
Operations on relations



Operations on relations

Universe of objects 푈, relations 푅, 푆 on objects, set 
of objects 푋



• Using automata to represent relations requires to 
encode pairs of objects.

• How should we encode a pair 푛 ,푛 of natural 
numbers?

Encoding pairs



• Assume 푛 ,푛  are encoded by 푤 ,푤 in the lsbf
encoding

• Which should be the encoding of 푛 ,푛 ?

• Cannot be  푤 푤 , then the same word encodes 
different pairs

• First attempt: use a separator symbol &, and encode 
푛 ,푛 by  푤 &푤 .

 Problem: not even the identity relation is 
encoded as a regular language!

Encoding pairs



• Second attempt: encode 푛 ,푛 as  a word over 0,1 × 0,1
(intuitively, the automaton reads 푤 and 푤 simultaneously).

 Problem: what if 푤 and 푤 have different length?

 Solution: fill the shortest one with 0s.

Example: the encoding of (10, 35) is  0
1

1
1

0
0

1
0

0
0

0
1

 We accept that the number 푘 is encoded by all the words of 
푠 0∗,  where 푠 is the lsbf encoding of 푘. 

 We call 0 the padding symbol or padding letter.

Encoding pairs



• So we assume:

 The alphabet contains a padding letter #, different or not 
from the letters used to encode an object.

 Each object 푥 has a minimal encoding  푠 .

 The encodings of 푥 are all the words of  푠 #∗.

 A pair (푥,푦) of objects has a minimal encoding  푠( , ) .

 The encodings of (푥,푦) are all the words of  푠( , )#∗ .

# # # # # #푠
푠

= 푠( , )

Encoding pairs



• Question: if objects (pairs of objects)  are encoded by   
multiple words, which is the set of objects  (pairs) 
recognized by a DFA or NFA?

(We can no longer say: an object is recognized if ``its 
encoding’’ is accepted by the DFA or NFA, because now 
there are multiple encodings)

• Question:  because of the new definition of "set of objects 
recognized by an automaton", do we have to change the 
implementation of the set operations?

Redefining acceptance



• Definition: Assume an encoding of objects as words has been 
fixed. We say
• An automaton accepts an object 푥 if it accepts all 

encodings of 푥.
• An automaton rejects an object 푥 if it accepts no encoding 

of 푥.
• An automaton recognizes a set of objects 푋 if it accepts 

every object of 푋 and rejects every other object. 
• Observe: if an automaton accepts some, but not all the 

encodings of an object, then the automaton does not recognize 
any set. We say that such an automaton is ill formed. Automata 
that do recognize some set of objects are well formed.

Redefining acceptance



• The operations we have defined so far still work, in the
following sense: 
• If the input(s) is (are) well formed, then the output is well

formed
• The output still satisfies the specification.

• Example: If 퐴 , 퐴 are well formed NFAs recognizing sets of 
objects 푋 , 푋 then the automaton 퐴 ≔ inter(퐴 ,퐴 ) is well 
formed and recognizes 푋 ∩ 푋 .
Proof of well formedness: If 퐴 recognizes an encoding 푤 of an 
object 푥, then by definition of 퐴 both 퐴 and 퐴 recognize 푤. 
Since 퐴 and 퐴 are well formed they recognize all encodings 
of 푥, and so 퐴 also recognizes all encodings of 푥.

Redefining acceptance



Transducers



Transducers
• A transducer over Σ is an NFA over the alphabet Σ × Σ.

• We write 푎, 푏 ∈ Σ × Σ as 
푎
푏

• A transducer accepts a pair  (푎 …푎 , 푏 … , 푏 ) of words if

it accepts the word
푎
푏 ⋯

푎
푏 .

• A transducer accepts a pair  of objects if it accepts all ist 
encodings (which are pairs of words).

• A relation is regular if it is recognized by some transducer.



Examples of regular relations

• Examples of regular relations on numbers (lsbf encoding):

 The identity relation  푛,푛   푛 ∈ ℕ }

 The relation  푛,2푛   푛 ∈ ℕ 

 The relation  푛,푓(푛)   푛 ∈ ℕ where 푓:  ℕ → ℕ is the
Collatz function given by:

푓 푛 = 3푛 + 1 if 푛 is odd
푛 2⁄ if 푛 is even



• A transducer is deterministic if it is a DFA.

• Observe: if Σ has size 푛, then a state of a deterministic 
transducer with alphabet Σ × Σ has 푛 outgoing 
transitions. 

• Warning! There is a different definition of 
determinism:

 A letter 
푎
푏  is interpreted as "output b on input a"

 Deterministic transducer: only one move (and so 
only one output) for each input.

Deterministic transducers



Implementing the operations



Computing projections



• Deleting the second component is incorrect
 Counterexample:   푅 = { 4,1  }

 푠( , ) = 0
1

0
0

1
0

 DFA for 푅:

Computing projections



• Problem: we may be accepting 푠  #  #∗  instead of  푠  #∗
and so according to the definition we are not 
acepting 푥 !

• Solution: if after eliminating the second components some 
non-final state goes with # … # to a final state, 
we mark the state as final.

• Complexity: linear in the size of the transducer

• Observe: the result of a projection may be a NFA, even if 
the transducer is deterministic.

• This is the operation that prevents us from 
implementing all operations directly on DFAs.

Computing projections



Computing projections



• Assume: transducer 푇 recognizes a relation
• Prove: the projection automaton 퐴 recognizes a set, and this 

set is the projection onto the first component of the 
relation recognized by 푇.

a) 퐴 accepts either all encodings or no encoding of an object.  
Assume  퐴 accepts at least one encoding 푤 of an object 푥. 
We prove it accepts all. 
If  퐴 accepts 푤 ,  then  푇 accepts  

푤
푤′ for some 푤′. 

By assumption  푇 accepts  
푤
푤′

#
#

∗
, and so 퐴 accepts  푤 #∗. 

Moreover, 푤 =  푠 #  for some 푘 > 0,  and so, by padding 
closure,  퐴 also accepts 푠 #  for every  푗 < 푘.

Correctness



b) 퐴 only accepts words that are encodings of objects.
Follows easily from the fact that  푇 satisfies the same              
property for pairs of objects.

c) If 퐴 accepts an object 푥, then 푇 accepts (푥,푦) for some 푦.

푥 is accepted by  퐴
⇒ 푠 is accepted by 퐴 (  part a) )

⇒ 푠
푤 is accepted by  푇 for some 푤

By assumption,  푇 only accepts pairs of words encoding some 
pair of objects. So 푤 encodes some object 푦.  By assumption,  
푇 then accepts all encodings of (푥,푦). So  푇 accepts (푥,푦).

Correctness



d) If a pair of objects (푥,푦) is accepted by  푇 , then 푥 is 
accepted by 퐴.

(푥,푦) is accepted by  푇

⇒
푤
푤 is accepted by  푇 for some 

encodings 푤  ,푤    of  푥 and  푦

⇒ 푤 is accepted by 퐴

⇒ 푥 is accepted by 퐴 (part  a) )

Correctness



Computing joins

• Goal: given transducers 푇 ,푇 recognizing relations 푅 ,푅 , 
construct a transducer 푇 ∘ 푇 recognizing the relation 푅 ∘ 푅 .

• First step: construct a transducer 푇 that accepts  
푤
푣  iff there is a 

"connecting" word 푢 such that  
푤
푢 is accepted by 푇   and  푢푣 is 

accepted by 푇 .

• We slightly modify the pairing construction. 



Computing joins

푞
푞

      푞
푞

푞
      

푞

푞
      

푞

Pairing construction

iff

푞
푞

      푞
푞

푞
      

푞

푞
      

푞

Join construction

iff

for some 푐 ∈ Σ 



Computing joins

• With the join construction, transducer 푇 has a run

푞
푞

      푞
푞

      푞
푞 ⋯

푞( )
푞( )

      푞
푞

iff 푇 and 푇 have runs 

푞   
      

  푞   
      

  푞   ⋯  푞   
      

  푞

푞   
      

  푞   
      

  푞   ⋯   푞   
      

  푞



• Second step: We have the same problem as before.

• Let  푅 = { (2,4) }  , 푅 = { (4,2) } . 
Then 푅 ∘ 푅  = { (2,2) } .

• But the operation we have just defined does not yield the 
correct result.

• Solution: apply the padding closure again with padding 

symbol #
# .

Computing joins



Computing joins



• Example:

 Let  푓 be the Collatz function. 

 Let 푅 = 푅 = { (푛,푓(푛))  | 푛 ≥  0 } .

 Then 푅 ∘ 푅 = { (푛,푓(푓(푛))) | 푛 ≥ 0 } .

Computing joins

∘ =



Computing joins



• Goal (for Post):  given 

 an automaton  퐴 recognizing a set  푋 , and  

 a transducer  푇 recognizing a relation  푅

construct an automaton 퐵 recognizing the set 

Post 푋,푅 =  푦   ∃ 푥 ∈ 푋 ∶ (푥,푦)  ∈  푅 } 

We slightly modify the construction for join.

Computing Pre and Post



Computing Pre and Post

푞
푞

      푞
푞

푞
      

푞

푞
      

푞

Join construction

iff

for some 푐 ∈ Σ 

푞
푞

      푞
푞

푞
      

푞

푞
      

푞

Post construction

iff

for some 푎 ∈ Σ 



Computing Pre and Post



Computing Pre and Post
• Example. 

• Let  푓 be the Collatz function. 
• We compute the set {푓 푛 ∣ 푛 is a multiple of 3}

• DFA for the multiples of 3 in lsfb encoding

Post( , )=



Computing Pre and Post


