Classes and conversions
Regular expressions

• Syntax: \(r ::= \emptyset \mid \epsilon \mid a \mid r_1 r_2 \mid r_1 + r_2 \mid r^* \)

• Semantics: The language \(L(r) \) of a regular expression \(r \) is inductively defined as follows:

 • \(L(\emptyset) = \emptyset, L(\epsilon) = \{\epsilon\}, L(a) = \{a\} \)

 • \(L(r_1 r_2) = L(r_1) L(r_2) \)
 where \(L_1 L_2 = \{w_1 w_2 \mid w_1 \in L_1, w_2 \in L_2\} \)

 • \(L(r_1 + r_2) = L(r_1) \cup L(r_2) \)

 • \(L(r^*) = \bigcup_{i \geq 0} L^i \)
 where \(L^0 = \{\epsilon\} \) and \(L^{i+1} = L^i L \)
A deterministic finite automaton is a tuple \(A = (Q, \Sigma, \delta, q_0, F) \) where

- \(Q \) is a finite, nonempty set of states
- \(\Sigma \) is a nonempty, finite set of letters, called an alphabet
- \(\delta: Q \times \Sigma \to Q \) is the transition function
- \(q_0 \in Q \) is the initial state
- \(F \subseteq Q \) is the set of final states
Run of a DFA on a word

• \(q \xrightarrow{a} q' \) denotes \(\delta(q, a) = q' \)

• The run of a DFA on a word \(a_1 a_2 \ldots a_n \in \Sigma^* \) is the unique sequence \(q_0 q_1 \ldots q_n \) of states such that \(q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \cdots q_{n-1} \xrightarrow{a_n} q_n \)

• A DFA accepts a word iff its run on it ends in a final state. We say the run is accepting.

• A DFA over an alphabet \(\Sigma \) recognizes a language \(L \subseteq \Sigma^* \) if it accepts every word of \(L \) and no other. The language recognized by a DFA \(A \) is denoted \(L(A) \).
A nondeterministic automaton is a tuple $A = (Q, \Sigma, \delta, Q_0, F)$ where

- Q, Σ, F are as for DFAs
- $\delta: Q \times \Sigma \rightarrow 2^Q$ is the transition function
- $Q_0 \in Q$ is the set of initial states
Runs of an NFA on a word

• A run of an NFA on a word $a_1 a_2 \ldots a_n \in \Sigma^*$ is a sequence $q_0 q_1 \ldots q_n$ of states such that $q_0 \in Q_0$ and

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} q_2 \ldots q_{n-1} \xrightarrow{a_n} q_n$$

• An NFA can have 0, 1, or more runs on the same word (but only finitely many).

• An NFA accepts a word iff at least one of its runs on it is accepting.
Nondeterministic finite automata with ε-transitions (NFAε)

A nondeterministic automaton with ε-transitions is a tuple $A = (Q, \Sigma, \delta, Q_0, F)$ where

- Q, Σ, Q_0, F are as for NFAs
- $\delta : Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$ is the transition function
 Runs of an NFAϵ on a word

- A run of an NFAϵ on a word $a_1 a_2 \ldots a_n \in \Sigma^*$ is a sequence $q_0 \ldots q'_0 q_1 \ldots q'_1 q_2 \ldots q'_{n-1} q_n \ldots q'_n$ of states such that $q_0 \in Q_0$ and

$$q_0 \rightarrow \ldots \rightarrow q'_0 \rightarrow q_1 \rightarrow \ldots \rightarrow q'_1 \rightarrow q_2 \ldots q'_{n-1} \rightarrow q_n \rightarrow \ldots \rightarrow q'_n$$

- An NFAϵ can have 0, 1, or more runs on the same word, even infinitely many.

- An NFAϵ accepts a word iff at least one of its runs on it is accepting.
Nondeterministic finite automata with regular expressions (NFAreg)

A nondeterministic automaton with regular expressions is a tuple $A = (Q, \Sigma, \delta, Q_0, F)$ where

- Q, Σ, Q_0, F are as for NFAs
- $\delta: Q \times \text{Reg}(\Sigma) \rightarrow 2^Q$ is the transition function, where $\delta(q, r) = \emptyset$ is the case for all but finitely many pairs $(q, r) \in Q \times \text{Reg}(\Sigma)$

![Nondeterministic finite automaton with regular expressions](image)
An NFAreg accepts a word w if there are states q_0, \ldots, q_n and regular expressions r_1, \ldots, r_n such that

- $q_0 \in Q_0$, $q_n \in F$,
- $q_0 \xrightarrow{r_1} q_1 \xrightarrow{r_2} q_2 \cdots q_{n-1} \xrightarrow{r_n} q_n$, and
- $w \in L(r_1 r_2 \cdots r_n)$.
Normal form

• An automaton of any class is in normal form if every state is reachable by a path of transitions from some initial state.
• For every automaton there is an equivalent automaton in normal form.
• All algorithms in this course assume that automata inputs are in normal form, and guarantee that the output is also in normal form.
Conversions
NFA to DFA
The powerset construction

\[NFAtoDFA(A) \]

Input: NFA \(A = (Q, \Sigma, \delta, Q_0, F) \)

Output: DFA \(B = (Q, \Sigma, \Delta, q_0, \mathcal{F}) \) with \(L(B) = L(A) \)

1. \(Q, \Delta, \mathcal{F} \leftarrow \emptyset; q_0 \leftarrow Q_0 \)
2. \(\mathcal{W} = \{Q_0\} \)
3. **while** \(\mathcal{W} \neq \emptyset \) **do**
4. \hspace{1em} **pick** \(Q' \) **from** \(\mathcal{W} \)
5. \hspace{1em} **add** \(Q' \) **to** \(Q \)
6. \hspace{1em} **if** \(Q' \cap F \neq \emptyset \) **then** **add** \(Q' \) **to** \(\mathcal{F} \)
7. \hspace{1em} **for all** \(a \in \Sigma \) **do**
8. \hspace{2em} \(Q'' \leftarrow \bigcup_{q \in Q'} \delta(q, a) \)
9. \hspace{2em} **if** \(Q'' \notin Q \) **then** **add** \(Q'' \) **to** \(\mathcal{W} \)
10. \hspace{2em} **add** \((Q', a, Q'') \) **to** \(\Delta \)
Let L_n be the language of the NFA with $n + 1$ states.

Proposition. Every DFA for L_n has at least 2^n states.

Proof: Assume the contrary.

Then two different words of length n lead to the same state. Let the words be uav_1 and uav_2.

Then uav_1 and uav_2 lead to the same state too, but only one of the is accepted. Contradiction.
NFAε to NFA
NFAε to NFA

Saturation
NFAε to NFA

Saturation

Check of the initial state + ε-removal
A one-pass algorithm

$NFA_{\varepsilon}toNFA(A)$

Input: NFA-\(\varepsilon\) \(A = (Q, \Sigma, \delta, Q_0, F)\)

Output: NFA \(B = (Q', \Sigma, \delta', Q'_0, F')\) with \(L(B) = L(A)\)

1. \(Q'_0 \leftarrow Q_0\)
2. \(Q' \leftarrow Q_0; \delta' \leftarrow \emptyset; F' \leftarrow F \cap Q_0\)
3. \(\delta'' \leftarrow \emptyset; W \leftarrow \{(q, \alpha, q') \in \delta \mid q \in Q_0\}\)
4. **while** \(W \neq \emptyset\) **do**
 5. **pick** \((q_1, \alpha, q_2)\) from \(W\)
 6. **if** \(\alpha \neq \varepsilon\) **then**
 7. add \(q_2\) to \(Q'\); add \((q_1, \alpha, q_2)\) to \(\delta'\); if \(q_2 \in F\) then add \(q_2\) to \(F'\)
 8. **for all** \(q_3 \in \delta(q_2, \varepsilon)\) **do**
 9. **if** \((q_1, \alpha, q_3) \notin \delta'\) **then** add \((q_1, \alpha, q_3)\) to \(W\)
 10. **for all** \(a \in \Sigma, q_3 \in \delta(q_2, a)\) **do**
 11. **if** \((q_2, a, q_3) \notin \delta'\) **then** add \((q_2, a, q_3)\) to \(W\)
 12. **else** /* \(\alpha = \varepsilon\) */
 13. add \((q_1, \alpha, q_2)\) to \(\delta''\); if \(q_2 \in F\) then add \(q_1\) to \(F'\)
 14. **for all** \(\beta \in \Sigma \cup \{\varepsilon\}, q_3 \in \delta(q_2, \beta)\) **do**
 15. **if** \((q_1, \beta, q_3) \notin \delta' \cup \delta''\) **then** add \((q_1, \beta, q_3)\) to \(W\)
Correctness

Proposition. Let A be an NFAϵ and let $B = \text{NFA}_\epsilon\text{toNFA}(A)$. Then B is an NFA and $L(A) = L(B)$.

Proof.

- **Termination.** Every transition that leaves W is never added to W again, and each iteration of the while loop removes one transition from W.
- B is an NFA. Easy.
- $L(B) \subseteq L(A)$.
 - Check that every transition added by the algorithm is a transition of A or a shortcut.
 - Check that the algorithm only adds initial states as final, and only if A has an ϵ-path from them to a final state.

Invariant: At line 13, $q_1 \in Q_0$. Proof by induction, observing that the algorithm only adds ϵ-transitions to W at line 15.
Correctness

• $L(A) \subseteq L(B)$

If $\epsilon \in L(A)$ then $\epsilon \in L(B)$

$q_0 \xrightarrow{\epsilon} q_1 \xrightarrow{\epsilon} q_2 \xrightarrow{\epsilon} q_3 \xrightarrow{\epsilon} q_4$

If $w \neq \epsilon$ and $w \in L(A)$ then $w \in L(B)$

$q_0 \xrightarrow{\epsilon} q_1 \xrightarrow{\epsilon} q_2 \xrightarrow{a_1} q_3 \xrightarrow{\epsilon} q_4 \xrightarrow{\epsilon} q_5 \xrightarrow{a_2} q_5 \xrightarrow{\epsilon} q_6$
Regular expressions to NFAε

$$(a^*b^* + c)^*d$$
Regular expressions to NFAε

• **Preprocessing**: Convert the regular expression into another one which is either equal to \emptyset, or does not contain any occurrence of \emptyset.

• Use the following rewrite rules:

\[
\begin{align*}
\emptyset \cdot r & \leadsto \emptyset \\
r \cdot \emptyset & \leadsto \emptyset \\
r + \emptyset & \leadsto r \\
\emptyset^* & \leadsto \varepsilon \\
\emptyset + r & \leadsto r
\end{align*}
\]
Regular expressions to NFAε

Automaton for the regular expression \(a\), where \(a ∈ \Sigma \cup \{ε\}\):

- Rule for concatenation
- Rule for choice
- Rule for Kleene iteration

\[(a^*b^* + c)^*d\]
Regular expressions to NFAε

Automaton for the regular expression a, where $a \in \Sigma \cup \{\varepsilon\}$

Rule for concatenation

Rule for choice

Rule for Kleene iteration
Regular expressions to NFAε

\[(a^*b^* + c)^*d\]

\[(a^*b^* + c)^*\]

\[a^*b^* + c\]

\[\varepsilon \rightarrow \varepsilon \rightarrow d\]

 Automaton for the regular expression \(a\), where \(a \in \Sigma \cup \{\varepsilon\}\)

Rule for concatenation

Rule for choice

Rule for Kleene iteration
Regular expressions to NFAε

(a^*b^* + c)^*d

(a^*b^* + c)^*

d

a^*b^* + c

e

e

d

ε

c

Automaton for the regular expression a, where $a \in \Sigma \cup \{\varepsilon\}$

Rule for concatenation

Rule for choice

Rule for Kleene iteration
Regular expressions to NFAε

The diagram shows the conversion of regular expressions to NFA (Nondeterministic Finite Automata) with ε-transitions. Each transition represents a component of the regular expression, with ε-transitions allowing for empty transitions.

The automaton for the regular expression $a^*b^* + c^*d$ is illustrated, along with rules for concatenation, choice, and Kleene iteration.

For example, the rule for concatenation is shown with states r_1 and r_2 connected by transitions $r_1 \rightarrow r_2$. The rule for choice is depicted with states $r_1 + r_2$ connected by transitions r_1 and r_2. The rule for Kleene iteration is shown with a loop allowing for zero or more repetitions.

Automaton for the regular expression a, where $a \in \Sigma \cup \{\varepsilon\}$

Rule for concatenation

Rule for choice

Rule for Kleene iteration
Regular expressions to NFAε

\[(a^*b^* + c)^*d\]

\[(a^*b^* + c)^*\]

\[a^*b^* + c\]

\[\epsilon\]

\[\epsilon\]

\[\epsilon\]

\[\epsilon\]

\[a^*\]

\[b^*\]

\[c\]

\[\epsilon\]

\[\epsilon\]

\[\epsilon\]

\[\epsilon\]

\[a\]

\[b\]

\[c\]

\[d\]
NFAε to regular expressions

- Preprocessing: convert into an NFA-ε with
 - one initial state without input transitions, and
 - one final state without output transitions.

Diagram:

Input states with input transitions to q_0, followed by ε transitions to more states, and finally ε transitions to the final state q_f. The diagram shows the transformation process.
NFAε to regular expressions

- Processing: apply the following two rules, given priority to the first one.

\[
\begin{align*}
r_1 &
\sim
r_1 + r_2 \\
\end{align*}
\]
NFAϵ to regular expressions
NFAε to regular expressions
NFAϵ to regular expressions
NFAε to regular expressions
NFAε to regular expressions
NFA_ε to regular expressions

\[
\begin{align*}
(a + b)(a + b)^* & \quad \varepsilon + (ab + ba) + (aa + bb) + (ab + ba)(aa + bb)^*(ba + ab) \\
\varepsilon + (ab + ba) + (aa + bb) + (ab + ba)(aa + bb)^*(ba + ab) & \quad (aa + bb + (ab + ba)(aa + bb)^*(ba + ab))^*
\end{align*}
\]
A Tour of Conversions

\[
\begin{align*}
&aa + bb + (ab + ba) (aa + bb)^* (ba + ab) \\
&\varepsilon \\
&\varepsilon
\end{align*}
\]
A Tour of Conversions

\[(aa + bb) + (ab + ba)(aa + bb)^*(ba + ab)^*\]
A Tour of Conversions

\[aa + bb + (ab + ba)(aa + bb)^*(ab + ba) \]
A Tour of Conversions

\[(ab + ba)(aa + bb)^*(ab + ba)\]
A Tour of Conversions
A Tour of Conversions