¬p ∧ ¬q).

(b) F(p ∧ XF(¬p ∧ q)).

(c) FG(¬p ∧ q).

(d) (p ∧ ¬q) U [(¬p ∧ q) U G(¬p ∧ ¬q)].

 Exercise 180. Let AP = {p, q} and let Σ = 2AP. Give Büchi automata for
the ω-languages over Σ defined by the following LTL formulas:

(a) XG¬p

(b) (GFp)→ (Fq)

(c) p ∧ ¬(XFp)

(d) G(p U (p→ q))

(e) Fq → (¬q U (¬q ∧ p))

Solution:

(a)

SOLUTIONS FOR CHAPTER 13 495

Σ

∅, {q}

(b) Note that GFp→ Fq ≡ ¬(GFp)∨ Fq ≡ FG¬p∨ Fq. We build Büchi automata
for FG¬p and Fq and take their union:

Σ ∅, {q}
{q}, ∅

{q}, {p, q}
Σ

(c) Note that p∧¬(XFp) ≡ p∧XG¬p. We build a Büchi automaton for p∧XG¬p:

{p}, {p, q}

∅, {q}

(d)

{p}

∅, {q}, {p, q}

∅, {q}, {p, q}

{p}

(e) Note that Fq → (¬q U (¬q ∧ p)) ≡ G¬q ∨ (¬q U (¬q ∧ p)). Computations
that satisfy the latter formula either have no occurrence of p, and hence of
q, or a first occurrence of p with no q before or at the same time:

∅

{p}

Σ

 Exercise 182. Let V ∈ {F,G}∗ be a sequencemade of the temporal operators
F and G. Show that FGp ≡ V FGp and GFp ≡ V GFp.

SOLUTIONS FOR CHAPTER 13 496

Solution: Given LTL formulas φ and ψ, we denote by φ |= ψ that every compu-
tation satisfying φ satisfies ψ. Note that φ ≡ σ iff φ |= ψ and ψ |= φ. It is readily
seen that the following holds:

FFφ ≡ Fφ, (14.6)
GGφ ≡ Gφ, (14.7)

Gφ |= φ and φ |= Fφ. (14.8)

Let us show that (a) FGφ ≡ GFGφ and (b) GFφ ≡ FGFφ.

(a) We have GFGφ |= FGφ by (14.8). Let σ |= FGφ. There exists i ≥ 0 such that
σj |= φ for every j ≥ i. Thus, for every k ≥ 0 there is some ℓ ≥ 0 such that
(σk)ℓ |= φ. Indeed, if k ≥ i, then take ℓ = 0, and if k < i, then take ℓ = i−k.
Therefore, we have σk |= FGφ for every k ≥ 0, and hence σ |= GFGφ. This
means that FGφ |= GFGφ.

(b) We have GFφ |= FGFφ by (14.8). It is the case that FGFφ |= GFφ. Indeed,
if there exists i ≥ 0 such that σj |= φ holds for infinitely many j ≥ i, then,
in particular, σj |= φ holds for infinitely many j ≥ 0.

We prove FGφ ≡ V FGφ by induction on the length of V. If V = ε, then we are
done. If V = UF, then we have V FGφ ≡ U FGφ by (14.6). If V = UG, then we
have the same equivalence by (a). By induction hypothesis, we get U FGφ ≡ FGφ.
The other equivalence is proved similarly using (14.7) and (b).

 Exercise 183. Recall that a formula is a tautology if all computations satisfy
it. Which of the following formulas of LTL are tautologies? If the formula is not a
tautology, then give a computation that does not satisfy it.

(a) Gp→ Fp

(b) G(p→ q)→ (Gp→ Gq)

(c) F(p ∧ q)↔ (Fp ∧ Fq)

(d) ¬Fp→ F¬Fp

(e) (Gp→ Fq)↔ (p U (¬p ∨ q))

(f) (FGp→ GFq)↔ G(p U (¬p ∨ q))

(g) G(p→ Xp)→ (p→ Gp)

Solution:

(a) Gp→ Fp is readily seen to be a tautology from the definitions of F and G.

(b) G(p→ q) → (Gp → Gq) is a tautology. The left-hand side states that any
point of the computation that satisfies p also satisfies q. Thus, if every point
satisfies p, then every point satisfies q.

(c) F(p ∧ q)↔ (Fp ∧ Fq) is not a tautology. The computation {p}{q}∅ω satisfies
Fp ∧ Fq but not F(p ∧ q).

(d) ¬Fp → F¬Fp is a tautology. The formula φ → Fφ is clearly a tautology for
every formula φ, and hence in particular with φ = ¬Fp.

SOLUTIONS FOR CHAPTER 13 497

(e) (Gp → Fq) ↔ (p U (¬p ∨ q)) is a tautology. The left-hand side is equivalent
to F¬p ∨ Fq ≡ F(¬p ∨ q). If the right-hand side holds, then some point of
the computation satisfies ¬p ∨ q, and hence the left-hand side holds. If the
left-hand side holds, then there exists a first point at which ¬p∨q holds, and,
since it is the first, all points before it satisfy p∧¬q, and so in particular, they
all satisfy p. Thus, the right-hand side holds as well.

(f) (FGp→ GFq)↔ G(p U (¬p ∨ q)) is a tautology. The left-hand side is equiv-
alent to formulas GF¬p ∨ GFq ≡ GF(¬p ∨ q). If a computation σ = σ0σ1 · · ·
satisfies the right-hand side, then every suffix of σ satisfies p U (¬p ∨ q). So
for every point of σ, some future point satisfies ¬p∨q, which implies that the
left-hand side holds. If a computation σ satisfies the left-hand side, then its
points can be partitioned into the infinite set of points satisfying ¬p∨ q, and
the rest, which satisfy p ∧ q, and so, in particular, p. Therefore, every suffix
of σ satisfies p U (¬p ∨ q), which implies that σ satisfies G(p U (¬p ∨ q)).

(g) G(p→ Xp)→ (p→ Gp) is a tautology. We have

G(p→ Xp)→ (p→ Gp) ≡ ¬G(¬p ∨ Xp) ∨ (¬p ∨ Gp)
≡ F(p ∧ ¬Xp) ∨ ¬p ∨ Gp
≡ F¬p ∨ Gp,

which is clearly a tautology.

⋆ Exercise 184. We say that an LTL formula is negation-free if negations
only occur in front of atomic formulas (that is, ¬true or ¬a where a is an atomic
proposition). In this exercise, we show how to construct a deterministic Büchi
automaton for negation-free LTL formulas. In the remainder, we assume that φ
denotes such a formula over a set of atomic propositionsAP . We inductively define
the formula af(φ, ν), read “φ after ν” where ν ∈ 2AP , as follows:

af(true, ν) = true, af(φ ∧ ψ, ν) = af(φ, ν) ∧ af(ψ, ν),
af(false, ν) = false, af(φ ∨ ψ, ν) = af(φ, ν) ∨ af(ψ, ν),

af(a, ν) = af(a ∈ ν, ν), af(Xφ, ν) = φ,

af(¬a, ν) = af(a /∈ ν, ν), af(φ U ψ, ν) = af(ψ, ν) ∨ (af(φ, ν) ∧ φ U ψ).

We extend it to finite words: af(φ, ϵ) = φ and af(φ, νw) = af(af(φ, ν), w) for every
ν ∈ 2AP and every finite word w. Prove the following statements:

(a) For every formula φ, finite word w ∈
(
2AP

)∗ and ω-word w′ ∈
(
2AP

)ω:
ww′ |= φ ⇐⇒ w′ |= af(φ,w).

So, intuitively, af(φ,w) holds “after reading w” iff φ holds “at the beginning”
of ww′.

(b) For every negation-free formula φ: w |= φ iff af(φ,w′) ≡ true for some finite
prefix w′ of w.

SOLUTIONS FOR CHAPTER 13 498

(c) For every formula φ and ω-word w ∈
(
2AP

)ω: af(φ,w) is a positive boolean
combination of subformulas of φ.

(d) For every formula φ of length n: the set of formulas {af(φ,w) : w ∈
(
2AP

)∗}
has at most 22

n

equivalence classes up to LTL-equivalence.

(e) There exists a deterministic Büchi automaton recognizing Lω (φ) with at
most 22

n

states, where n is the length of φ. Hint: Use (b)–(d).

Solution:

(a) First we prove the property for the case where w is a single letter ν ⊆ AP—
that is, we prove

νw′ |= φ ⇐⇒ w′ |= af(φ, ν) (14.9)

by structural induction on φ. We only consider two representative cases.

• Case φ = a. We have

νw′ |= a ⇐⇒ a ∈ ν
⇐⇒ af(a, ν) = true
⇐⇒ w′ |= af(a, ν).

• Case φ = φ′ U φ′′. We have

νw′ |= φ′ U φ′′

⇐⇒ νw′ |= φ′′ ∨ (φ′ ∧ X(φ′ U φ′′))

⇐⇒ (νw′ |= φ′′) ∨ [(νw′ |= φ′) ∧ (w′ |= φ′ U φ′′)]

⇐⇒ [w′ |= af(φ′′, ν)] ∨ [(w′ |= af(φ′, ν)) ∧ (w′ |= φ′ U φ′′)]

⇐⇒ w′ |= af(φ′′, ν) ∨ (af(φ′, ν) ∧ φ′ U φ′′)

⇐⇒ w′ |= af(φ′ U φ′′, ν).

Now, let us prove the property for every word w by induction on the length
of w. If w = ε, then af(φ,w) = φ, and hence

ww′ |= φ ⇐⇒ w′ |= φ ⇐⇒ w′ |= af(φ,w).

If w = νw′′ for some ν ∈ 2AP , then we have

w′ |= af(φ,w) ⇐⇒ w′ |= af(φ, νw′′)
⇐⇒ w′ |= af(af(φ, ν), w′′) (by def. of af)
⇐⇒ w′′w′ |= af(φ, ν) (by induction hypothesis)
⇐⇒ νw′′w′ |= φ (by (14.9))
⇐⇒ ww′ |= φ.

(b) If af(φ,w′) ≡ true, then, by (a), we have w′w′′ |= φ for every w′′, and so in
particular, w |= φ. For the other direction, assume that w |= φ. The proof is
by structural induction on φ. We only consider two representative cases as
in (a).

SOLUTIONS FOR CHAPTER 13 499

• Case φ = a. Since w |= φ, we have w = νw′ for some word w′ and some
ν ∈ AP such that a ∈ ν. By definition of af, we have af(a, ν) ≡ true.

• Case φ = φ′ U φ′′. By the semantics of LTL, there exists k ∈ N such that
wk |= φ′′ and wℓ |= φ′ for every 0 ≤ ℓ < k. By induction hypothesis,
for every 0 ≤ ℓ < k, there exists iℓ ≥ ℓ such that af(φ′, w[ℓ..iℓ]) ≡ true.
Furthermore, there exists ik ≥ k such that af(φ′′, w[k..ik]) ≡ true. Let
m = max{ij : 0 ≤ j ≤ k}. We show that af(φ′ U φ′′, w[0..m]) ≡ true
by induction on k.
– Case k = 0. We have

af(φ′ U φ′′, w[0..m])

= af(φ′′, w[0..m]) ∨ (af(φ′, w[0..m]) ∧ af(φ′ U φ′′, w[1..m]))

= af(af(φ′′, w[k..ik]), w[ik + 1..m]) ∨
(af(φ′, w[0..m]) ∧ af(φ′ U φ′′, w[1..m]))

= af(true, w[ik + 1..m]) ∨
(af(φ′, w[0..m]) ∧ af(φ′ U φ′′, w[1..m]))

≡ true ∨ (af(φ1, w[0..m]) ∧ af(φ′ U φ′′, w[1..m]))

≡ true.

– Case k > 0. We have

af(φ′ U φ′′, w[0..m])

= af(φ′′, w[0..m]) ∨ (af(φ′, w[0..m]) ∧ af(φ′ U φ′′, w[1..m]))

= af(φ′′, w[0..m]) ∨
(af(af(φ′, w[0..i0]), w[i0 + 1..m]) ∧ af(φ′ U φ′′, w[1..m]))

= af(φ′′, w[0..m]) ∨
(af(true, w[i0 + 1..m]) ∧ af(φ′ U φ′′, w[1..m]))

≡ af(φ′′, w[0..m]) ∨ (true ∧ af(φ′ U φ′′, w[1..m]))

≡ af(φ′′, w[0..m]) ∨ (true ∧ true)
≡ true,

where af(φ′ U φ′′, w[1..m]) ≡ true by induction hypothesis.

(c) This follows by a straightforward structural induction on φ since all defini-
tions only involve true, false, ∧, ∨, and subformulas of φ.

(d) We assign a boolean variable bψ to each subformula ψ of φ. Let

Bφ = {bψ : ψ is a subformula of φ}.

Since φ has length n, the set Bφ contains at most n variables. By (c), we can
assign to each formula af(φ,w) a boolean function fw over Bφ. Clearly, if
fw and fw′ are equal, then af(φ,w) ≡ af(φ,w′). The result follows because
there are 22

n

boolean functions over n variables.

SOLUTIONS FOR CHAPTER 13 500

(e) The set of states are the equivalence classes of the formulas:{
af(φ,w) : w ∈

(
2AP

)∗}
.

By (d), there are at most 22
n

states. The only initial and final states are
respectively the equivalence class of φ and true. The transition relation is
given by [ψ1]

ν−→[ψ2] iff af(ψ1, ν) ≡ ψ2.

 Exercise 185. In this exercise, we show that the reduction algorithm of
exercise 150(2) does not reduce the Büchi automata generated from LTL formulas,
as well as show that a little modification to the algorithm LTLtoNGA (algorithm 57)
can alleviate this problem.

Let φ be a formula of LTL(AP), and let Aφ = LTLtoNGA(φ).

(a) Prove that the reduction algorithm of exercise 150(2) does not reduce A,
that is, show that A = A/CSR.

(b) Prove that Lω (Bφ) = Lω (Aφ), where Bφ is the result of modifying Aφ as
follows:

• add a new state q0 and make it the unique initial state.

• for every initial state q of Aφ, add a transition q0
q∩AP−−−−→ q to Bφ (recall

that q is an atom of cl(φ), and so q ∩ AP is well defined).

• replace every transition q1
q1∩AP−−−−→ q2 of Aφ by q1

q2∩AP−−−−→ q2.

(c) Construct the automaton Bφ for the automaton of figure 13.7.

(d) Apply the reduction algorithm of exercise 150(2) to Bφ. Is the resulting
automaton minimal?

Solution:

(a) If the reduction algorithmmerges two states q1 and q2, thenwe haveLω (q1) =
Lω (q2). Since the automata for LTL formulas satisfy Lω (q1) ∩ Lω (q2) = ∅
for every two distinct states, no states are merged.

(b) Recall that, for every computation σ = σ0σ1σ2 . . ., the unique run of Aφ on
σ is

α0
σ0−−→α1

σ1−−→α2
σ2−−→ . . .

where α = α0α1α2 . . . is the unique satisfaction sequence for φ matching σ.
By definition of Bφ, the unique run of Bφ on σ is

q0
σ0−−→α0

σ1−−→α1
σ2−−→α2

σ3−−→ . . .

(c) Automata Aφ and Bφ are respectively as follows:

SOLUTIONS FOR CHAPTER 13 501

p, q, p U q

p,¬q, p U q

¬p, q, p U q

¬p,¬q,¬(p U q)

p,¬q,¬(p U q)
{p, q}

{p, q}

{p}

{p, q}

{q}

{p, q}

∅

{p, q}

{p}

{p}

{q}

{q}

{q}

∅

{q}

∅

∅

{p}

∅

{p}

p, q, p U q

p,¬q, p U q

¬p, q, p U q

¬p,¬q,¬(p U q)

p,¬q,¬(p U q)

q0
{p, q}

{p}

{q}

{p, q}

{p}

{p, q}

{q}

{p, q}

∅

{p, q}

{p}

{p}

{q}

{p}

{q}

∅

{q}

{p}

∅

{p}

∅

{p}

{p}

(d) The relation CSR′ has three equivalence classes:

Q0 =

{
q0, {p,¬q, p U q}

}
,

Q1 =

{
{p, q, p U q}, {¬p, q, p U q}, {¬p,¬q,¬(p U q)}

}
,

Q2 =

{
{p,¬q,¬(p U q)}

}
.

This leads to the following reduced NBA:

Q0 Q1 Q2

{p}
{q}, {p, q}

{p}

∅, {q}, {p, q}
{p}

∅

{p}

Note that the above reduced NBA is not minimal since it could be simplified
to

SOLUTIONS FOR CHAPTER 13 502

{p}

{q}, {p, q}

∅, {p}, {q}, {p, q}

⋆ Exercise 187. In this exercise, we prove that, in the worst case, the number
of states of the smallest deterministic Rabin automaton for an LTL formula can be
doubly exponential in the size of the formula. Let Σ0 = {a, b}, Σ1 = {a, b,#} and
Σ = {a, b,#, $}. For every n ≥ 0, let us define the ω-language Ln ⊆ Σω as follows:

Ln =
∑
w∈Σn

0

Σ∗1 # w # Σ∗1 $ w #ω.

Informally, an ω-word belongs to Ln iff

• it contains a single occurrence of $,

• the word to the left of $ is of the form w0#w1# · · ·#wk for some k ≥ 1 and
(possibly empty) words w0, . . . , wk ∈ Σ∗0,

• the ω-word to the right of $ consists of a word w ∈ Σn0 followed by an infinite
tail #ω, and

• w is equal to at least one of w0, . . . , wn.

Show the following statements:

(a) There is an infinite family {φn}n≥0 of formulas of LTL(Σ) such that φn has
size O(n2) and Lω (φn) = Ln. Here, “Lω (φn) = Ln” stands for σ ∈ Lω (φn)
iff σ = {a1}{a2}{a3} · · · for some ω-word a1a2a3 · · · ∈ Ln.

(b) The smallest deterministic Rabin automaton recognizing Ln has at least 22
n

states.

Solution:

(a) We first define some auxiliary formulas.

(i) Let

Sing := G

∨
α∈Σ

α ∧
∧

α,β∈Σ

(¬α ∨ ¬β)

.
This formula expresses that at every position, exactly one proposition of
Σ holds (i.e., the set of atomic propositions that hold is a singleton set).
Therefore, for every computation satisfying Sing and for every position
n, we can speak of “the” letter of Σ at position n.

(ii) Let
One_$:= ¬$ U ($ ∧ XG¬$).

Together with (i), this formula expresses that $ occurs exactly once.

SOLUTIONS FOR CHAPTER 13 503

(iii) Let

Matchi := # ∧
i∧

j=1

(
Xja ∧ G($→ Xja)

)
∨(

(Xjb ∧ G($→ Xjb)
)
) ∧ Xi+1#.

Together with (i) and (ii), this formula expresses that the current letter
and the next i+ 1 letters constitute a block of the form #w# for some
word w ∈ Σ∗0, and moreover, w also occurs immediately after the only
occurrence of $.

(iv) For every i ≥ 0, we define the formula After_$i inductively as follows:

After_$0 := G#,
After_$i+1 := (a ∨ b) ∧ XAfter_$i.

Together with (i), After_$n expresses that the next n letters are taken
from the set {a, b} and that they are followed by an infinite tail of #.

We choose

φn := Sing ∧ One_$ ∧ F (Matchn) ∧ G($→ After_$n).

Since the lengths of After_$n and Matchn belong, respectively, to O(n) and
O(n2), the length of φn belongs to O(n2). Clearly, we have Lω (φn) = Ln.

(b) Take anω-word of the form#w1 # · · ·#wk # $w#ω, where all ofw1, . . . , wk
are of length n. The intuition is that, after reading the only occurrence of $,
the DRA must have stored in its state the set {w1, . . . , wn}, since otherwise,
after reading w it cannot decide whether it belongs to the set. Since there
are 22

n

sets of words over {a, b} of length n, the automaton also needs at
least this number of states.
Formally, for every set S = {w1, . . . , wk} of words from Σn0 , where wi is
lexicographically smaller than wj for all i < j, let wS = # w1 # · · ·# wk # $.
Let A be a DRA recognizing Ln. For the sake of contradiction, suppose that
A has less than 22

n

states. There must exist distinct sets S and T such that
the state reached by A after reading wS and wT is the same. Moreover, we
may assume w.l.o.g. that there is a word w that belongs to S \ T . Note that
A accepts wS w #ω and hence wT w #ω. The latter does not belong to Ln,
which yields a contradiction.

Solutions for Chapter 14

 Exercise 188. Give an MSO({a, b}) sentence for each of the following ω-
regular languages:

(a) Finitely many as: (a+ b)∗bω

(b) Infinitely many bs: ((a+ b)∗b)ω

(c) as at each even position: (a(a+ b))ω

What regular languages would you obtain if your sentences were interpreted over
finite words?

Solution:

(a) ∃x ∀y ((x < y)→ Qb(y))

(b) ∀x ∃y ((x < y) ∧Qb(y))

(c) ∃X : [∀x (x ∈ X ↔ (x = 0 ∨ ∃y (x = y + 2 ∧ y ∈ X)))] ∧ [∀x ((x ∈ X) →
Qa(x))] where

(x = 0) := ∀y ¬(y < x),

(x = y + 2) := ∃z [(y < z ∧ z < x) ∧ (∀z′ ((y < z′ ∧ z′ < x)→ (z′ = z)))],

(z′ = z) := ¬((z′ < z) ∨ (z < z′)).

Over finite words, we obtain

(a) (a+ b)+

(b) (a+ b)∗b

(c) (a(a+ b))∗

504

SOLUTIONS FOR CHAPTER 14 505

 Exercise 189. Let us revisit exercise 131 over infinite words rather than
finite ones. Consider a formula ϕ(X) of MSO(Σ) that does not contain any occur-
rence of predicates of the form Qa(x). Given two interpretations that assign the
same set of positions to X, we have that either both interpretations satisfy ϕ(X),
or none of them does. Thus, we can speak of the sets of natural numbers satisfy-
ing ϕ(X). This observation can be used to automatically prove some (very) simple
properties of the natural numbers. Consider, for instance, the following “conjec-
ture”: every set of natural numbers has a minimal element.4 The conjecture holds
iff the formula

Has_min(X) := ∃x ∈ X ∀y ∈ X (x ≤ y)

is satisfied by every interpretation in which X is nonempty. Construct an automa-
ton for Has_min(X), and check that it recognizes all nonempty sets.

Solution: After replacing abbreviations, we obtain the equivalent formula

∃x [x ∈ X ∧ (¬∃y (y ∈ X ∧ y < x))].

The Büchi automaton for formula ¬∃y (y ∈ X ∧ y < x), where the encoding of x
is at the top and the encoding for X is at the bottom, is as follows:

p q

[
0
0

]
[
1
0

]
,

[
1
1

] [
0
0

]
,

[
0
1

]

The Büchi automaton for x ∈ X is as follows:

p′ q′

[
0
0

]
,

[
0
1

]
[
1
1

] [
0
0

]
,

[
0
1

]

The intersection of the two automata is as follows:

p, p′, 1 q, q′, 1 q, q′, 2

[
0
0

]
[
1
1

] [
0
0

]
,

[
0
1

]

[
0
0

]
,

[
0
1

]

After projection ontoX (second row), we get a Büchi automaton for Has_min(X):
4We only proved the case of finite sets in exercise 131. Here, we handle finite and infinite sets.

SOLUTIONS FOR CHAPTER 14 506

0

1
0, 1

0, 1

In words, it recognizes all ω-words with at least one 1, which corresponds to
nonempty sets.

 Exercise 191. Let φ be a formula from linear arithmetic s.t. V |= φ iff
V(x) ≥ V(y) ≥ 0. Give an NBA that accepts the solutions of φ (over R), without
necessarily following the construction presented in the chapter.

Solution: We provide the following automaton. The part on the left deals with
edge cases where x or y begin, with 1 but is equal to zero (e.g., x = 1,1ω). The
part on the right deals with the general case where both x and y begin with 0.

[
0
0

]
[
0
0

]
,

[
1
1

]
[
1
0

]

[
⋆
⋆

]

[
0
0

]
,

[
1
0

]
,

[
0
1

]
,

[
1
1

]

[
⋆
⋆

]
[
0
0

]
,

[
1
1

]
[
0
1

]

[
1
0

]

[
1
0

]
[
0
0

]
,

[
1
0

]
,

[
0
1

]
,

[
1
1

]

[
1
1

]

[
1
0

]

[
0
1

]

[
⋆
⋆

]

[
⋆
⋆

]

[
⋆
⋆

]

[
1
1

]

[
1
0

]

[
0
1

]
,

[
1
1

]

[
1
1

]

[
1
0

]

[
0
1

]
,

[
1
1

]

 Exercise 193. Linear arithmetic cannot express the operations y = ⌈x⌉
(ceiling) and y = ⌊x⌋ (floor). Explain how they can be implemented with Büchi
automata.

Solution: Let us consider the case of y = ⌊x⌋, where both numbers begin with
0 (there are other edge cases to consider, e.g., x = 0 ⋆ 0ω and y = 1 ⋆ 1ω). If
the fractional part of x is not 1ω, then we can copy the integer part and set the
fractional part to 0ω. However, there exists a second representation of the resulting
integer. For example, 0110⋆010ω (6.25) becomes either 0110⋆0ω (6.0) or 0101⋆1ω
(5.9). If the fractional part is 1ω, then the number is already an integer. We
produce its two versions—that is, from MSBF(x) ⋆ 1ω, we produce MSBF(x) ⋆ 1ω
itself or MSBF(x+ 1) ⋆ 0ω. For example, 0011 ⋆ 1ω (3.9) becomes either 0011 ⋆ 1ω
(3.9) or 0100 ⋆ 0ω (4.0). The resulting automaton is as follows:

SOLUTIONS FOR CHAPTER 14 507

[
0
0

]
[
0
0

]
,

[
1
1

]

[
⋆
⋆

]

[
1
0

]

[
0
1

]

[
1
0

]
[
0
0

]
[
0
0

]
,

[
1
0

]

[
0
1

]
[
⋆
⋆

]
[
1
1

]
[
0
1

]
[
0
1

]
,

[
1
1

]

[
1
0

]
[
⋆
⋆

]
[
1
0

]

[
⋆
⋆

] [
1
1

]

The reasoning is symmetric for negative numbers. For example, 101 ⋆ 110ω

represents−2.25, and its floor can be represented by 101⋆000ω (−3.0) or 100⋆111ω
(−4+0.9). Similarly, 110⋆1ω represents,−1 and its floor can be represented either
by itself (−2 + 0.9) or by 111 ⋆ 0ω (−1.0).

 Exercise 194. Let c be an irrational number such as π, e, or
√
2. Show that

no formula from linear arithmetic is such that V |= φ iff V(x) = c.

Solution: For the sake of contradiction, suppose that there exists some formula
from linear arithmetic such that V |= φ iff V(x) = c. There exists a Büchi automa-
ton A = (Q,Σ, δ,Q0, F) for φ. Recall that a Büchi automaton always accepts at
least one periodic word. Since A only accepts encodings of c, which is irrational,
this is a contradiction.

More precisely, A accepts some word of the form

wk−1 · · ·w0 ⋆ x1 · · ·xm(y1 · · · yn)ω

for some m ≥ 0 and k, n ≥ 1. Thus, c is rational as it can be expressed as a finite

SOLUTIONS FOR CHAPTER 14 508

sum of rational numbers:

c =

k−1∑
ℓ=0

wℓ · 2ℓ +
m∑
j=1

xj
2j

+

∞∑
i=0

1

2m+i·n ·

 n∑
j=1

yj
2j

=

k−1∑
ℓ=0

wℓ · 2ℓ +
m∑
j=1

xj
2j

+

∞∑
i=0

1

2m+i·n ·
y1 · 2n−1 + . . .+ yn · 20

2n

=

k−1∑
ℓ=0

wℓ · 2ℓ +
m∑
j=1

xj
2j

+
y1 · 2n−1 + . . .+ yn · 20

2m+n
·
∞∑
i=0

(
1

2n

)i

=

k−1∑
ℓ=0

wℓ · 2ℓ +
m∑
j=1

xj
2j

+
y1 · 2n−1 + . . .+ yn · 20

2m+n
· 1

1− (1/2n)
(*)

=

k−1∑
ℓ=0

wℓ · 2ℓ +
m∑
j=1

xj
2j

+
y1 · 2n−1 + . . .+ yn · 20

2m+n · (1− (1/2n))︸ ︷︷ ︸
̸=0 since n≥1

,

where (*) follows from a geometric sum with r = 1/2n.

Bibliographic Notes

Chapter 1. Automata Classes and Conversions

Regular languages have been extensively studied. Several textbooks are dedi-
cated to this topic (and, more generally, to the theory computation), for exam-
ple, [HMU07, Sip12, Koz97, And06].

Regular expressions were introduced by Kleene in [Kle51, Kle56] under the
name “regular events.” The equivalence laws of table 1.1 are folklore. Kleene
already asked the question of finding an axiomatization—that is, a collection of
equivalence laws such that any two equivalent regular expressions can be proved
equivalent by applying a sequence of laws in the collection. Redko showed that
no finite axiomatization consisting only of equivalence laws exists [Red64]. Sa-
lomaa gave a finite axiomatization containing the laws of table 1.1 and Arden’s
lemma [Ard61], an inference rule stating that if r ≡ rs + t, then r = ts∗. Reg-
ular expressions and their axiomatization are also the subject of a monograph by
Conway [Con71]. The textbook by Hopcroft, Motwani, and Ullman describes ex-
tensions of regular expressions and applications to pattern matching and lexical
analysis [HMU07].

DFAs and NFAs were introduced by Rabin and Scott [RS59]. Previous automata
models had been defined by McCulloch and Pitts under the name “nerve nets”
(this model inspired Kleene’s work in [Kle51, Kle56]) and, according to [RS59],
by Myhill in unpublished work. The Rabin–Scott model defines finite automata as
a special class of Turing machines. It introduced many of the results presented in
chapters 1–3 and much of the terminology and notations we use today. However,
the paper is not written in an algorithmic style. For example, corollary 7.1 states:
Given a finite automaton A, there is an effective procedure whereby in a finite
number of steps, it can be decided whether L (A) is empty. The complexity is not
discussed, and the algorithm is hidden in the proof.

The powerset construction is due to Rabin and Scott [RS59]. The construction
that transforms regular expressions into NFA-ε is due to Thompson [Tho68]. Pre-
viously, McNaughton and Yamada presented an algorithm that directly transforms
a regular expression into a DFA [MY60]. The same paper contains an algorithm
to transform a DFA into a regular expression, although not the one given in the
chapter using NFA-reg.

509

SOLUTIONS FOR CHAPTER 14 510

Exercises 5 and 7 were respectively inspired by Marijana Lazić and Peter Ross-
manith. Alternating automata (exercise 22) were introduced by Chandra, Kozen,
and Stockmeyer in [CKS81] and have become a popular model. Exercise 26 is
borrowed from Abdulla, Bouajjani, and Jonsson [ABJ98]. Exercise 31 was in-
spired by Rupak Majumdar. Exercise 34 is due to Andrzej Ehrenfeucht and Paul
Zeiger [EZ76]. Weakly acyclic automata (exercise 35) are inspired by Krötzsch,
Masopust, and Thomazo [KMT17].

Chapter 2. Minimization and Reduction

The existence of a unique minimal DFA for a given regular language is shown
in [RS59], where it is credited to unpublished work byMyhill and Nerode [Ner58].
Textbooks usually introduce the Myhill–Nerode equivalence relation on words.
This equivalence relation has one equivalence class for each state of the canon-
ical automaton, say q, containing all words leading from the initial state of the
canonical automaton to q. Our residuals are defined differently; the residual for
the state q is the set of words leading from q to the final states of the canoni-
cal automaton. Hopcroft’s algorithm was presented in [Hop71]. The version of
the chapter is taken from a paper by Knuutila [Knu01]. An extensive discussion
of minimization algorithms is conducted by Berstel, Boasson, Carton, and Fagnot
in [BBCF21].

The reduction algorithm for NFAs is actually an algorithm that constructs the
unique minimal NFA that is strongly bisimilar to a given one. For the defini-
tion of strong bisimilarity, see, for example, the book by Milner [Mil89]. An ef-
ficient algorithm to construct this automaton was proposed by Kannellakis and
Smolka [KS90], later improved by Paige and Tarjan [PT87]. The algorithm of
Paige and Tarjan runs in time O(m logn + n) for an NFA with n states and m
transitions.

The characterization of the regular languages as those with a finite number of
residuals (theorem 2.31) is similar to the one given by Rabin and Scott in [RS59]:
a language is regular iff the Myhill–Nerode equivalence relation has a finite num-
ber of equivalence classes.

Exercise 50 was inspired by Thomas Henzinger. Exercise 53 presents Brzo-
zowski’s minimization algorithm for DFAs [Brz62]; for a generalization, see [BT14].
Exercise 54 is due to Salomon Sickert.

Chapter 3. Operations on Sets: Implementations

Rabin and Scott showed that the regular languages are closed under union, in-
tersection, and complement, and in particular, they introduced the pairing con-
struction [RS59]. Their approach is not algorithmic. The subsumption test for
checking universality and inclusion of NFAs is due to De Wulf, Doyen, Henzinger,
and Raskin [WDHR06]. Theorem 3.13 and proposition 3.14 showing that the
universality and inclusion problems are PSPACE-complete for NFAs can be traced
back to Meyer and Stockmeyer [MS72], although the results appear more promi-
nently in Hunt, Rosenkrantz, and Szymanski in [IRS76]. Both papers reduce the
membership problem for context-sensitive grammars (which is PSPACE-complete,

SOLUTIONS FOR CHAPTER 14 511

but this terminology was not established at the time) to universality and inclusion
of regular expressions.

The automaton from exercise 76 appears, for example, in [Vol08].

Chapter 4. Application I: Pattern Matching

Pattern matching (also called string matching) is a fundamental problem of com-
puter science, for example, see [AG97, NR02]. Chapter 3 of [HMU07] contains
a brief introduction to applications of regular expressions and finite automata to
pattern matching. The chapter is influenced by David Eppstein’s lecture notes
for his course on the design and analysis of algorithms.5 In the literature, al-
gorithm CompMiss is known as the Knuth–Morris–Pratt (string-searching) algo-
rithm [KJP77]. Different variants were independently discovered by James H.
Morris, Donald Knuth, Yuri Matijasevich, and Vaughan Pratt.

Mohri presents in [Moh97] an automata-theoretic description of the Knuth–
Morris–Pratt algorithm, related to, but different from, ours. Lazy automata are a
(very) restricted case of two-way automata, introduced by Rabin and Scott [RS59]
(see also exercise 88). In two-way automata, the reading head can move right,
stay put, or move left. Rabin and Scott show that finite two-way automata have
the same expressive power as finite (one-way) automata, that is, they precisely
recognize regular languages.

Chapter 5. Operations on Relations: Implementations

Transducers are automata that transform finite input words into finite output
words. Early definitions of transducers were introduced by Moore [Moo56] and
Mealy [Mea55], known in the literature as Moore and Mealy machines, respec-
tively. An early appearance of the term “finite transducer” is [Sch61]. The trans-
ducers defined in the chapter produce exactly one output symbol for each input
symbol and are often called length-preserving transducers. More general trans-
ducers can also produce a (possibly empty) sequence of output symbol and also
produce outputs on ε-input. For a modern introduction to finite transducers, go-
ing beyond this chapter, see, for example, [HK21]. For applications to language
processing, see [Moh97]. Applications to program verification are discussed in
chapter 7.

The Collatz function, also known as the 3n+1 function, is named after Lothar
Collatz, who formulated the conjecture in 1937.

Exercise 98 was inspired by [Gul11].

Chapter 6. Finite Universes and Decision Diagrams

This chapter is very influenced by Andersen’s introduction to reduced ordered
binary decision diagrams (ROBDDs) [And98]. This model was introduced by
Bryant as a data structure for the representation and manipulation of boolean
functions [Bry86]. ROBDDs are extensively used in the field of formal verification,

5See http://www.ics.uci.edu/~eppstein/teach.html.

http://www.ics.uci.edu/~eppstein/teach.html

SOLUTIONS FOR CHAPTER 14 512

for example, in CTL model checkers such as NuSMV [CCGR99]. The observation
that the ROBDD of a boolean function is very related to the minimal DFA recog-
nizing its satisfying assignments (once a variable order is chosen) is folklore, but,
to our knowledge, it has not been explicitly described in the literature.

Chapter 7. Application II: Verification

The approach to formal verification presented in the chapter is usually known as
model checking, which consists of a systematic and exhaustive exploration of the
set of reachable configurations of the formal model of the system. Dedicated books
on model checking include [BK08, CGK+18, CHVB18].

The application of automata-theoretic techniques to model checking was pio-
neered by Kurshan in the early 1980s. Kurshan led the development of COSPAN,
a software system for the formal verification of coordinating processes [Kur95].
Kurshan used finite automata to formalize both the behavior of single processes
and their specification and composed them by means of an operation similar to
our asynchronous product. The idea of modeling program variables as processes
that communicate with the control process appears in Milner’s book [Mil89]; see
also work on Petri net semantics of concurrent programs [Jen92, Bes96, Rei98].

Compositional verification is one of the raisons d’être of process algebras such as
CSP [Hoa85] and CCS [Mil89]. The approach to compositional verification from
the chapter is close to that of software like FDR [GABR14] or CADP [GLMS13].
Symbolic state-space exploration was proposed by Burch, Clarke, McMillan, Dill,
and Hwanng [BCM+92]. NuSMV [CCG+02] is, for example, a well-known sym-
bolic model checker.

The Lamport–Burns’ mutual exclusion algorithm is taken from [Lam86]. The
distinction between safety and liveness properties is due to Lamport [Lam77].

Chapter 8. Automata and Logic

The equivalence of MSO(Σ) and regular languages is due to Büchi [B60], El-
got [Elg61], and Trakhtenbrot [Tra62]. The logic FO(Σ) was first considered by
McNaughton and Papert [MP71], who established its equivalence with star-free
languages (see exercise 123). The algorithm that converts a formula of MSO(Σ)
into an equivalent automaton is the core engine of theMONA tool [HJJ+95, KS99],
a satisfiability checker for MSO(Σ). MONA has been applied to the verification of
hardware circuits [BK95].

Chapter 9. Application III: Presburger Arithmetic

The first decision procedure for Presburger arithmetic was given by Presburger in
1929 [Pre29]. The connection of Presburger arithmetic and automata theory was
first established by Büchi in [B60], where he showed how to transform a formula
φ into an automaton that encodes the set of solutions of φ.

It was shown by Cobham and Semenov that the subsets of integer vectors en-
codable by finite automata in any base b ≥ 2 are those definable in Presburger

SOLUTIONS FOR CHAPTER 14 513

arithmetic [Cob69, Sem77]. For a fixed base b ≥ 2, the expressiveness extends
slightly beyond Presburger arithmetic as one can test for powers of b [BHMV94].

The algorithmic manipulation of Presburger formulas through automata was
considered by Wolper and Boigelot [WB95, Boi98]. Dedicated constructions for
translating (in)equations into automata, as those presented in chapter 9, were
presented in [BC96, WB00].

A column of Haase provides an overview on “the history, decision procedures,
extensions and geometric properties of Presburger arithmetic” [Haa18].

Exercise 138 is known as the chicken nuggets problem or the Frobenius coin
problem, after the mathematician Ferdinand Frobenius. In the coin version, the
problem asks for the largest monetary amount that cannot be obtained using only
coins of specified denominations.

Chapter 10. Classes of ω-Automata and Conversions

Automata on infinite words were introduced in the 1960s by several authors as
a tool for solving decision problems in logical theories. In particular, Büchi used
what we now call Büchi automata to give a decision procedure for monadic second-
order logic on ω-words, a result discussed in chapter 14 [B6̈2, BL69]. (Büchi’s
works were collected by McLane and Siefkes in [MLS90].)

Büchi automata, ω-regular expressions, and their equivalence, demonstrated
in section 10.2.2.1, were introduced by Büchi [B6̈2]. The determinization pro-
cedure for co-Büchi automata of section 10.2.3.1 can be traced back to Miyano
and Hayashi [MH84], but the form shown in the chapter goes to Kupferman and
Vardi [KV97, KV01]. The Rabin condition was introduced by Rabin in [Rab68],
although for automata on infinite trees, a generalization of automata on infinite
words. Theorem 10.18 is due to Safra [Saf88]. The proof of proposition 10.20
can be found in [Bok18], a paper by Boker containing an exhaustive analysis
of the blowups involved in conversions between automata types. The Streett
acceptance condition was introduced by Street in [Str81]; again, it was origi-
nally defined for automata on infinite trees. The conversion NSA → NBA is de-
scribed by Choueka in [Cho74]. The parity condition was introduced indepen-
dently by Mostowski [Mos84] and by Emerson and Jutla in [EJ91] under the
name “chain Rabin condition.” A proof of theorem 10.25 due to Piterman can be
found in [Pit06, Pit07]. Muller automata were introduced by Muller in [Mul63].
McNaughton showed that every NBA has an equivalent DMA [McN66]. Propo-
sition 10.20 is adapted from a similar result by Boker [Bok17]. Exercise 148 is
inspired by Kupferman [Kup18].

For the reader interested in the theory of ω-automata, there exist excellent
publications containing more advanced results. Thomas’s chapter in the Hand-
book of Theoretical Computer Science presents a very clear account of the work of
Büchi [Tho90]. The monograph by Perrin and Pin presents the connection with
algebra and topology. The most extensive work is [GTW02], a monograph by
multiple authors. Wilke’s brief introduction to ω-automata for automata-theorists
presents basic constructions one can use to implement operations like comple-
mentation or determinization [WS21]. Kupferman’s chapter in the Handbook of
Model Checking, and the chapter by Kupferman, Vardi, and Esparza in the Hand-

SOLUTIONS FOR CHAPTER 14 514

book of Automata Theory [Kup18, EKV21] are oriented toward the application of
ω-automata to program verification.

Chapter 11. Boolean Operations: Implementations

The conversion “NGA→ NBA” appears in [Cho74], where it is used with a slightly
different purpose—namely, to implement intersection of NBAs. The first com-
plementation procedure for NBAs, due to Büchi [B6̈2], had a double-exponential
blowup in the number of states. Sistla, Vardi, and Wolper presented in [SVW87]
an improved construction with a 2O(n2) blowup. The complementation procedure
of section 11.3, with a blowup of 2O(n logn), is due to Kupferman and Vardi [KV01].
An improvement with the same asymptotic blowup but a smaller constant in the
O-notation was presented by Friedgut, Kupferman, and Vardi [FKV06]. Schewe
gave a construction that matches the lower bound of section 11.3.3 modulo a
O(n2) polynomial factor [Sch09]. Detlef Kähler and Wilke introduced a differ-
ent construction in [KW08] that can be used to both complement Büchi automata
and determinize them. The 2O(n logn) lower bound of section 11.3.3 is due to
Michel [Mic88]. The constant was improved by Qiqi Yan in [Yan08]. For a survey
of these developments up to 2007, see [Var07], and for an experimental compar-
ison of different algorithms, see [TFVT14].

Exercise 158 on automata with transition-based acceptance is inspired by the
tool Spot of Duret-Lutz et al. [DLF+16] that offers translations into such automata.
Exercise 162 is inspired by the work of Muller, Saoudi, and Schupp [MSS86] and
Kupferman and Vardi [KV01] on weak alternating automata.

Chapter 12. Emptiness Check: Implementations

The introduction to depth-first search, at the beginning of section 12.1, particularly
the parenthesis theorem and the white-path theorem, is taken from the chapter on
elementary graph algorithms of Cormen, Leiserson, Rivest, and Stein’s textbook on
algorithms [CLRS22]. The nested-DFS algorithm of section section 12.1.1 is due to
Courcoubetis, Vardi, Woper, and Yannakakis [CVWY90, CVWY92]. The improve-
ment of section 12.1.1.2 is due to Holzmann, Peled, and Yannakakis [HPY96].
The algorithm and its use in the model checker SPIN [Hol04] is described in Holz-
mann’s chapter of the Handbook of Model Checking [Hol18]. Gastin, Moro, and
Zeitoun proposed a further improvement in [GMZ04] with slightly higher memory
requirements. A version that incorporates the improvements of [HPY96, GMZ04]
but without the additional memory requirements is Schwoon and Esparza’s four-
color algorithm presented in section 3 of [SE05]. SCC-based algorithms for Büchi
emptiness are modifications of Tarjan’s algorithm for the computation of the SCCs
of a graph [Tar72]. The first such algorithms were proposed by Couvreur [Cou99]
and Geldenhuys and Valmari [GV04]. Both of them are optimal in the sense
explained in the chapter. The algorithm of section 12.1.2 is based on unpub-
lished lecture notes by Schwoon. Emerson–Lei’s algorithm in section 12.2 is taken
from [EL86]. A comparison of several algorithms is presented by Ravi, Bloem, and
Somenzi in [RBS00]. The modified algorithm of section 12.2.2 is due to Fisler,
Fraer, Kamhi, Vardi, and Yang [FFK+01].

SOLUTIONS FOR CHAPTER 14 515

Chapter 13. Application I: Verification and Temporal Logic

The classification of program properties into “safety” and “liveness” properties (al-
ready introduced in chapter 7) was introduced by Owicki and Lamport in [OL82].
A formal definition of these terms was given by Alpern and Schneider in [AS85].
Lamport–Burns’ mutual-exclusion algorithm is described by Lamport in [Lam86].

Temporal logic was proposed as a formalism for the specification of program
properties by Pnueli [Pnu77, Pnu81]. Readers interested on a compact survey
on LTL and other temporal logics and their applications to program reasoning
can consult the survey by Emerson in the Handbook of Theoretical Computer Sci-
ence [Eme90]. The standard textbook on linear temporal logic and its application
to specification of reactive and concurrent systems is themonograph byManna and
Pnueli [MP92]; a second volume by the same authors focuses on the verification
of safety properties [MP95]. More recent monographs have also been authored by
Kröger and Merz [KM08] and by Demri, Goronko, and Lange [DGL16]. Dwyer,
Avrunin, and Corbett carried out a survey of specifications formalized in LTL and
other temporal logics, and they compiled a set of useful property specification pat-
terns [DAC99]. The property specification language (PSL) is an IEEE standard that
extends LTL with regular expressions and syntactic sugar to ease specification and
improve the expressive power. For introductions to PSL, the reader can consult
the monographs by Cisner and Fisman [EF06]

A first translation of LTL to (generalized) Büchi automata is due to Wolper,
Vardi, and Sistla [WVS83, VW94] (in fact, these papers translate an extension of
LTL). The translation of section 13.3 closely follows unpublished lecture notes by
Vardi. A more efficient construction yielding smaller automata was presented by
Gerth, Peled, Vardi, and Wolper in [GPVW95] and implemented in SPIN [Hol04].
It is a tableau construction that produces a Büchi automaton, instead of a general-
ized one, and was improved further by Daniele, Giunchiglia and Vardi [DGV99],
Etessami and Holzmann [EH00], and Somenzi and Bloem [SB00]. A new con-
struction using very weak alternating automata as an intermediate step was given
by Gastin and Oddoux [GO01]; it is also distributed with SPIN. Couvreur pro-
posed in [Cou99] a construction similar to the one of [GPVW95], but yielding a
generalized Büchi automaton with sets of accepting transitions, instead of accept-
ing states; it always produces automata at most as large as those of [GPVW95].
Duret-Lutz and Poitrenaud provided amore efficient implementation of Couvreur’s
construction in the Spot tool [DP04], further improved by Duret-Lutz in [Dur14].
This is essentially the construction implemented in Spot 2.0 [DLF+16]. Spot 2.0
offers an online translator from LTL formulas into different automata models that
constitutes an invaluable tool for teaching LTL. The procedure for the automatic
verification of LTL formulas described in section 13.4 was proposed by Vardi and
Wolper in [VW86]. It is usually called the automata-theoretic approach to model
checking (of LTL). The approach is described in Kupferman’s chapter in the Hand-
book of Model Checking [Kup18] and, among other topics, in the monographs
on model checking by Clarke, Grumberg, Kroening, Peled, and Veith [CGK+18]
and Baier and Katoen [BK08]. The approach was implemented by Holzmann in
SPIN [Hol04].

Exercise 179 is taken from [DAC99], adapted by Salomon Sickert. Exercise 183
is due to Schwoon. Exercise 187 is taken from Kupferman and Rosenberg [KR10].

SOLUTIONS FOR CHAPTER 14 516

Chapter 14. Application II: Monadic Second-Order Logic on
ω-Words and Linear Arithmetic

Monadic second-order logic on ω-words was studied by Büchi across several pa-
pers [MLS90], and his successful attempt to finding a decision procedure for the
logic led to the introduction of Büchi automata. Thomas’s chapters in the Hand-
book of Theoretical Computer Science and the Handbook of Formal Languages give
very clear introductions to this work and to its extension to monadic second-order
logic on ω-trees [Tho90, Tho97].

The idea of using Büchi automata as a data structure for sets of real numbers
can be traced back to Boigelot, Rassart, and Wolper [BRW98]. The algorithmics
of this data structure were developed by Boigelot, Wolper, and others in several
publications [WB00, BJW01, BJW05]. The sets of real numbers representable by
Büchi automata were studied by Boigelot and Brusten [BB09]; Boigelot, Brusten,
and Bruyère [BBB10]; and Boigelot, Brusten, and Leroux [BBL09]. The construc-
tions have been implemented in the tool LASH (Liège Automata-based Symbolic
Handler) [Las04]. Boigelot’s chapter in the Handbook of Automata Theory is an
excellent introduction to this work [Boi21].

Bibliography

[ABJ98] Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-the-
fly analysis of systems with unbounded, lossy FIFO channels. In Proc.
10th International Conference on Computer Aided Verification (CAV),
305–318, 1998.

[AG97] Alberto Apostolico and Zvi Galil, editors. Pattern Matching Algo-
rithms. Oxford University Press, 1997.

[And98] Henrik Reif Andersen. An introduction to binary decision diagrams.
1998.

[And06] James A. Anderson. Automata Theory with Modern Applications. Cam-
bridge University Press, 2006.

[Ard61] Dean N. Arden. Delayed-logic and finite-state machines. In Proc.
2nd Annual Symposium on Switching Circuit Theory and Logical Design
(SWCT), 133–151, 1961.

[AS85] Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters (IPL), 21(4):181–185, 1985.

[B60] J. Richard Büchi. Weak second-order arithmetic and finite automata.
Mathematical Logic Quarterly, 6(1/6):66–92, 1960.

[B6̈2] Julius R. Büchi. On a decisionmethod in restricted second order arith-
metic. In Proc. International Congress on Logic, Method, and Philosophy
of Science, 425–435. Stanford University Press, 1962.

[BB09] Bernard Boigelot and Julien Brusten. A generalization of Cobham’s
theorem to automata over real numbers. Theoretical Computer Sci-
ence, 410(18):1694–1703, 2009.

[BBB10] Bernard Boigelot, Julien Brusten, and Véronique Bruyère. On the
sets of real numbers recognized by finite automata in multiple bases.
Logical Methods in Computer Science (LMCS), 6(1), 2010.

517

BIBLIOGRAPHY 518

[BBCF21] Jean Berstel, Luc Boasson, Olivier Carton, and Isabelle Fagnot. Min-
imisation of automata. In Jean-Éric Pin, editor, Handbook of Automata
Theory, 337–373. European Mathematical Society Publishing House,
2021.

[BBL09] Bernard Boigelot, Julien Brusten, and Jérôme Leroux. A generaliza-
tion of Semenov’s theorem to automata over real numbers. In Proc.
22nd International Conference on Automated Deduction on Automated
Deduction (CADE), 469–484, 2009.

[BC96] Alexandre Boudet and Hubert Comon. Diophantine equations, Pres-
burger arithmetic and finite automata. In Proc. 21st International Col-
loquium on Trees in Algebra and Programming (CAAP), 30–43, 1996.

[BCM+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.
Dill, and L. J. Hwang. Symbolic model checking: 1020 states and
beyond. Information and Computation, 98(2):142–170, 1992.

[Bes96] Eike Best. Semantics of Sequential and Parallel Programs. Prentice
Hall International series in computer science. Prentice Hall, 1996.

[BHMV94] Véronique Bruyère, Georges Hansel, Christian Michaux, and Roger
Villemaire. Logic and p-recognizable sets of integers. Bulletin of the
Belgian Mathematical Society, 1:191–238, 1994.

[BJW01] Bernard Boigelot, Sébastien Jodogne, and Pierre Wolper. On the use
of weak automata for deciding linear arithmetic with integer and real
variables. In 1st International Joint Conference on Automated Reason-
ing (IJCAR), 611–625, 2001.

[BJW05] Bernard Boigelot, Sébastien Jodogne, and Pierre Wolper. An effec-
tive decision procedure for linear arithmetic over the integers and re-
als. ACM Transactions on Computational Logic (TOCL), 6(3):614–633,
2005.

[BK95] David A. Basin and Nils Klarlund. Hardware verification using
monadic second-order logic. In Proc. 7th International Conference on
Computer Aided Verification, 31–41, 1995.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
MIT Press, 2008.

[BL69] J. Richard Büchi and Lawrence H. Landweber. Definability in the
monadic second-order theory of successor. The Journal of Symbolic
Logic, 34(2):166–170, 1969.

[Boi98] Bernard Boigelot. Symbolic methods for exploring infinite state
spaces, 1998.

[Boi21] Bernard Boigelot. Symbolic methods and automata. In Handbook of
Automata Theory, 1189–1215. European Mathematical Society Pub-
lishing House, 2021.

BIBLIOGRAPHY 519

[Bok17] Udi Boker. On the (in)succinctness of Muller automata. In Proc. 26th
EACSL Annual Conference on Computer Science Logic (CSL), volume 82,
12:1–12:16, 2017.

[Bok18] Udi Boker. Why these automata types? In Proc. 22nd International
Conference on Logic for Programming, Artificial Intelligence and Rea-
soning (LPAR), volume 57, 143–163, 2018.

[BRW98] Bernard Boigelot, Stéphane Rassart, and Pierre Wolper. On the ex-
pressiveness of real and integer arithmetic automata (extended ab-
stract). In Proc. 25th International Colloquium on Automata, Lan-
guages and Programming (ICALP), 152–163, 1998.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, 35(8):677–691, 1986.

[Brz62] Janusz A. Brzozowski. Canonical regular expressions and minimal
state graphs for definite events. In Proc. Symposium of Mathematical
Theory of Automata, 529–561, 1962.

[BT14] Janusz A. Brzozowski and Hellis Tamm. Theory of átomata. Theoret-
ical Computer Science, 539:13–27, 2014.

[CCG+02] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. NuSMV 2: An opensource tool for symbolic model
checking. In Proc. 14th International Conference on Computer Aided
Verification (CAV), 359–364, 2002.

[CCGR99] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and
Marco Roveri. NuSMV: A new symbolic model verifier. In Proc. 11th
International Conference on Computer Aided Verification (CAV), 495–
499, 1999.

[CGK+18] Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A.
Peled, and Helmut Veith. Model Checking, 2nd edition. MIT Press,
2018.

[Cho74] Yaacov Choueka. Theories of automata on ω-tapes: A simplified
approach. Journal of Computer and System Sciences, 8(2):117–141,
1974.

[CHVB18] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roder-
ick Bloem, editors. Handbook of Model Checking. Springer, 2018.

[CKS81] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alterna-
tion. Journal of the ACM, 28(1):114–133, 1981.

[CLRS22] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms, 4th edition. MIT Press, 2022.

BIBLIOGRAPHY 520

[Cob69] Alan Cobham. On the base-dependence of sets of numbers recogniz-
able by finite automata. Mathematical Systems Theory, 3(2):186–192,
1969.

[Con71] J. H. Conway. Regular Algebra and Finite Machines. William Clowes &
Sons Ltd, 1971.

[Cou99] Jean-Michel Couvreur. On-the-fly verification of linear temporal logic.
In Proc. Formal Methods, World Congress on Formal Methods in the
Development of Computing Systems (FM), 253–271, 1999.

[CVWY90] Costas Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mihalis Yan-
nakakis. Memory efficient algorithms for the verification of temporal
properties. In Proc. 2nd International Workshop on Computer Aided
Verification (CAV), 233–242, 1990.

[CVWY92] Costas Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mihalis Yan-
nakakis. Memory-efficient algorithms for the verification of temporal
properties. Formal Methods in System Design, 1(2/3):275–288, 1992.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns
in property specifications for finite-state verification. In Proc. Interna-
tional Conference on Software Engineering (ICSE), 411–420, 1999.

[DGL16] Stéphane Demri, Valentin Goranko, and Martin Lange. Temporal Log-
ics in Computer Science: Finite-State Systems. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2016.

[DGV99] Marco Daniele, Fausto Giunchiglia, and Moshe Y. Vardi. Improved
automata generation for linear temporal logic. In Proc. 11th Inter-
national Conference on Computer Aided Verification (CAV), 249–260,
1999.

[DLF+16] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille,
Thibaud Michaud, Etienne Renault, and Laurent Xu. Spot 2.0—A
framework for LTL and ω-automata manipulation. In Proc. 14th In-
ternational Symposium on Automated Technology for Verification and
Analysis (ATVA), 122–129, 2016.

[DP04] Alexandre Duret-Lutz and Denis Poitrenaud. SPOT: An extensible
model checking library using transition-based generalized Büchi au-
tomata. In Proc. 12th International Workshop on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MAS-
COTS), 76–83, 2004.

[Dur14] Alexandre Duret-Lutz. LTL translation improvements in Spot 1.0. In-
ternational Journal of Critical Computer-Based Systems, 5(1/2):31–54,
2014.

[EF06] Cindy Eisner and Dana Fisman. A Practical Introduction to PSL. Series
on Integrated Circuits and Systems. Springer, 2006.

BIBLIOGRAPHY 521

[EH00] Kousha Etessami and Gerard J. Holzmann. Optimizing Büchi au-
tomata. In Proc. 11th International Conference on Concurrency Theory
(CONCUR), 153–167, 2000.

[EJ91] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus
and determinacy (extended abstract). In Proc. 32nd Annual Sympo-
sium on Foundations of Computer Science (FOCS), 368–377, 1991.

[EKV21] Javier Esparza, Orna Kupferman, and Moshe Y. Vardi. Verification. In
Handbook of Automata Theory, 1415–1456. European Mathematical
Society Publishing House, 2021.

[EL86] E. Allen Emerson and Chin-Laung Lei. Efficient model checking in
fragments of the propositional mu-calculus (extended abstract). In
Proc. Symposium on Logic in Computer Science (LICS), 267–278, 1986.

[Elg61] Calvin C. Elgot. Decision problems of finite automata design and re-
lated arithmetics. Transactions of the American Mathematical Society,
98(1):21–51, 1961.

[Eme90] E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, Volume B: Formal
Models and Semantics, 995–1072. Elsevier and MIT Press, 1990.

[Epp90] David Eppstein. Reset sequences for monotonic automata. SIAM Jour-
nal on Computing, 19(3):500–510, 1990.

[EZ76] Andrzej Ehrenfeucht and H. Paul Zeiger. Complexity measures
for regular expressions. Journal of Computer and System Sciences,
12(2):134–146, 1976.

[FFK+01] Kathi Fisler, Ranan Fraer, Gila Kamhi, Moshe Y. Vardi, and Zijiang
Yang. Is there a best symbolic cycle-detection algorithm? In Proc. 7th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 420–434, 2001.

[FKV06] Ehud Friedgut, Orna Kupferman, and Moshe Y. Vardi. Büchi com-
plementation made tighter. International Journal of Foundations of
Computer Science, 17(4):851–868, 2006.

[GABR14] Thomas Gibson-Robinson, Philip J. Armstrong, Alexandre Boulgakov,
and A. W. Roscoe. FDR3—A modern refinement checker for CSP. In
Proc. 20th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 187–201, 2014.

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[GLMS13] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe.
CADP 2011: A toolbox for the construction and analysis of distributed
processes. International Journal on Software Tools for Technology
Transfer, 15(2):89–107, 2013.

BIBLIOGRAPHY 522

[GMZ04] Paul Gastin, Pierre Moro, and Marc Zeitoun. Minimization of coun-
terexamples in SPIN. In Proc. 11th International SPIN Workshop on
Model Checking Software, 92–108, 2004.

[GO01] Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata transla-
tion. In Proc. 13th International Conference on Computer Aided Verifi-
cation (CAV), 53–65, 2001.

[GPVW95] Rob Gerth, Doron A. Peled, Moshe Y. Vardi, and Pierre Wolper. Simple
on-the-fly automatic verification of linear temporal logic. In Proc. 15th
IFIP WG6.1 International Symposium on Protocol Specification, Testing
and Verification, 3–18, 1995.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Au-
tomata, Logics, and Infinite Games: A Guide to Current Research [out-
come of a Dagstuhl seminar, February 2001], volume 2500 of Lecture
Notes in Computer Science, 2002.

[Gul11] Sumit Gulwani. Automating string processing in spreadsheets using
input-output examples. In Proc. 38th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL), 317–330, 2011.

[GV04] Jaco Geldenhuys and Antti Valmari. Tarjan’s algorithm makes on-the-
fly LTL verification more efficient. In Proc. 10th International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 205–219, 2004.

[Haa18] Christoph Haase. A survival guide to Presburger arithmetic. ACM
SIGLOG News, 5(3):67–82, 2018.

[HJJ+95] Jesper G. Henriksen, Jakob L. Jensen, Michael E. Jørgensen, Nils
Klarlund, Robert Paige, Theis Rauhe, and Anders Sandholm. Mona:
Monadic second-order logic in practice. In Proc. 1st International
Workshop on Tools and Algorithms for Construction and Analysis of Sys-
tems (TACAS), 89–110, 1995.

[HK21] Tero Harju and Juhani Karhumäki. Finite transducers and rational
transductions. In Handbook of Automata Theory (I.), 79–111. Euro-
pean Mathematical Society Publishing House, 2021.

[HMU07] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduc-
tion to Automata Theory, Languages, and Computation, 3rd edition.
Addison-Wesley, 2007.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[Hol04] Gerard J. Holzmann. The SPIN Model Checker—Primer and Reference
Manual. Addison-Wesley, 2004.

[Hol18] Gerard J. Holzmann. Explicit-state model checking. In Handbook of
Model Checking, 153–171. Springer, 2018.

BIBLIOGRAPHY 523

[Hop71] John Hopcroft. An n logn algorithm for minimizing states in a finite
automaton. In Theory of Machines and Computations, 189–196. Else-
vier, 1971.

[HPY96] Gerard J. Holzmann, Doron A. Peled, and Mihalis Yannakakis. On
nested depth first search. In Proc. DIMACS Workshop—The Spin Veri-
fication System, 23–31, 1996.

[Hun73] H. B. III Hunt. On the time and tape complexity of languages I. In
Proc. 5th Annual ACM Symposium on Theory of Computing (STOC),
10–19, 1973.

[IRS76] Harry B. Hunt III, Daniel J. Rosenkrantz, and Thomas G. Szyman-
ski. On the equivalence, containment, and covering problems for the
regular and context-free languages. Journal of Computer and System
Sciences, 12(2):222–268, 1976.

[Jen92] Kurt Jensen. Coloured Petri Nets—Basic Concepts, Analysis Methods
and Practical Use—Volume 1. EATCS Monographs on Theoretical
Computer Science. Springer, 1992.

[KJP77] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast
pattern matching in strings. SIAM Journal on Computing, 6(2):323–
350, 1977.

[Kle51] Stephen C. Kleene. Representation of Events in Nerve Nets and Finite
Automata. Technical Report RM-704, The RAND Corporation, 1951.

[Kle56] Stephen C. Kleene. Representation of events in nerve nets and finite
automata. Annals of Mathematics Studies, 34:3–41, 1956.

[KM08] Fred Kröger and Stephan Merz. Temporal Logic and State Systems.
Texts in Theoretical Computer Science. An EATCS Series. Springer,
2008.

[KMT17] Markus Krötzsch, Tomás Masopust, and Michaël Thomazo. Complex-
ity of universality and related problems for partially ordered NFAs.
Information and Computation, 255:177–192, 2017.

[Knu01] Timo Knuutila. Re-describing an algorithm by Hopcroft. Theoretical
Computer Science, 250(1/2):333–363, 2001.

[Koz77] Dexter Kozen. Lower bounds for natural proof systems. In Proc. 18th
Annual Symposium on Foundations of Computer Science (FOCS), 254–
266, 1977.

[Koz97] Dexter Kozen. Automata and Computability. Undergraduate Texts in
Computer Science. Springer, 1997.

[KR10] Orna Kupferman and Adin Rosenberg. The blowup in translating LTL
to deterministic automata. In Proc. 6th International Workshop on
Model Checking and Artificial Intelligence (MoChArt), 85–94, 2010.

BIBLIOGRAPHY 524

[KS90] Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state
processes, and three problems of equivalence. Information and Com-
putation, 86(1):43–68, 1990.

[KS99] Nils Klarlund and Michael I. Schwartzbach. A domain-specific lan-
guage for regular sets of strings and trees. IEEE Transactions on Soft-
ware Engineering (TSE), 25(3):378–386, 1999.

[Kup18] Orna Kupferman. Automata theory and model checking. InHandbook
of Model Checking, 107–151. Springer, 2018.

[Kur95] Robert P. Kurshan. Computer-Aided Verification of Coordinating Pro-
cesses: The Automata-Theoretic Approach. Princeton University Press,
1995.

[KV97] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata
are not that weak. In Proc. 5th Israel Symposium on the Theory of
Computing Systems (ISTCS), 147–158, 1997.

[KV01] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata
are not that weak. ACM Transactions on Computational Logic (TOCL),
2(3):408–429, 2001.

[KW08] Detlef Kähler and Thomas Wilke. Complementation, disambiguation,
and determinization of Büchi automata unified. In Proc. 35th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP),
Part I: Track A: Algorithms, Automata, Complexity, and Games, 724–
735, 2008.

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs.
IEEE Transactions on Software Engineering, 3(2):125–143, 1977.

[Lam86] Leslie Lamport. The mutual exclusion problem: Part II—statement
and solutions. Journal of the ACM, 33(2):327–348, 1986.

[Las04] The Liège Automata-Based Symbolic Handler (LASH). http://www.
montefiore.ulg.ac.be/~boigelot/research/lash/, 2000–2004.

[McN66] Robert McNaughton. Testing and generating infinite sequences by a
finite automaton. Information and Control, 9(5):521–530, 1966.

[Mea55] George H. Mealy. A method for synthesizing sequential circuits. The
Bell System Technical Journal, 34(5):1045–1079, 1955.

[MH84] Satoru Miyano and Takeshi Hayashi. Alternating finite automata on
ω-words. Theorertical Computer Science, 32:321–330, 1984.

[Mic88] Max Michel. Complementation is more difficult with automata on
infinite words. CNET, 15, 1988.

[Mil89] Robin Milner. Communication and Concurrency. PHI Series in Com-
puter Science. Prentice Hall, 1989.

http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/

BIBLIOGRAPHY 525

[MLS90] Saunders Mac Lane and Dirk Siefkes, editors. The Collected Works of
J. Richard Büchi. Springer, 1990.

[Moh97] Mehryar Mohri. Finite-state transducers in language and speech pro-
cessing. Computational Linguistics, 23(2):269–311, 1997.

[Moo56] Edward F. Moore. Gedanken-experiments on sequential machines. In
Automata Studies, 129–153. Princeton University Press, 1956.

[Mos84] Andrzej Wlodzimierz Mostowski. Regular expressions for infinite
trees and a standard form of automata. In Proc. 5th Symposium on
Computation Theory, volume 208, 157–168, 1984.

[MP71] Robert McNaughton and Seymour A. Papert. Counter-Free Automata.
The MIT Press, 1971.

[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and
Concurrent Systems—Specification. Springer, 1992.

[MP95] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive
Systems—Safety. Springer, 1995.

[MS72] Albert R. Meyer and Larry J. Stockmeyer. The equivalence problem for
regular expressions with squaring requires exponential space. In Proc.
13th Annual Symposium on Switching and Automata Theory (SWAT),
125–129, 1972.

[MSS86] David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Alternating
automata. The weak monadic theory of the tree, and its complexity.
In Proc. 13th International Colloquium on Automata, Languages and
Programming (ICALP), 275–283, 1986.

[Mul63] David E. Muller. Infinite sequences and finite machines. In Proc. 4th
Annual Symposium on Switching Circuit Theory and Logical Design, 3–
16, 1963.

[MY60] Robert McNaughton and Hisao Yamada. Regular expressions and
state graphs for automata. IRE Transactions on Electronic Computers,
9(1):39–47, 1960.

[Ner58] A. Nerode. Linear automaton transformations. Proceedings of the
American Mathematical Society, 9(4):541–544, 1958.

[NR02] Gonzalo Navarro and Mathieu Raffinot. Flexible Pattern Matching in
Strings—Practical On-line Search Algorithms for Texts and Biological
Sequences. Cambridge University Press, 2002.

[OL82] Susan S. Owicki and Leslie Lamport. Proving liveness properties of
concurrent programs. ACM Transactions on Programming Languages
and Systems (TOPLAS), 4(3):455–495, 1982.

[Pin83] Jean-Éric Pin. On two combinatorial problems arising from automata
theory. In Combinatorial Mathematics, volume 17 of Annals of Discrete
Mathematics, 535–548, 1983.

BIBLIOGRAPHY 526

[Pit06] Nir Piterman. From nondeterministic Büchi and Streett automata to
deterministic parity automata. In Proc. 21th IEEE Symposium on Logic
in Computer Science (LICS), 255–264, 2006.

[Pit07] Nir Piterman. From nondeterministic Büchi and Streett automata to
deterministic parity automata. Logical Methods in Computer Science
(LMCS), 3(3), 2007.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proc. 18th Annual
Symposium on Foundations of Computer Science (FOCS), 46–57, 1977.

[Pnu81] Amir Pnueli. The temporal semantics of concurrent programs. Theo-
retical Computer Science, 13:45–60, 1981.

[Pre29] Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems
der Arithmetik ganzer Zahlen, in welchem die Addition als einzige
Operation hervortritt. In Comptes Rendus du Ier Congrès des mathé-
maticiens des pays slaves, 192–201, 1929.

[PT87] Robert Paige and Robert Endre Tarjan. Three partition refinement
algorithms. SIAM Journal on Computing, 16(6):973–989, 1987.

[Rab68] Michael O. Rabin. Decidability of second-order theories and au-
tomata on infinite trees. Bulletin of the American Mathematical So-
ciety, 74:1025–1029, 1968.

[RBS00] Kavita Ravi, Roderick Bloem, and Fabio Somenzi. A comparative
study of symbolic algorithms for the computation of fair cycles. In
Proc. 3rd International Conference on Formal Methods in Computer-
Aided Design (FMCAD), 143–160, 2000.

[Red64] V.N. Redko. On defining relations for the algebra of regular events.
Ukrainian Mathematical Journal, 16:120–126, 1964.

[Rei98] Wolfgang Reisig. Elements of Distributed Algorithms: Modeling and
Analysis with Petri Nets. Springer, 1998.

[RS59] Michael O. Rabin and Dana S. Scott. Finite automata and their deci-
sion problems. IBM Journal of Research and Development, 3(2):114–
125, 1959.

[Saf88] Shmuel Safra. On the complexity of ω-automata. In Proc. 29th An-
nual Symposium on Foundations of Computer Science (FOCS), 319–
327, 1988.

[SB00] Fabio Somenzi and Roderick Bloem. Efficient Büchi automata from
LTL formulae. In Proc. 12th International Conference on Computer
Aided Verification (CAV), 248–263, 2000.

[Sch61] Marcel Paul Schützenberger. A remark on finite transducers. Infor-
mation and Control, 4(2/3):185–196, 1961.

BIBLIOGRAPHY 527

[Sch09] Sven Schewe. Büchi complementation made tight. In Proc. 26th
International Symposium on Theoretical Aspects of Computer Science
(STACS), 661–672, 2009.

[SE05] Stefan Schwoon and Javier Esparza. A note on on-the-fly verification
algorithms. In Proc. 11th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), 174–190,
2005.

[Sem77] A. L. Semenov. Presburgerness of predicates regular in two number
systems. Siberian Mathematical Journal, 18(2):289–300, 1977.

[Sip12] Michael Sipser. Introduction to the Theory of Computation, 3rd edition.
Cengage Learning, 2012.

[Str81] Robert S. Streett. Propositional dynamic logic of looping and con-
verse. In Proc. 13th Annual ACM Symposium on Theory of Computing
(STOC), 375–383, 1981.

[SVW87] A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The complemen-
tation problem for Büchi automata with appplications to temporal
logic. Theoretical Computer Science, 49:217–237, 1987.

[Tar72] Robert Endre Tarjan. Depth-first search and linear graph algorithms.
SIAM Journal on Computing, 1(2):146–160, 1972.

[TFVT14] Ming-Hsien Tsai, Seth Fogarty, Moshe Y. Vardi, and Yih-Kuen Tsay.
State of Büchi complementation. Logical Methods in Computer Science
(LMCS), 10(4), 2014.

[Tho68] Ken Thompson. Regular expression search algorithm. Communica-
tions of the ACM, 11(6):419–422, 1968.

[Tho90] Wolfgang Thomas. Automata on infinite objects. In Handbook of The-
oretical Computer Science, Volume B: Formal Models and Sematics (B),
133–191. Elsevier and MIT Press, 1990.

[Tho97] Wolfgang Thomas. Automata theory on trees and partial orders. In
Proc. 7th International Joint Conference CAAP/FASE: Theory and Prac-
tice of Software Development (TAPSOFT), 20–38, 1997.

[Tra62] B. A. Trakhtenbrot. Finite automata and logic of monadic predicates.
Sibirskij Matematiceskij Zurnal, 3(1):103–131, 1962.

[Var07] Moshe Y. Vardi. The Büchi complementation saga. In Proc. 24th An-
nual Symposium on Theoretical Aspects of Computer Science (STACS),
12–22, 2007.

[Vol08] Mikhail V. Volkov. Synchronizing automata and the Černý conjecture.
In Proc. 2nd International Conference on Language and Automata The-
ory and Applications (LATA), 11–27, 2008.

BIBLIOGRAPHY 528

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach
to automatic program verification (preliminary report). In Proc. Sym-
posium on Logic in Computer Science (LICS), 332–344, 1986.

[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite compu-
tations. Information and Computation, 115(1):1–37, 1994.

[WB95] Pierre Wolper and Bernard Boigelot. An automata-theoretic approach
to Presburger arithmetic constraints (extended abstract). In Proc. 2nd
International Symposium on Static Analysis (SAS), 21–32, 1995.

[WB00] Pierre Wolper and Bernard Boigelot. On the construction of automata
from linear arithmetic constraints. In Proc. 6th International Confer-
ence on Tools and Algorithms for Construction and Analysis of Systems
(TACAS), 1–19, 2000.

[WDHR06] Martin De Wulf, Laurent Doyen, Thomas A. Henzinger, and Jean-
François Raskin. Antichains: A new algorithm for checking univer-
sality of finite automata. In Proc. 18th International Conference on
Computer Aided Verification (CAV), 17–30, 2006.

[WS21] Thomas Wilke and Sven Schewe. ω-Automata. In Handbook of Au-
tomata Theory, 189–234. European Mathematical Society Publishing
House, 2021.

[WVS83] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about
infinite computation paths (extended abstract). In Proc. 24th Annual
Symposium on Foundations of Computer Science, 185–194, 1983.

[Yan08] Qiqi Yan. Lower bounds for complementation of ω-automata via the
full automata technique. Logical Methods in Computer Science (LMCS),
4(1), 2008.

Index

ε-transition, 18
ω-automata, 230
ω-iteration, 229
ω-language, 228
ω-regular, 229
ω-regular expression, 229
2DFA, 102, 413

acceptance, 11
acceptance condition, 230

Büchi, 231
Muller, 257
parity, 254
Rabin, 242
Streett, 248

accepting condition
existential, 38, 39, 363, 364
universal, 38, 39, 92, 363, 364,

406
accepting lasso, 290
action, 159
active graph, 299
alphabet, 8
alternating automata, 39, 92, 364, 407
arithmetic

linear, 341
Presburger, 212

ascendant, 291
atom, 325
atomic formula, 180, 212
atomic proposition, 321
automata

network, 152, 319
nondeterministic, 17

with regular expressions, 19
automatic verification, 150
automaton, 11

Büchi automata, 232
generalized, 269
with ε-transitions, 234

Büchi condition, 231
backward search, 289
block, 52
boolean operation

DFA, 72
boundary, 307
breakpoint, 238, 280

canonical
automaton, 48

closure, 325
downward, 39
upward, 39

co-Büchi automata, 237
coarser, 52
coarsest stable refinement, 53
complement, 8
complementation

DFA, 71
NFA, 78
NGA, 273

composition
parallel, 156

compositional verification, 165
computation, 322
concatenation, 8, 228
concurrent program, 159

529

INDEX 530

configuration graph, 151
conversion, 20
critical section, 159
CSR, 53

dag, 238
DCA, 237
descendant, 291
deterministic

automaton, 11
finite automaton, 11

DFA, 11
lazy, 98
two-way, 102, 413
weakly acyclic, 44, 68, 92, 147,

376, 389, 408, 432
DFS-path, 295
DMA, 257
downward closure, 39
DPA, 254
DRA, 242
DSA, 248

Emerson–Lei’s algorithm, 308
emptiness

DFA, 75
NFA, 81

empty word, 8
equality

DFA, 77
NFA, 83

equivalence, 11
even part, 88, 395
execution, 150

factor, 93
fairness, 338
first-order formula, 181
FO(Σ), 180
formal verification, 150
forward search, 289
fractional part, 341
free variable, 181, 213
Frobenius number, 225, 457
frontier, 307
full execution, 150

generalized Büchi automata, 269

head, 95
Hintikka sequence, 325
hit, 95
homomorphism, 89, 396
Hopcroft, 56

inclusion
DFA, 75
NFA, 83

infinite word, 228
integer part, 341
interleaving, 160
interpretation, 192, 213

minimal, 199
intersection

DFA, 72
NFA, 79
NGA, 270

inverse residual, 65, 384
iteration, 8, 229

König’s lemma, 240
Knuth–Morris–Pratt algorithm, 100

language, 8
of a state, 47
partition, 52

language equation, 41, 369
LanPar, 53
lasso, 290
lazy DFA, 98
left quotient, 89
legal successor, 150
level ranking, 276
linear arithmetic, 341
linear temporal logic, 321
live, 308
liveness, 173, 317
LTL, 321

macro, 185, 193
macrostep, 99
master automaton, 50, 121
master transducer, 133
membership

DFA, 71
NFA, 77

membership predicate, 179
minimal

INDEX 531

DFA, 45
NFA, 58

minimization, 45
miss, 95
monadic second-order logic, 190, 339
MSO(Σ), 191, 340
Muller automata, 257

NBA, 232
NBA-ε, 234
NCA, 237
necklace structure, 301
negation-free, 336, 497
negative transition, 66, 385
nested-DFS algorithm, 293
network of communicating automata,

152, 319
NFA, 17
NGA, 269
NMA, 257
nondeterministic

automaton, 17
normal form, 20
NPA, 254
NRA, 242
NSA, 248

odd ranking, 276
on-the-fly, 289
owing state, 240

pairing, 72
parallel composition, 156
parenthesis theorem, 292
parity automata, 254
partition, 52
pattern matching, 93
potential execution, 151
powerset construction, 21
pre-Hintikka sequence, 326
predecessor, 290
Presburger arithmetic, 212
process, 159
property automata, 152
PSPACE, 60, 85, 163

quotient, 52
left, 89

Rabin automata, 242
rank, 275
ranking, 275

odd, 276
reading head, 11, 98
recognize, 230
reduction, 58
regular, 10

expression, 9
regular expression

simple, 40
residual, 46

inverse, 65, 384
reverse, 37
reverse-deterministic, 67
run, 11, 230

accepting, 12

safety, 173
satisfaction relation, 322
satisfaction sequence, 326
SCCsearch, 305
search

backward, 289
forward, 289

semantics, 180, 181, 192, 212
semi-automaton, 230
sentence, 181
set difference

DFA, 72
shared variable, 159
shuffle, 89

perfect, 89
sign bit, 219
solution space, 213
star-free, 36
star-free language, 209
state, 12

black, 292
explosion, 162
final, 12
gray, 292
initial, 12
owing, 240
trap, 13
white, 292

state-explosion problem, 162
Streett automata, 248

INDEX 532

strongly connected component, 299
substitution, 90, 398
successor, 150, 290
symmetric difference

DFA, 72
synchronizing word, 90, 399
syntax, 180, 181, 191, 212
system automata, 151
system NBA, 316

tail, 95
tape, 11, 98
term, 212
timestamp, 291
transition

ε, 18
function, 12
negative, 66, 385
relation, 17

trap state, 13
two’s complement, 219
two-way DFA, 102, 413

union
DFA, 72
NFA, 79
NGA, 270

universality
DFA, 75
NFA, 81

upward closure, 39

valuation, 182, 192
variable

bound, 181
free, 181, 213

verification, 150
compositional, 165

visit record, 195

weakly acyclic DFA, 44, 68, 92, 147,
376, 389, 408, 432

white-path theorem, 293
word, 8

empty, 8
infinite, 228

workset, 22

	Preface
	Why This Book?
	Acknowledgments?

	Overview
	Introduction
	Outline and Structure
	On the Exercises

	Automata on Finite Words
	Automata Classes and Conversions
	Alphabets, Letters, Words, and Languages
	Regular Expressions: A Language to Describe Languages
	Automata Classes
	Deterministic Finite Automata
	Using DFAs as Data Structures
	Nondeterministic Finite Automata
	Nondeterministic Finite Automata with -Transitions
	Nondeterministic Finite Automata with Regular Expressions
	A Normal Form for Automata

	Conversion Algorithms
	From NFA to DFA
	From NFA- to NFA
	From NFA-reg to NFA-
	From NFA- to Regular Expressions

	A Tour of Conversions
	Exercises

	Minimization and Reduction
	Minimal DFAs
	The Master Automaton

	Minimizing DFAs
	Computing the Language Partition
	Quotienting
	Hopcroft's Algorithm

	Reducing NFAs
	The Reduction Algorithm
	★ Minimality Is PSPACE-Complete

	A Characterization of Regular Languages
	Exercises

	Operations on Sets: Implementations
	Implementation on DFAs
	Membership
	Complementation
	Binary Boolean Operations
	Emptiness
	Universality
	Inclusion
	Equality

	Implementation on NFAs
	Membership
	Complementation
	Union and Intersection
	Emptiness and Universality
	Inclusion and Equality
	★ Universality and Inclusion Are PSPACE-Complete

	Exercises

	Application I: Pattern Matching
	The General Case
	The Word Case
	Lazy DFAs

	Exercises

	Operations on Relations: Implementations
	Encodings
	Transducers and Regular Relations
	Implementing Operations on Relations
	Projection
	Join, Post and Pre

	Relations of Higher Arity
	Exercises

	Finite Universes and Decision Diagrams
	Fixed-Length Languages and the Master Automaton
	A Data Structure for Fixed-Length Languages
	Operations on Fixed-Length Languages
	Determinization and Minimization
	An Application: Equivalence of Digital Circuits

	Operations on Fixed-Length Relations
	Decision Diagrams
	Decision Diagrams and Kernels
	Operations on Kernels
	Determinization and Minimization

	Exercises

	Application II: Verification
	The Automata-Theoretic Approach to Verification
	Programs as Networks of Automata
	Parallel Composition of Languages
	Asynchronous Product
	State- and Action-Based Properties

	Concurrent Programs
	Expressing and Checking Properties

	Coping with the State-Explosion Problem
	★ Verification Is PSPACE-Complete
	On-the-Fly Verification
	Compositional Verification
	Symbolic State-Space Exploration

	Safety and Liveness Properties
	Exercises

	Automata and Logic
	Predicate Logic on Words: An Informal Introduction
	Syntax and Semantics
	Syntax
	Semantics

	Macros and Examples
	Expressive Power of FO(Σ)
	Monadic Second-Order Logic on Words
	Syntax and Semantics
	Syntax
	Semantics

	Macros and Examples
	All Regular Languages Are Expressible in MSO(Σ)
	All Languages Expressible in MSO(Σ) Are Regular
	Exercises

	Application III: Presburger Arithmetic
	Syntax and Semantics
	An NFA for the Solutions over the Naturals
	Equations

	An NFA for the Solutions over the Integers
	Equations
	Algorithms

	Exercises

	Automata on Infinite Words
	Classes of ω-Automata and Conversions
	ω-Languages and ω-Regular Expressions
	ω-Automata and the Quest for an ω-Trinity
	The Quest for an -Trinity
	Büchi Automata
	Co-Büchi automata
	Rabin Automata

	Beyond ω-Trinities
	Rabin Automata, Again
	Streett Automata
	Parity Automata
	Muller Automata

	Summary
	Exercises

	Boolean Operations: Implementations
	Generalized Büchi Automata
	Union and Intersection
	Complement
	Rankings and Level Rankings
	The Complement NBA A
	A Lower Bound on the Size of the complement of A

	Exercises

	Emptiness Check: Implementations
	Emptiness Algorithms Based on Depth-First Search
	The Nested-DFS Algorithm
	An Algorithm Based on Strongly Connected Components

	Algorithms Based on Breadth-First Search
	Emerson–Lei's Algorithm
	A Modified Emerson–Lei's Algorithm
	Comparing the Algorithms

	Exercises

	Application I: Verification and Temporal Logic
	Automata-Based Verification of Liveness Properties
	Checking Liveness Properties
	Networks of Automata and Fairness

	Linear Temporal Logic
	From LTL Formulas to Generalized Büchi Automata
	Satisfaction Sequences and Hintikka Sequences
	Constructing the NGA for an LTL Formula
	Size of the NGA

	Automatic Verification of LTL Formulas
	Exercises

	Application II: MSO Logics on ω-Words and Linear Arithmetic
	Monadic Second-Order Logic on ω-Words
	Expressive Power of MSO(Σ) on ω-Words

	Linear Arithmetic
	Encoding Real Numbers
	Constructing an NGA for the Real Solutions

	Exercises

	Solutions
	Solutions for Chapter 1
	Solutions for Chapter 2
	Solutions for Chapter 3
	Solutions for Chapter 4
	Solutions for Chapter 5
	Solutions for Chapter 6
	Solutions for Chapter 7
	Solutions for Chapter 8
	Solutions for Chapter 9
	Solutions for Chapter 10
	Solutions for Chapter 11
	Solutions for Chapter 12
	Solutions for Chapter 13
	Solutions for Chapter 14
	Bibliographic Notes
	Bibliography
	Index

