Operations and tests on sets: Implementation on DFAs
Operations and tests

Universe of objects U, sets of objects X, Y, object x.

<table>
<thead>
<tr>
<th>Operations on sets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Complement (X)</td>
<td>returns $U \setminus X$.</td>
</tr>
<tr>
<td>Intersection (X, Y)</td>
<td>returns $X \cap Y$.</td>
</tr>
<tr>
<td>Union (X, Y)</td>
<td>returns $X \cup Y$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tests on sets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Member (x, X)</td>
<td>returns true if $x \in X$, false otherwise.</td>
</tr>
<tr>
<td>Empty (X)</td>
<td>returns true if $X = \emptyset$, false otherwise.</td>
</tr>
<tr>
<td>Universal (X)</td>
<td>returns true if $X = U$, false otherwise.</td>
</tr>
<tr>
<td>Included (X, Y)</td>
<td>returns true if $X \subseteq Y$, false otherwise.</td>
</tr>
<tr>
<td>Equal (X, Y)</td>
<td>returns true if $X = Y$, false otherwise.</td>
</tr>
</tbody>
</table>
Implementation on DFAs

- Assumption: each object encoded by one word, and vice versa.
- Membership: trivial algorithm, linear in the length of the word.
- Complement: exchange final and non-final states. Linear (or even constant) time.
- Generic implementation of binary boolean operations based on pairing.
Implementation on DFAs

- Assumption: each object encoded by one word, and vice versa.
- **Membership**: trivial algorithm, linear in the length of the word.
Implementation on DFAs

• Assumption: each object encoded by one word, and vice versa.
• Membership: trivial algorithm, linear in the length of the word.
• Complement: exchange final and non-final states. Linear (or even constant) time.
Implementation on DFAs

- Assumption: each object encoded by one word, and vice versa.
- **Membership**: trivial algorithm, linear in the length of the word.
- **Complement**: exchange final and non-final states. Linear (or even constant) time.
- Generic implementation of binary boolean operations based on **pairing**.
Definition. Let $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ be DFAs.

The **pairing** $[A_1, A_2]$ of A_1 and A_2 is the tuple (Q, Σ, δ, q_0) where

- $Q = \{ [q_1, q_2] \mid q_1 \in Q_1, q_2 \in Q_2 \}$
- $\delta = \{ ([q_1, q_2], a, [q_1', q_2']) \mid (q_1, a, q_1') \in \delta_1, (q_2, a, q_2') \in \delta_2 \}$
- $q_0 = [q_{01}, q_{02}]$

The **run** of $[A_1, A_2]$ on a word of Σ^* is defined as for DFAs
Pairing
Pairing

- Another example: DFA for the language of words with an even number of as and even number of bs (and even number of cs ...).
Generic algorithm for binary boolean operations

- We assign to a binary boolean operator \odot an operation on languages $\widehat{\odot}$ as follows:

$$L_1 \widehat{\odot} L_2 = \{ w \in \Sigma^* | (w \in L_1) \odot (w \in L_2) \}$$
Generic algorithm for binary boolean operations

• We assign to a binary boolean operator \otimes an operation on languages $\widehat{\otimes}$ as follows:

$$L_1 \widehat{\otimes} L_2 = \{ w \in \Sigma^* \mid (w \in L_1) \otimes (w \in L_2) \}$$

• For example:

<table>
<thead>
<tr>
<th>Language operation</th>
<th>$b_1 \otimes b_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Union</td>
<td>$b_1 \lor b_2$</td>
</tr>
<tr>
<td>Intersection</td>
<td>$b_1 \land b_2$</td>
</tr>
<tr>
<td>Set difference $(L_1 \setminus L_2)$</td>
<td>$b_1 \land \neg b_2$</td>
</tr>
<tr>
<td>Symmetric difference $(L_1 \setminus L_2 \cup L_2 \setminus L_1)$</td>
<td>$b_1 \iff \neg b_2$</td>
</tr>
</tbody>
</table>
Generic algorithm for binary boolean operations

\[BinOp[\odot](A_1, A_2) \]

Input: DFAs \(A_1 = (Q_1, \Sigma, \delta_1, Q_{01}, F_1) \), \(A_2 = (Q_2, \Sigma, \delta_2, Q_{02}, F_2) \)

Output: DFA \(A = (Q, \Sigma, \delta, Q_0, F) \) with \(L(A) = L(A_1) \odot L(A_2) \)

1. \(Q, \delta, F \leftarrow \emptyset \)
2. \(q_0 \leftarrow [q_{01}, q_{02}] \)
3. \(W \leftarrow \{q_0\} \)
4. **while** \(W \neq \emptyset \) **do**
5. \hspace{1em} **pick** \([q_1, q_2]\) **from** \(W \)
6. \hspace{1em} **add** \([q_1, q_2]\) **to** \(Q \)
7. \hspace{1em} **if** \((q_1 \in F_1) \odot (q_2 \in F_2) \) **then add** \([q_1, q_2]\) **to** \(F \)
8. \hspace{1em} **for all** \(a \in \Sigma \) **do**
9. \hspace{2em} \(q'_1 \leftarrow \delta_1(q_1, a); q'_2 \leftarrow \delta_2(q_2, a) \)
10. \hspace{2em} **if** \([q'_1, q'_2] \notin Q \) **then add** \([q'_1, q'_2]\) **to** \(W \)
11. \hspace{2em} **add** \(([q_1, q_2], a, [q'_1, q'_2]) \) **to** \(\delta \)
Generic algorithm for binary boolean operations

- Complexity: the pairing of DFAs with \(n_1 \) and \(n_2 \) states has \(O(n_1 \cdot n_2) \) states.
- Hence: for DFAs with \(n_1 \) and \(n_2 \) states over an alphabet with \(k \) letters, binary operations can be computed in \(O(k \cdot n_1 \cdot n_2) \) time.
- Further: there is a family of languages for which the computation of intersection takes \(\Theta(k \cdot n_1 \cdot n_2) \) time.
Language tests

• **Emptiness**: a DFA is empty iff it has no final states

• **Universality**: a DFA is universal iff it has only final states

• **Inclusion**: $L_1 \subseteq L_2$ iff $L_1 \setminus L_2 = \emptyset$

• **Equality**: $L_1 = L_2$ iff $(L_1 \setminus L_2) \cup (L_2 \setminus L_1) = \emptyset$
Inclusion test

\textit{InclDFA}(A_1, A_2)

Input: DFAs $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$, $A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$

Output: \texttt{true} if $L(A_1) \subseteq L(A_2)$, \texttt{false} otherwise

1. $Q \leftarrow \emptyset$
2. $W \leftarrow \{(q_{01}, q_{02})\}$
3. \textbf{while} $W \neq \emptyset$ \textbf{do}
4. \hspace{1em} \textbf{pick} $[q_1, q_2]$ \textbf{from} W
5. \hspace{1em} \textbf{add} $[q_1, q_2]$ \textbf{to} Q
6. \hspace{1em} \textbf{if} $(q_1 \in F_1)$ \text{ and } $(q_2 \notin F_2)$ \textbf{then return} \texttt{false}
7. \hspace{1em} \textbf{for all} $a \in \Sigma$ \textbf{do}
8. \hspace{2em} $q'_1 \leftarrow \delta_1(q_1, a)$; $q'_2 \leftarrow \delta_2(q_2, a)$
9. \hspace{2em} \textbf{if} $[q'_1, q'_2] \notin Q$ \textbf{then add} $[q'_1, q'_2]$ \textbf{to} W
10. \hspace{1em} \textbf{return} \texttt{true}
Operations and tests on sets: Implementation on NFAs
Membership

Prefix read	W
ϵ | $\{1\}$
a | $\{2\}$
aa | $\{2, 3\}$
aaa | $\{1, 2, 3\}$
$aaab$ | $\{2, 3, 4\}$
$aaabb$ | $\{2, 3, 4\}$
$aaabba$ | $\{1, 2, 3, 4\}$
Membership

\[\text{MemNFA}[A](w) \]

Input: NFA \(A = (Q, \Sigma, \delta, Q_0, F) \), word \(w \in \Sigma^* \),

Output: true if \(w \in \mathcal{L}(A) \), false otherwise

1. \(W \leftarrow Q_0; \)
2. while \(w \neq \varepsilon \) do
3. \(U \leftarrow \emptyset \)
4. for all \(q \in W \) do
5. \(\text{add} \ \delta(q, \text{head}(w)) \) to \(U \)
6. \(W \leftarrow U \)
7. \(w \leftarrow \text{tail}(w) \)
8. return \((W \cap F \neq \emptyset) \)

Complexity:
- While loop executed \(|w|\) times
- For loop executed at most \(|Q|\) times
- Each execution of the loop body takes \(O(|Q|) \) time
- Overall: \(O(|Q|^2 \cdot |w|) \) time
Complement

• Swapping final and non-final states does not work
• Solution: determinize and then swap states
• Problem: Exponential blow-up in size!!
 To be avoided whenever possible!!
• No better way: there are NFAs with \(n \) states such that the smallest NFA for their complement has \(\Theta(2^n) \) states.
Complement

Let \(\Sigma = \{a, b\} \). For every \(n \geq 1 \), let \(L_n \) be the language of the regular expression

\[
\Sigma^* (a \Sigma^{n-1} b + b \Sigma^{n-1} a) \Sigma^*
\]

Proposition: For every \(n \geq 1 \), there exists an NFA for \(L_n \) with at most \(2n + 1 \) states.

Proposition: For every \(n \geq 1 \), every NFA for \(\overline{L_n} \) has at least \(2^n \) states.
\[L_n \; \; \text{"=} \; \; \Sigma^* (a\Sigma^{n-1}b + b\Sigma^{n-1}a)\Sigma^* \]

Proposition: For every \(n \geq 1 \), there exists a NFA for \(L_n \) with at most \(2n + 2 \) states.
\[L_n \equiv \Sigma^* (a\Sigma^{n-1}b + b\Sigma^{n-1}a)\Sigma^* \]

Proposition: For every \(n \geq 1 \), every NFA for \(\overline{L_n} \) has at least \(2^n \) states.
\[L_n \; "=\; \Sigma^* (a \Sigma^{n-1} b + b \Sigma^{n-1} a) \Sigma^* \]

Proposition: For every \(n \geq 1 \), every NFA for \(\overline{L_n} \) has at least \(2^n \) states.

Proof. Observe: \(w w \in \overline{L_n} \)
for every \(w \in \Sigma^n \).

Take an arbitrary NFA for \(\overline{L_n} \).

For every \(w \in \Sigma^n \), let \(q_w \) be the state reached after reading \(w \) in an accepting run of \(w w \).

For every \(w, v \in \Sigma^n \) we have:
\(w \neq v \implies q_w \neq q_v \)
Union and intersection

• The pairing construction still works for intersection, with the same complexity.
Union and intersection

- The pairing construction still works for intersection, with the same complexity.
- Does it also work for union?
Union and intersection

- The pairing construction still works for intersection, with the same complexity.
- It also works for union, but only if the NFAs are complete, i.e., they have at least one run for each word.
Union and intersection

• The pairing construction still works for intersection, with the same complexity.
• It also works for union, but only if the NFAs are complete, i.e., they have at least one run for each word.
• Optimal construction for intersection (same example as for DFAs).
Union and intersection

• The pairing construction still works for intersection, with the same complexity.
• It also works for union, but only if the NFAs are complete, i.e., they have at least one run for each word.
• Optimal construction for intersection (same example as for DFAs).
• Is the construction optimal for union?
Union and intersection

• The pairing construction still works for intersection, with the same complexity.
• It also works for union, but only if the NFAs are complete, i.e., they have at least one run for each word.
• Optimal construction for intersection (same example as for DFAs).
• Non-optimal construction for union. There is another construction which produces an NFA with $|Q_1| + |Q_2|$ states, instead of $|Q_1| \cdot |Q_2|$: just put the automata side by side!
Intersection

\textit{IntersNFA}(A_1, A_2)

\textbf{Input:} NFA $A_1 = (Q_1, \Sigma, \delta_1, Q_{01}, F_1)$, $A_2 = (Q_2, \Sigma, \delta_2, Q_{02}, F_2)$

\textbf{Output:} NFA $A_1 \cap A_2 = (Q, \Sigma, \delta, Q_0, F)$ with $L(A_1 \cap A_2) = L(A_1) \cap L(A_2)$

1. $Q, \delta, F \leftarrow \emptyset$; $Q_0 \leftarrow Q_{01} \times Q_{02}$
2. $W \leftarrow Q_0$
3. \textbf{while} $W \neq \emptyset$ \textbf{do}
4. \hspace{1em} \textbf{pick} $[q_1, q_2]$ \textbf{from} W
5. \hspace{1em} \textbf{add} $[q_1, q_2]$ \textbf{to} Q
6. \hspace{2em} \textbf{if} $(q_1 \in F_1)$ \textbf{and} $(q_2 \in F_2)$ \textbf{then add} $[q_1, q_2]$ \textbf{to} F
7. \hspace{1em} \textbf{for all} $a \in \Sigma$ \textbf{do}
8. \hspace{3em} \textbf{for all} $q_1' \in \delta_1(q_1, a), q_2' \in \delta_2(q_2, a)$ \textbf{do}
9. \hspace{4em} \textbf{if} $[q_1', q_2'] \notin Q$ \textbf{then add} $[q_1', q_2']$ \textbf{to} W
10. \hspace{3em} \textbf{add} $([q_1, q_2], a, [q_1', q_2'])$ \textbf{to} δ
Intersection
Emptiness and Universality

• Like DFAs, an NFA is empty iff every state is non-final.
• However, contrary to DFAs, it does not hold that an NFA is universal iff every state is final. Both directions fail!
• Emptiness is decidable in linear time.
• Universality is PSPACE-complete.
Crash course on PSPACE

- **PSPACE**: Class of decision problems for which there is an algorithm that
 - always terminates and returns the correct answer, and
 - only uses polynomial memory in the size of the input.
Crash course on PSPACE

• **PSPACE**: Class of decision problems for which there is an algorithm that
 • always terminates and returns the correct answer, and
 • only uses polynomial memory in the size of the input.

• **P ⊆ NP ⊆ PSPACE**. It is unknown if the inclusions are strict.
Crash course on PSPACE

• **PSPACE**: Class of decision problems for which there is an algorithm that
 • always terminates and returns the correct answer, and
 • only uses polynomial memory in the size of the input.

• **P ⊆ NP ⊆ PSPACE**. It is unknown if the inclusions are strict.

• **NPSPACE**: Class of decision problems for which there is a nondeterministic algorithm that
 • does not terminate or terminates and answers „no“ for no-inputs,
 • has at least one terminating execution answering „yes“ for yes-inputs, and
 • only uses polynomial memory in the size of the input.
Crash course on PSPACE

• **PSPACE**: Class of decision problems for which there is an algorithm that
 • always terminates and returns the correct answer, and
 • only uses polynomial memory in the size of the input.

• **P ⊆ NP ⊆ PSPACE**. It is unknown if the inclusions are strict.

• **NPSPACE**: Class of decision problems for which there is a nondeterministic algorithm that
 • does not terminate or terminates and answers „no“ for no-inputs,
 • has at least one terminating execution answering „yes“ for yes-inputs, and
 • only uses polynomial memory in the size of the input.

• Savitch´s theorem: **PSPACE = NPSPACE**
Crash course on PSPACE

- **PSPACE-complete**: A problem is PSPACE-complete if
 - it belongs to PSPACE, and
 - It is PSPACE-hard, meaning: every problem in PSPACE can be reduced in polynomial time to it.
Crash course on PSPACE

- **PSPACE-complete**: A problem is PSPACE-complete if
 - it belongs to PSPACE, and
 - It is PSPACE-hard, meaning: every problem in PSPACE can be reduced in polynomial time to it.

- **PSPACE-complete problems**:
 - Acceptance of linearly bounded automata (LBA): Given a LBA, i.e., a deterministic Turing machine M that only visits the cell tapes occupied by the input, and an input x, does M accept x?
 - QBF: Is a given quantified boolean formula true?
Universality is PSPACE complete

Universality is in PSPACE
Universality is PSPACE complete

Universality is in PSPACE

By Savitch‘s theorem it suffices to show that (non)-universality is in NPSPACE.
Universality is PSPACE complete

Universality is in PSPACE

By Savitch’s theorem it suffices to show that (non)-universality is in NPSPACE.

So it suffices to give a nondeterministic algorithm that, given an NFA A as input:

- does not terminate if A is universal,
- has at least one terminating execution answering „non-universal“ if A is not universal, and
- only uses polynomial memory in the size of the input.
Universality is PSPACE complete

Universality is in PSPACE

By Savitch‘s theorem it suffices to show that (non)-universality is in NPSPACE.

So it suffices to give a nondeterministic algorithm that, given an NFA A as input:

- does not terminate if A is universal,
- has at least one terminating execution answering „non-universal“ if A is not universal, and
- only uses polynomial memory in the size of the input.

The algorithm guesses a word letter by letter, simulating the run of the equivalent DFA on it, and stops if at some point the state of the DFA is non-final.
Universality is PSPACE complete

Universality is PSPACE-hard
Universality is PSPACE complete

Universality is PSPACE-hard

By reduction from the acceptance problem for LBA.

- Let M be a LBA, let x be an input for M. We construct in polynomial time a NFA A such that

\[M \text{ accepts } x \iff A \text{ is not universal } \]
Universality is PSPACE complete

Universality is PSPACE-hard

By reduction from the acceptance problem for LBA.

• Let M be a LBA, let x be an input for M. We construct in polynomial time a NFA A such that

$$M \text{ accepts } x \iff A \text{ is not universal}$$

• Configuration of M: sequence of the form $a_1 a_2 \cdots a_i q a_{i+1} \cdots a_n$ where $a_1, a_2, \ldots, a_n \in \Sigma$, $n = |x|$, $q \in Q$.
Universality is PSPACE complete

Universality is PSPACE-hard

By reduction from the acceptance problem for LBA.

• Let M be a LBA, let x be an input for M. We construct in polynomial time a NFA A such that

 M accepts x iff A is not universal

• Configuration of M: sequence of the form $a_1a_2\ldots a_i \, q \, a_{i+1} \ldots a_n$ where $a_1, a_2, \ldots, a_n \in \Sigma$, $n = |x|$, $q \in Q$.

• Encode the run of M on x as a word $w = c_0 \# c_1 \# \cdots \# c_n$ where each c_i encodes a configuration of M and c_0 is the initial configuration for x.
Universality is PSPACE complete

- **Idea:** construct A so that it accepts all words that are **not** the encoding of an accepting run of M on x. Then
 - if M accepts x then A accepts all words **but** w
 $\Rightarrow A$ is not universal
 - if M rejects x then A accepts all words
 $\Rightarrow A$ is universal
Universality is PSPACE complete

- The run of M on x is the unique word satisfying the following three properties:
 1. w is a sequence of configurations separated by #
 2. w starts with the initial configuration of M on x
 3. every configuration in w is followed by the successor configuration of M

- Further, the run is accepting iff
 4. w ends with a final configuration of M
Universality is PSPACE complete

- We construct NFAs A_1, \ldots, A_4 with polynomially many states recognizing
 1. All words that do not consist of a sequence of configurations separated by #
 2. All words that do not start with the initial configuration of M on x
 3. All words in which some configuration is not followed by the successor configuration
 4. All words that do not end with a final configuration of M

- Let A be a NFA recognizing $L(A_1) \cup L(A_2) \cup L(A_3) \cup L(A_4)$
Universality is PSPACE complete

• We construct NFAs A_1, \ldots, A_4 with polynomially many states recognizing
 1. All words that do not consist of a sequence of configurations separated by #
Universality is PSPACE complete

• We construct NFAs A_1, \ldots, A_4 with polynomially many states recognizing

 2. All words that do not start with the initial configuration of M on x
Universality is PSPACE complete

- We construct NFAs A_1, \ldots, A_4 with polynomially many states recognizing
 3. All words in which some configuration is not followed by the successor configuration
Universality is PSPACE complete

• We construct NFAs A_1, \ldots, A_4 with polynomially many states recognizing
 4. All words that do not end with a final configuration of M
Deciding universality of NFAs

- Complement and check for emptiness
 - Needs exponential time and space.

- Improvements:
 - Check for emptiness while complementing (on-the-fly check).
 - Subsumption test.
Subsumption test

• Let A be an NFA and let $B = NFAtoDFA(A)$. A state Q' of B is minimal if no other state Q'' satisfies $Q'' \subset Q'$.

• Proposition: A is universal iff every minimal state of B is final.

Proof:

A is universal
iff B is universal
iff every state of B is final
iff every state of B contains a final state of A
iff every minimal state of B contains a final state of A
iff every minimal state of B is final
Subsumption test
Subsumption test

UnivNFA(A)
Input: NFA $A = (Q, \Sigma, \delta, Q_0, F)$
Output: true if $L(A) = \Sigma^*$, false otherwise

1 $Q \leftarrow \emptyset$
2 $W \leftarrow \{ \{q_0\}\}$
3 while $W \neq \emptyset$ do
4 pick Q' from W
5 if $Q' \cap F = \emptyset$ then return false
6 add Q' to Q
7 for all $a \in \Sigma$ do
8 if $W \cup Q$ contains no $Q'' \subseteq \delta(Q', a)$ then add $\delta(Q', a)$ to W
9 return true
Subsumption test

• But is it correct?

By removing a non-minimal state we may be preventing the discovery of a minimal state in the future!
Proposition: Let \(A \) be an NFA and let \(B = \text{NFAtoDFA}(A) \). After termination of \(\text{UnivNFA}(A) \) the set \(Q \) contains all minimal states of \(B \).

Proof: Assume the contrary. Then \(B \) has a shortest path \(Q_1 \rightarrow Q_2 \rightarrow \ldots \rightarrow Q_n \) such that

- \(Q_1 \in Q \) (after termination), and
- \(Q_n \notin Q \) and \(Q_n \) is minimal.

Subsumption test

\[
\begin{array}{c}
Q_1 \\
\downarrow \\
Q_2 \\
\downarrow \\
Q_3 \\
\vdots \\
Q_n
\end{array}
\]
Subsumption test

Proposition: Let A be an NFA and let $B = NFAtoDFA(A)$. After termination of $UnivNFA(A)$ the set Q contains all minimal states of B.

Proof: Assume the contrary. Then B has a shortest path $Q_1 \rightarrow Q_2 \rightarrow \ldots \rightarrow Q_n$ such that
- $Q_1 \in Q$ (after termination), and
- $Q_n \notin Q$ and Q_n is minimal.

Since the path is shortest, $Q_2 \notin Q$ and so when $UnivNFA$ processes Q_1, it does not add Q_2. This can only be because $UnivNFA$ already added some $Q'_2 \subset Q_2$.

Diagram:

- Q
- Q_1
- Q_2
- Q_3
- Q_n
- Q'_2
Subsumption test

Proposition: Let A be an NFA and let $B = NFAtoDFA(A)$. After termination of $UnivNFA(A)$ the set Q contains all minimal states of B.

Proof: Assume the contrary. Then B has a shortest path $Q_1 \rightarrow Q_2 \rightarrow \ldots \rightarrow Q_n$ such that

- $Q_1 \in Q$ (after termination), and
- $Q_n \notin Q$ and Q_n is minimal.

Since the path is shortest, $Q_2 \notin Q$ and so when $UnivNFA$ processes Q_1, it does not add Q_2. This can only be because $UnivNFA$ already added some $Q'_2 \subset Q_2$.

But then B has a path $Q'_2 \rightarrow \ldots \rightarrow Q'_n$ with $Q'_n \subseteq Q_n$.

Since Q_n is minimal, Q'_n is minimal (actually $Q'_n = Q_n$).
Proposition: Let A be an NFA and let $B = NFAtoDFA(A)$. After termination of $UnivNFA(A)$ the set Q contains all minimal states of B.

Proof: Assume the contrary. Then B has a shortest path $Q_1 \rightarrow Q_2 \rightarrow \ldots \rightarrow Q_n$ such that
- $Q_1 \in Q$ (after termination), and
- $Q_n \notin Q$ and Q_n is minimal.

Since the path is shortest, $Q_2 \notin Q$ and so when $UnivNFA$ processes Q_1, it does not add Q_2. This can only be because $UnivNFA$ already added some $Q'_2 \subset Q_2$.

But then B has a path $Q'_2 \rightarrow \ldots \rightarrow Q'_n$ with $Q'_n \subseteq Q_n$.

Since Q_n is minimal, Q'_n is minimal (actually $Q'_n = Q_n$).

So the path $Q'_2 \rightarrow \ldots \rightarrow Q'_n$ satisfies
- $Q'_2 \in Q$ (after termination), and
- Q'_n is minimal.

contradicting that $Q_1 \rightarrow Q_2 \rightarrow \ldots \rightarrow Q_n$ is shortest.
Inclusion

• **Proposition:** The inclusion problem is PSPACE-complete.

• **Proof:**

 Membership in PSPACE. By Savitch’s theorem it suffices to give a nondeterministic algorithm for non-inclusion. For this, guess letter by letter a word, storing the sets of states Q'_1, Q'_2 reached by both NFAs on the word guessed so far. Stop when Q'_1 contains a final state, but Q'_2 does not.

 PSPACE-hardness. A is universal iff $L(A) \supseteq L(B)$, where B is the one-state DFA for Σ^*.
Deciding inclusion

- Algorithm: use $L(A_1) \subseteq L(A_2)$ iff $L(A_1) \cap \overline{L(A_2)} = \emptyset$

- Concatenate four algorithms:
 1. determinize A_2 $\Rightarrow B_1$
 2. complement the result $\Rightarrow B_2$
 3. intersect B_2 with A_1 $\Rightarrow B_3$
 4. check for emptiness of B_3.

- State of B_3: pair (q, Q), with q state of A_1 and Q (sub)set of states of A_2

- Easy optimizations:
 - store only the states of B_3, not its transitions;
 - do not fully construct B_1, then B_2, then B_3; instead, construct directly the states of B_3;
 - check for emptiness while constructing B_3.

Deciding inclusion

- Further optimization: subsumption test.

Algorithm 18 NFA inclusion check.

\[\text{InclNFA}(A_1, A_2) \]

Input: NFAs \(A_1 = (Q_1, \Sigma, \delta_1, Q_{01}, F_1) \), \(A_2 = (Q_2, \Sigma, \delta_2, Q_{02}, F_2) \)

Output: \text{true} if \(\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2) \), \text{false} otherwise

1. \(Q \leftarrow \emptyset \)
2. \(W \leftarrow \{ [q_{01}, Q_{02}] : q_{01} \in Q_{01} \} \)
3. \textbf{while} \(W \neq \emptyset \) \textbf{do}
4. \hspace{1em} \textbf{pick} \([q_1, Q'_2]\) \textbf{from} \(W \)
5. \hspace{2em} \textbf{if} \((q_1 \in F_1) \text{ and } (Q'_2 \cap F_2 = \emptyset)\) \textbf{then} \textbf{return} \text{false}
6. \hspace{1em} \textbf{add} \([q_1, Q'_2]\) \textbf{to} \(Q \)
7. \hspace{1em} \textbf{for all} \(a \in \Sigma \) \textbf{do}
8. \hspace{2em} \(Q''_2 \leftarrow \bigcup_{q_2 \in Q'_2} \delta_2(q_2, a) \)
9. \hspace{2em} \textbf{for all} \(q'_1 \in \delta_1(q_1, a) \) \textbf{do}
10. \hspace{3em} \textbf{if} \(W \cup Q \) \text{ contains no } \([q''_1, Q''_2]\) \text{ s.t. } q''_1 = q'_1 \text{ and } Q''_2 \subseteq Q'' \) \textbf{then}
11. \hspace{4em} \textbf{add} \([q'_1, Q''_2]\) \textbf{to} \(W \)
12. \hspace{1em} \textbf{return} \text{true}
Deciding inclusion

• Complexity:
 – Let A_1, A_2 be NFAs with n_1, n_2 states over an alphabet with k letters.
 – Without the subsumption test:
 • The while-loop is executed at most $n_1 \cdot 2^{n_2}$ times.
 • The outer for-loop is executed k times.
 • Line 8 takes $O(n_2^2)$ time.
 • The inner for-loop is executed at most n_1 times.
 • Line 19 (without subsumption!) takes constant time.
 • Overall: $O(k \cdot n_1^2 \cdot n_2^2 \cdot 2^{n_2})$ time.
 – With the subsumption case the worst-case complexity is higher. Exercise: give an upper bound.
Deciding inclusion

- Important special case: A_1 is an NFA, A_2 is a DFA.
 - Complementing A_2 is now easy.
 - The while-loop is executed $O(n_1 \cdot n_2)$ times.
 - The outer for-loop is executed k times.
 - Line 8 takes constant time
 - The inner for-loop is executed $O(n_1)$ times
 - Line 10 (without subsumption) takes constant time
 - Overall: $O(k \cdot n_1^2 \cdot n_2)$ time.

- Checking equality: check inclusion in both directions.