Pattern Matching

Pattern Matching

Given

- a word t (the text) of length n, and
- a regular expression p (the pattern) of length m
 determine
- the smallest number k' such that some $\lfloor k, k' \rfloor$ -factor of w belongs to L(p).

NFA-based solution

PatternMatchingNFA(t, p)

```
Input: text t = a_1 \dots a_n \in \Sigma^+, pattern p \in \Sigma^*
```

Output: the first occurrence of p in t, or \bot if no such occurrence exists.

```
1 A \leftarrow RegtoNFA(\Sigma^*p)

2 S \leftarrow Q_0

3 for all k = 0 to n - 1 do

4 if S \cap F \neq \emptyset then return k

5 S \leftarrow \delta(S, a_{k+1})

6 return \bot
```

- Line 1 takes $O(m^3)$ time $(O(m^2)$ for fixed alphabet), output has O(m) states
- Loop is executed at most n times
- One iteration takes $O(s^2)$ time, where s is the number of states of A
- Since s = O(m), the total runtime is $O(m^3 + nm^2)$, and $O(nm^2)$ for $m \le n$.

DFA-based solution

PatternMatchingDFA(t, p)

```
Input: text t = a_1 \dots a_n \in \Sigma^+, pattern p
```

Output: the first occurrence of p in t, or \bot if no such occurrence exists.

```
1 A \leftarrow NFAtoDFA(RegtoNFA(\Sigma^*p))

2 q \leftarrow q_0

3 for all k = 0 to n - 1 do

4 if q \in F then return k

5 q \leftarrow \delta(q, a_{k+1})

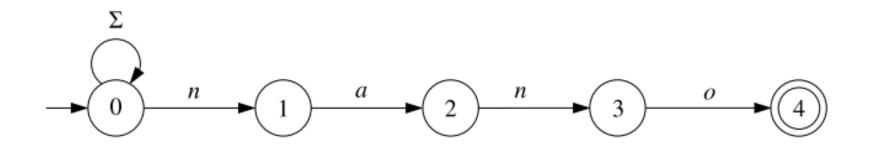
6 return \perp
```

- Line 1 takes $2^{O(m)}$ time
- Loop is executed at most n times
- One iteration takes constant time
- Total runtime is $O(n) + 2^{O(m)}$

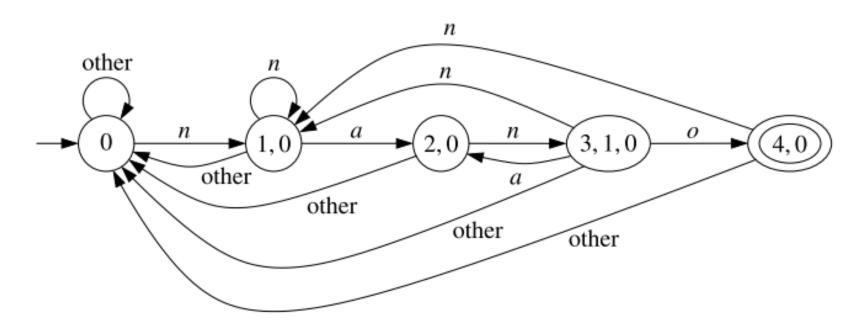
The word case

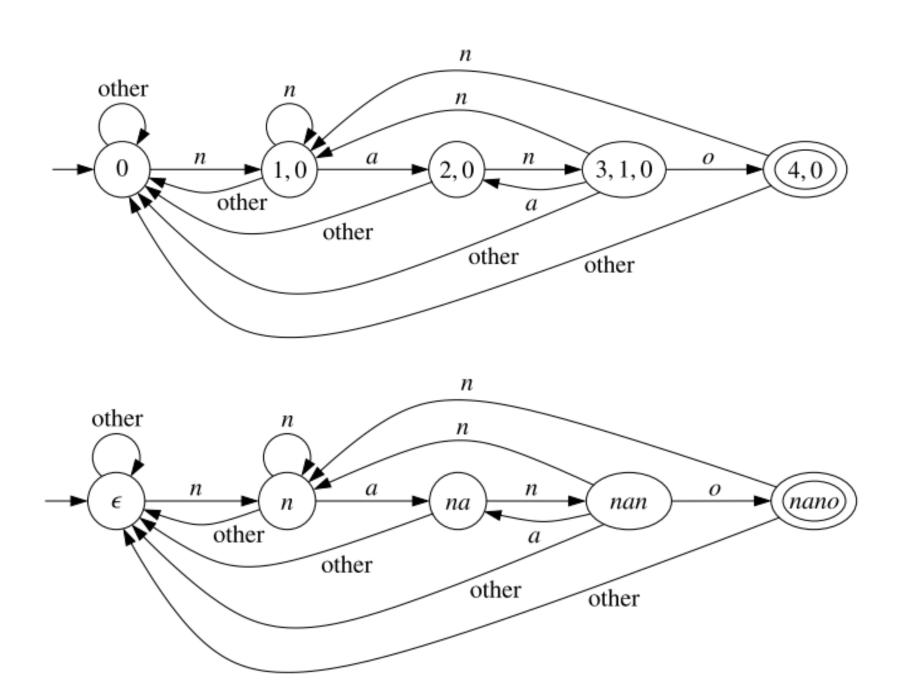
- The pattern $p = b_1 b_2 \dots b_m$ is a word of length m
- Naive algorithm: move a window of size m along the word one letter at a time, and compare with p after each step. Runtime: O(nm) for any alphabet of size $0 \le |\Sigma| \le n$.
- We give an algorithm with O(n + m) runtime for any alphabet of size $0 \le |\Sigma| \le n$.
- First we explore in detail the shape of the DFA for $\Sigma^* p$.

Obvious NFA for $\Sigma^* p$ and p = nano

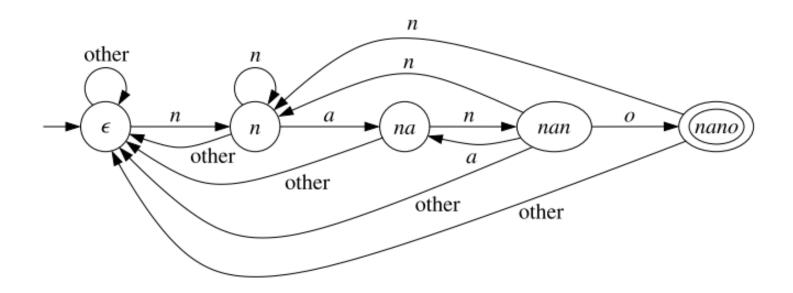


Result of applying NFAtoDFA:



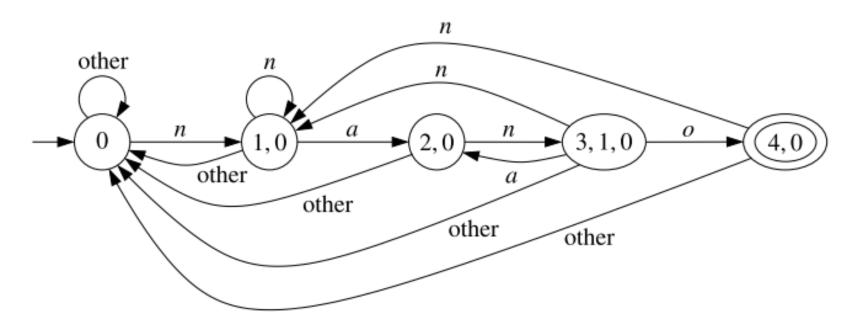


Intuition



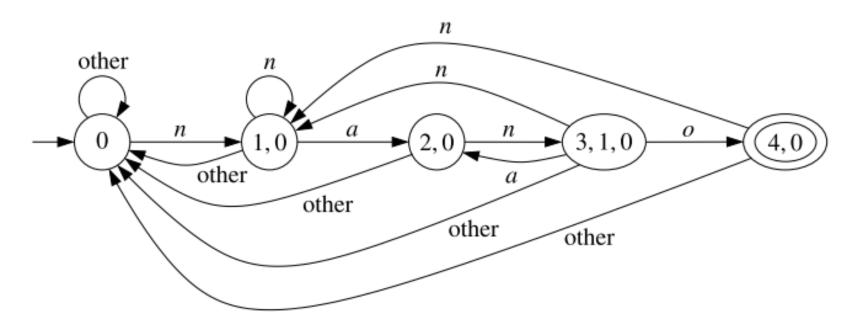
- Transitions of the "spine" correspond to hits: the next letter is the one that "makes progress" towards nano.
- Other transitions correspond to misses, i.e., "wrong letters" and "throw the automaton back".

Observations



- For every state i = 0,1,...,4 of the NFA there is exactly one state S of the DFA such that i is the largest state of S.
- For every state S of the DFA, with the exception of $S = \{0\}$, the result of removing the largest state is again a state of the DFA.

Observations



- For every state i = 0,1,...,4 of the NFA there is exactly one state S of the DFA such that i is the largest state of S.
- For every state S of the DFA, with the exception of $S = \{0\}$, the result of removing the largest state is again a state of the DFA.
- Do these properties hold for every pattern p?

Heads and tails, hits and misses

- Head of S, denoted h(S): largest state of S
- Tail of S, denoted t(S): rest of the state
- Example: $h({3,1,0}) = 3, t({3,1,0}) = {1,0}$
- Given a state S, the letter leading to the next state in the "spine" is the (unique) hit letter for S.
- All other letters are miss letters for S.
- Example: hit for $\{3,1,0\}$ is o, whereas n or a are misses.

Fundamental property of the DFA

- Proposition: Let S_k be the k-th state picked from the workset during the execution of $NFAtoDFA(A_p)$.
 - $(1) h(S_k) = k,$
 - (2) If k > 0, then $t(S_k) = S_l$ for some l < k

Proof Idea:

- (1) and (2) hold for $S_0 = \{0\}$ and $S_1 = \{1,0\}$.
- For the step $k \to k+1$ we look at $\delta(S_k, a)$ for each a, where δ transition relation of A_p .
- By i.h. we have $S_k = \{k\} \cup S_l$ for some l < k.
- We distinguish two cases: a is a hit for S_k (that is, $a = b_{k+1}$), and a is a miss for S_k .

•
$$\delta(S_k, a) = \delta(k, a) \cup \delta(S_l, a)$$

$$\{k\}$$
 U S_l
Hit: $a\downarrow$ $a\downarrow$ $a\downarrow$ $\{k+1\}$ U $\delta(S_l,a)$

•
$$S_k = \{k\} \cup S_l$$
 for some $l < k$

•
$$\delta(S_k, a) = \delta(k, a) \cup \delta(S_l, a)$$

$$\{k\}$$
 U S_l
Hit: $a \downarrow a \downarrow$ $\{k+1\}$ U $\delta(S_l,a)$

Added earlier to the workset, and so some $S_{l'}$

•
$$\delta(S_k, a) = \delta(k, a) \cup \delta(S_l, a)$$

•
$$S_k = \{k\} \cup S_l$$
 for some $l < k$

•
$$\delta(S_k, a) = \delta(k, a) \cup \delta(S_l, a)$$

•
$$\delta(S_k, a) = \delta(k, a) \cup \delta(S_l, a)$$

Hit:
$$a \downarrow \qquad b \downarrow \qquad c \downarrow \qquad$$

•
$$\delta(S_k, a) = \delta(k, a) \cup \delta(S_l, a)$$

•
$$\delta(S_k, a) = \delta(k, a) \cup \delta(S_l, a)$$

Miss:
$$a \downarrow U S_l$$

$$\emptyset U \delta(S_l, a)$$

$$= S_{l'}$$

•
$$S_k = \{k\} \cup S_l$$
 for some $l < k$

•
$$\delta(S_k, a) = \delta(k, a) \cup \delta(S_l, a)$$

$$\begin{cases} k \rbrace & \cup & S_l \\ \text{Miss:} & \text{a} \downarrow & \text{a} \downarrow \\ & \emptyset & \cup & \delta(S_l, a) \end{cases}$$

$$\overset{=}{\text{Already seen, is not added to the workset}}$$

•
$$\delta(S_k, a) = \delta(k, a) \cup \delta(S_l, a)$$

Consequences

Prop: The result of applying NFAtoDFA(A), where A is the obvious NFA for Σ^*p , yields a minimal DFA with m+1 states and $|\Sigma|(m+1)$ transitions.

Proof: All states of the DFA accept different languages.

So: concatenating NFAtoDFA and PatternMatchingDFA yields a $O(n + |\Sigma|m)$ algorithm.

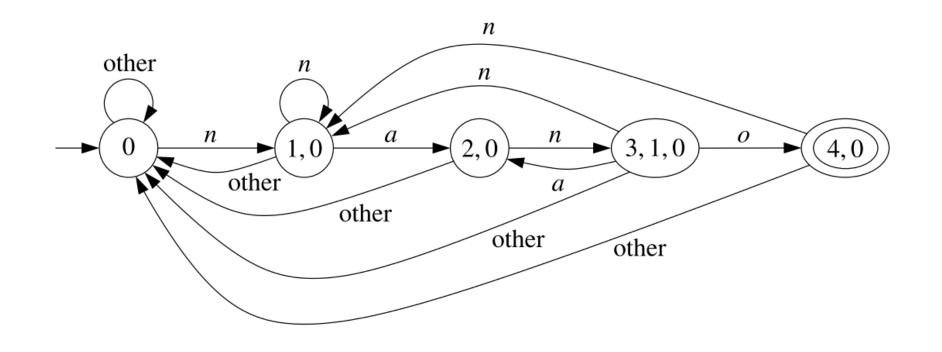
- Good enough for constant alphabet
- Not good enough for $|\Sigma| = \Omega(n)$, then same complexity as window algorithm

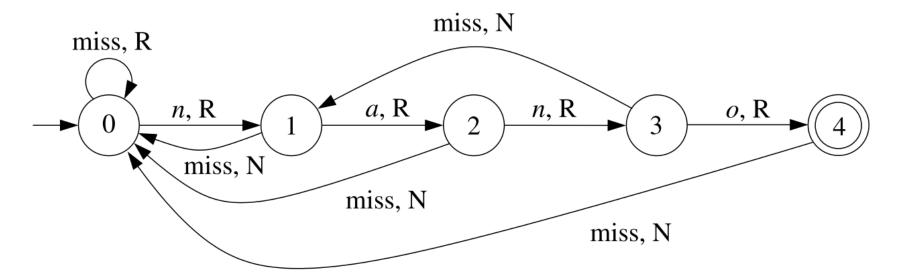
Lazy DFAs

- We introduce a new data structure: lazy DFAs. We construct a lazy DFA for $\Sigma^* p$ with m+1 states and 2(m+1) transitions.
- Lazy DFAs: automata that read the input from a tape by means of a reading head that can move one cell to the right or stay put.
- DFA = Lazy DFA whose head never stays put.

Lazy DFA for $\Sigma^* p$

- By the fundamental property, the DFA B for Σ^*p behaves from state S_k as follows:
 - If a is a hit, then $\delta_B(S_k, a) = S_{k+1}$, i.e., the DFA moves to the next state in the spine.
 - If a is a miss, then $\delta_B(S_k, a) = \delta_B(t(S_k), a)$, i.e., the DFA moves to the same state it would move to if it were in state $t(S_k)$.
- When a is a miss for S_k , the lazy automaton moves to state $t(S_k)$ without advancing the head. In other words, it "delegates" doing the move to $t(S_k)$.
- So the lazy DFA behaves the same for all misses.





- Formally, for the lazy DFA C:
 - $-\delta_C(S_{k}, a) = (S_{k+1}, R)$ if a is a hit
 - $-\delta_C(S_{k}, a) = (t(S_k), N)$ if a is a miss
- So the lazy DFA has m + 1 states and 2m transitions.
- It can be constructed in O(m) space:
 - For each $0 \le k \le n$, compute and store S_k with
 - $S_0 := \{0\}$, and
 - $\bullet S_{k+1} \coloneqq \delta(S_k, b_{k+1}).$
 - Compute the transitions as at the top of the slide.

- Running the lazy DFA on the text takes O(n) time:
 - For every text letter the lazy DFA performs a sequence of "stay put" steps followed by a "right" step. Call this sequence a macrostep.
 - Let S_{j_i} be the state after the *i*-th macrostep. The number of steps of the *i*-th macrostep is at most $j_{i-1} j_i + 2$.
 - So the total number of steps is at most

$$\sum_{i=1}^{n} (j_{i-1} - j_i + 2) = j_0 - j_n + 2n \le 2n$$

Computing the lazy DFA in O(m) time

- For the O(m + n) bound it remains to show that the lazy DFA can be constructed in O(m) time.
- Let Miss(k) be the head of the state of the lazy DFA reached from S_k by a miss (that is, Miss(k) is the head of the state $t(S_k)$).
- It is easy to compute each of Miss(0), ..., Miss(m) in O(m) time, leading to a $O(n + m^2)$ time algorithm.
 - (Compute the S_k and use $Miss(k) = h(t(S_k))$.)
- Can we compute all of Miss(0), ..., Miss(m) together in time O(m)? Looks impossible!
- It isn't though ...

Let miss(i) be the state reached by a miss from S_i in the lazy DFA. Then $miss(i) = t(S_i)$ and $Miss(i) = h(miss(S_i))$. For i > 1 we have

```
miss(i) = t(S_i) = t(\delta_B(S_{i-1}, b_i))
= t(\delta(\{i-1\}, b_i) \cup \delta(t(S_{i-1}), b_i))
= t(\{i\} \cup \delta(t(S_{i-1}), b_i))
= \delta_B(t(S_{i-1}), b_i)
```

Let miss(i) be the state reached by a miss from S_i in the lazy DFA. Then $miss(i) = t(S_i)$ and $Miss(i) = h(miss(S_i))$. For i > 1 we have

$$miss(i) = t(S_i) = t(\delta_B(S_{i-1}, b_i))$$
 $= t(\delta(\{i-1\}, b_i) \cup \delta(t(S_{i-1}), b_i))$
 $= t(\{i\} \cup \delta(t(S_{i-1}), b_i))$
 $= \delta_B(t(S_{i-1}), b_i)$

and so we get

$$miss(S_i) = \begin{cases} S_0 & \text{if } i = 0 \text{ or } i = 1 \\ \delta_B(miss(S_{i-1}), b_i) & \text{if } i > 1 \end{cases}$$

$$\delta_B(S_j, b) = \begin{cases} S_{j+1} & \text{if } b = b_{j+1} \text{ (hit)} \\ S_0 & \text{if } b \neq b_{j+1} \text{ (miss) and } j = 0 \\ \delta_B(miss(S_j), b) & \text{if } b \neq b_{j+1} \text{ (miss) and } j \neq 0 \end{cases}$$

$$miss(S_i) = \begin{cases} S_0 & \text{if } i = 0 \text{ or } i = 1 \\ \delta_B(miss(S_{i-1}), b_i) & \text{if } i > 1 \end{cases}$$

$$\delta_B(S_j, b) = \begin{cases} S_{j+1} & \text{if } b = b_{j+1} \text{ (hit)} \\ S_0 & \text{if } b \neq b_{j+1} \text{ (miss) and } j = 0 \\ \delta_B(miss(S_j), b) & \text{if } b \neq b_{j+1} \text{ (miss) and } j \neq 0 \end{cases}$$

• With $Miss(i) = h(miss(S_i))$ we get the following algorithm:

```
CompMiss(p)
```

Input: pattern $p = b_1 \cdots b_m$.

Output: heads of targets of miss transitions.

- 1 $Miss(0) \leftarrow 0$; $Miss(1) \leftarrow 0$
- 2 for $i \leftarrow 2, \ldots, m$ do
- 3 $Miss(i) \leftarrow DeltaB(Miss(i-1), b_i)$

DeltaB(j,b)

Input: head $j \in \{0, ..., m\}$, letter b.

Output: head of the state $\delta_B(S_i, b)$.

- 1 **while** $b \neq b_{j+1}$ **and** $j \neq 0$ **do** $j \leftarrow Miss(j)$
- 2 **if** $b = b_{j+1}$ **then return** j + 1
- 3 **else return** 0

CompMiss(p)

Input: pattern $p = b_1 \cdots b_m$.

Output: heads of targets of miss transitions.

- 1 $Miss(0) \leftarrow 0; Miss(1) \leftarrow 0$
- 2 **for** $i \leftarrow 2, \ldots, m$ **do**
- 3 $Miss(i) \leftarrow DeltaB(Miss(i-1), b_i)$

DeltaB(j,b)

Input: head $j \in \{0, ..., m\}$, letter b.

Output: head of the state $\delta_B(S_i, b)$.

- 1 **while** $b \neq b_{j+1}$ **and** $j \neq 0$ **do** $j \leftarrow Miss(j)$
- 2 **if** $b = b_{j+1}$ **then return** j + 1
- 3 **else return** 0

All calls to *DeltaB* lead together to O(m) iterations of the while loop. The call $DeltaB(Miss(i-1),b_i)$ executes at most

$$Miss(i-1) - (Miss(i)-1)$$

iterations, because:

- initially j is assigned Miss(i − 1) (line 3 of CompMiss)
- each iteration decreases j by at least 1
 (line 1 of DeltaB, Miss(j) < j)
- the return value assigned to *Miss(i)* is at most the final value of j plus 1. (line 2 of *DeltaB*)

Total number of iterations:

$$\sum_{i=2}^{m} (Miss(i-1) - Miss(i) + 1)$$

$$\leq Miss(1) - Miss(m) + m - 1$$

$$\leq m$$