Operations on relations
Operations on relations

Universe of objects U, relations R, S on objects, set of objects X

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projection 1(R)</td>
<td>returns the set $\pi_1(R) = {x \mid \exists y \ (x, y) \in R}$.</td>
</tr>
<tr>
<td>Projection 2(R)</td>
<td>returns the set $\pi_2(R) = {y \mid \exists x \ (x, y) \in R}$.</td>
</tr>
<tr>
<td>Join(R, S)</td>
<td>returns the relation $R \circ S = {(x, z) \mid \exists y \in X \ (x, y) \in R \land (y, z) \in S}$.</td>
</tr>
<tr>
<td>Post(X, R)</td>
<td>returns the set $post_R(X) = {y \in U \mid \exists x \in X \ (x, y) \in R}$.</td>
</tr>
<tr>
<td>Pre(X, R)</td>
<td>returns the set $pre_R(X) = {y \in U \mid \exists x \in X \ (y, x) \in R}$.</td>
</tr>
</tbody>
</table>
Encoding pairs

• Using automata to represent relations requires to encode pairs of objects.

• How should we encode a pair \((n_1,n_2)\) of natural numbers?
Encoding pairs

- Assume n_1, n_2 are encoded by w_1, w_2 in the *lsbf* encoding.
- Which should be the encoding of (n_1, n_2)?
- Cannot be w_1w_2, then the same word encodes different pairs.
- **First attempt**: use a separator symbol &, and encode (n_1, n_2) by $w_1&w_2$.
 - **Problem**: not even the identity relation is encoded as a regular language!
Encoding pairs

- **Second attempt**: encode \((n_1, n_2)\) as a word over \(\{0,1\} \times \{0,1\}\) (intuitively, the automaton reads \(w_1\) and \(w_2\) simultaneously).
 - **Problem**: what if \(w_1\) and \(w_2\) have different length?
 - **Solution**: fill the shortest one with 0s.

Example: the encoding of \((10,35)\) is \[
\begin{bmatrix}
\end{bmatrix}
\]

- We accept that the number \(k\) is encoded by all the words of \(s_k0^*\), where \(s_k\) is the *lsbf* encoding of \(k\).
- We call 0 the **padding symbol** or **padding letter**.
So we assume:

- The alphabet contains a padding letter #, different or not from the letters used to encode an object.
- Each object x has a minimal encoding s_x.
- The encodings of x are all the words of $s_x \#^*$.
- A pair (x, y) of objects has a minimal encoding $s_{(x,y)}$.

$$\begin{array}{c}
S_x \\
S_y
\end{array} \quad \# \# \# \# \# \# \quad = \quad s_{(x,y)}$$

- The encodings of (x, y) are all the words of $s_{(x,y)} \#^*$.

Encoding pairs
Redefining acceptance

• **Question**: if objects (pairs of objects) are encoded by **multiple** words, which is the set of objects (pairs) recognized by a DFA or NFA?

(We can no longer say: an object is recognized if ``its encoding'' is accepted by the DFA or NFA, because now there are multiple encodings)

• **Question**: because of the new definition of "set of objects recognized by an automaton", do we have to change the implementation of the set operations?
Redefining acceptance

• **Definition**: Assume an encoding of objects as words has been fixed. We say
 • An automaton **accepts** an object \(x \) if it accepts **all** encodings of \(x \).
 • An automaton **rejects** an object \(x \) if it accepts **no** encoding of \(x \).
 • An automaton recognizes a set of objects \(X \) if it accepts every object of \(X \) and rejects every other object.
• Observe: if an automaton accepts some, but not all the encodings of an object, then the automaton does not recognize any set. We say that such an automaton is **ill formed**. Automata that do recognize some set of objects are **well formed**.
Redefining acceptance

- The operations we have defined so far still work, in the following sense:
 - If the input(s) is (are) well formed, then the output is well formed
 - The output still satisfies the specification.
- **Example:** If A_1, A_2 are well formed NFAs recognizing sets of objects X_1, X_2 then the automaton $A := \text{inter}(A_1, A_2)$ is well formed and recognizes $X_1 \cap X_2$.

Proof of well formedness: If A recognizes an encoding w of an object x, then by definition of A both A_1 and A_2 recognize w. Since A_1 and A_2 are well formed they recognize all encodings of x, and so A also recognizes all encodings of x.
Transducers
Transducers

• A transducer over Σ is an NFA over the alphabet $\Sigma \times \Sigma$.

• We write $(a, b) \in \Sigma \times \Sigma$ as $\begin{bmatrix} a \\ b \end{bmatrix}$

• A transducer accepts a pair $(a_1 \ldots a_n, b_1 \ldots, b_n)$ of words if it accepts the word $\begin{bmatrix} a_1 \\ b_1 \end{bmatrix} \ldots \begin{bmatrix} a_n \\ b_n \end{bmatrix}$.

• A transducer accepts a pair of objects if it accepts all ist encodings (which are pairs of words).

• A relation is regular if it is recognized by some transducer.
Examples of regular relations

- Examples of regular relations on numbers (lsbf encoding):
 - The identity relation \(\{ (n, n) \mid n \in \mathbb{N} \} \)
 - The relation \(\{ (n, 2n) \mid n \in \mathbb{N} \} \)
 - The relation \(\{ (n, f(n)) \mid n \in \mathbb{N} \} \) where \(f : \mathbb{N} \to \mathbb{N} \) is the Collatz function given by:

\[
 f(n) = \begin{cases}
 3n + 1 & \text{if } n \text{ is odd} \\
 n/2 & \text{if } n \text{ is even}
 \end{cases}
\]
Deterministic transducers

• A transducer is deterministic if it is a DFA.

• Observe: if Σ has size n, then a state of a deterministic transducer with alphabet $\Sigma \times \Sigma$ has n^2 outgoing transitions.

• Warning! There is a different definition of determinism:
 – A letter $[a\ b]$ is interpreted as "output b on input a"
 – Deterministic transducer: only one move (and so only one output) for each input.
Implementing the operations
Computing projections
Computing projections

- Deleting the second component is incorrect
 - Counterexample: $R = \{ (4,1) \}$
 - $S_{(4,1)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

- DFA for R:

Computing projections

- **Problem:** we may be accepting $s_x \#^k \#^* \text{ instead of } s_x \#^*$ and so according to the definition we are not accepting x!

- **Solution:** if after eliminating the second components some non-final state goes with $\# \ldots \#$ to a final state, we mark the state as final.

- **Complexity:** linear in the size of the transducer

- **Observe:** the result of a projection may be a NFA, even if the transducer is deterministic.

- **This is the operation that prevents us from implementing all operations directly on DFAs.**
Computing projections

Proj_1(T)
Input: transducer \(T = (Q, \Sigma \times \Sigma, \delta, Q_0, F) \)
Output: NFA \(A = (Q', \Sigma, \delta', Q'_0, F') \) with \(\mathcal{L}(A) = \pi_1(\mathcal{L}(T)) \)

1. \(Q' \leftarrow Q; Q'_0 \leftarrow Q_0; F'' \leftarrow F \)
2. \(\delta' \leftarrow \emptyset \)
3. \(\text{for all } (q, (a, b), q') \in \delta \text{ do} \)
4. \(\quad \text{add } (q, a, q') \text{ to } \delta' \)
5. \(F' \leftarrow \text{PadClosure}((Q', \Sigma, \delta', Q'_0, F''), \#) \)

PadClosure(A, \#)
Input: NFA \(A = (\Sigma, Q, \delta, q_0, F) \)
Output: new set \(F' \) of final states

1. \(W \leftarrow F'; F' \leftarrow \emptyset \)
2. \(\text{while } W \neq \emptyset \text{ do} \)
3. \(\quad \text{pick } q \text{ from } W \)
4. \(\quad \text{add } q \text{ to } F' \)
5. \(\quad \text{for all } (q', \#, q) \in \delta \text{ do} \)
6. \(\quad \quad \text{if } q' \notin F' \text{ then add } q' \text{ to } W \)
7. \(\text{return } F' \)
Correctness

• **Assume:** transducer T recognizes a relation

• **Prove:** the projection automaton A recognizes a set, and this set is the projection onto the first component of the relation recognized by T.

a) A accepts either all encodings or no encoding of an object. Assume A accepts at least one encoding w of an object x. We prove it accepts all.

If A accepts w, then T accepts w', w for some w'.

By assumption T accepts $w', w, #^*$, and so A accepts $w #^*$.

Moreover, $w = s_x #^k$ for some $k > 0$, and so, by padding closure, A also accepts $s_x #^j$ for every $j < k$.
Correctness

b) A only accepts words that are encodings of objects. Follows easily from the fact that T satisfies the same property for pairs of objects.

c) If A accepts an object x, then T accepts (x, y) for some y.

- x is accepted by A
- s_x is accepted by A
- S_x^w is accepted by T for some w

By assumption, T only accepts pairs of words encoding some pair of objects. So w encodes some object y. By assumption, T then accepts all encodings of (x, y). So T accepts (x, y).
Correctness

d) If a pair of objects \((x, y)\) is accepted by \(T\), then \(x\) is accepted by \(A\).

\[(x, y)\] \text{ is accepted by } T
\[\Rightarrow \]
\[w_x, w_y\] \text{ is accepted by } T \text{ for some encodings } w_x, w_y \text{ of } x \text{ and } y
\[\Rightarrow \]
\[w_x\] \text{ is accepted by } A
\[\Rightarrow \]
\[x\] \text{ is accepted by } A \quad \text{(part a)}
Computing joins

- **Goal**: given transducers T_1, T_2 recognizing relations R_1, R_2, construct a transducer $T_1 \circ T_2$ recognizing the relation $R_1 \circ R_2$.

- **First step**: construct a transducer T that accepts w_v iff there is a "connecting" word u such that w_u is accepted by T_1 and u_v is accepted by T_2.

- We slightly modify the pairing construction.
Computing joins

<table>
<thead>
<tr>
<th>Pairing construction</th>
</tr>
</thead>
</table>
|\[
\begin{bmatrix}
q_1 \\
q_2
\end{bmatrix} \xrightarrow{a} \begin{bmatrix}
q'_1 \\
q'_2
\end{bmatrix}
\]
iff
\[
q_1 \xrightarrow{a} q'_1
\]
\[
q_2 \xrightarrow{a} q'_2
\]|

<table>
<thead>
<tr>
<th>Join construction</th>
</tr>
</thead>
</table>
|\[
\begin{bmatrix}
q_1 \\
q_2
\end{bmatrix} \xrightarrow{[a]} \begin{bmatrix}
q'_1 \\
q'_2
\end{bmatrix}
\]
iff
\[
q_1 \xrightarrow{[a]} q'_1
\]
\[
q_2 \xrightarrow{[b]} q'_2
\]|

for some \(c \in \Sigma \)
Computing joins

- With the join construction, transducer T has a run

$$
\begin{align*}
\begin{bmatrix} q_{01} \\ q_{02} \end{bmatrix} & \xrightarrow{\begin{bmatrix} a_1 \\ b_1 \end{bmatrix}} \begin{bmatrix} q_{11} \\ q_{12} \end{bmatrix} & \xrightarrow{\begin{bmatrix} a_2 \\ b_2 \end{bmatrix}} \begin{bmatrix} q_{11} \\ q_{12} \end{bmatrix} & \ldots & \xrightarrow{\begin{bmatrix} a_{n-1} \\ b_{n-1} \end{bmatrix}} \begin{bmatrix} q_{(n-1)1} \\ q_{(n-1)2} \end{bmatrix} & \xrightarrow{\begin{bmatrix} a_n \\ b_n \end{bmatrix}} \begin{bmatrix} q_{n1} \\ q_{n2} \end{bmatrix}
\end{align*}
$$

iff T_1 and T_2 have runs

$$
\begin{align*}
q_{01} & \xrightarrow{\begin{bmatrix} a_1 \\ c_1 \end{bmatrix}} q_{11} & \xrightarrow{\begin{bmatrix} a_2 \\ c_2 \end{bmatrix}} q_{21} & \ldots & \xrightarrow{\begin{bmatrix} a_{n-1} \\ c_{n-1} \end{bmatrix}} q_{(n-1)1} & \xrightarrow{\begin{bmatrix} a_n \\ c_n \end{bmatrix}} q_{n1} \\
q_{02} & \xrightarrow{\begin{bmatrix} c_1 \\ b_1 \end{bmatrix}} q_{12} & \xrightarrow{\begin{bmatrix} c_2 \\ b_2 \end{bmatrix}} q_{22} & \ldots & \xrightarrow{\begin{bmatrix} c_{n-1} \\ b_{n-1} \end{bmatrix}} q_{(n-1)2} & \xrightarrow{\begin{bmatrix} c_n \\ b_n \end{bmatrix}} q_{n2}
\end{align*}
$$
Computing joins

• **Second step**: We have the same problem as before.

 • Let $R_1 = \{(2,4)\}$, $R_2 = \{(4,2)\}$. Then $R_1 \circ R_2 = \{(2,2)\}$.

 • But the operation we have just defined does not yield the correct result.

 • **Solution**: apply the padding closure again with padding symbol $\#_\#$.
Computing joins

\[\text{Join}(T_1, T_2) \]

Input: transducers
\[T_1 = (Q_1, \Sigma \times \Sigma, \delta_1, Q_{01}, F_1), \]
\[T_2 = (Q_2, \Sigma \times \Sigma, \delta_2, Q_{02}, F_2) \]

Output: transducer
\[T_1 \circ T_2 = (Q, \Sigma \times \Sigma, \delta, Q_0, F) \]

1. \(Q, \delta, F' \leftarrow \emptyset; \) \(Q_0 \leftarrow Q_{01} \times Q_{02} \)
2. \(W \leftarrow Q_0 \)
3. **while** \(W \neq \emptyset \) **do**
4. \(\text{pick} \ [q_1, q_2] \ \text{from} \ W \)
5. \(\text{add} \ [q_1, q_2] \ \text{to} \ Q \)
6. \(\text{if} \ q_1 \in F_1 \ \text{and} \ q_2 \in F_2 \ \text{then} \ \text{add} \ [q_1, q_2] \ \text{to} \ F' \)
7. \(\text{for all} \ (q_1, (a, c), q_1') \in \delta_1, (q_2, (c, b), q_2') \in \delta_2 \ \text{do} \)
8. \(\text{add} \ ([q_1, q_2], (a, b), [q_1', q_2']) \ \text{to} \ \delta \)
9. \(\text{if} \ [q_1', q_2'] \notin Q \ \text{then} \ \text{add} \ [q_1', q_2'] \ \text{to} \ W \)
10. \(F \leftarrow \text{PadClosure}((Q, \Sigma \times \Sigma, \delta, Q_0, F'), (#, #)) \)
Computing joins

• Example:

 – Let f be the Collatz function.

 – Let $R_1 = R_2 = \{ (n, f(n)) \mid n \geq 0 \}.$

 – Then $R_1 \circ R_2 = \{ (n, f(f(n))) \mid n \geq 0 \}.$
Computing joins
Computing Pre and Post

- **Goal** (for Post): given

 - an automaton A recognizing a set X, and

 - a transducer T recognizing a relation R

construct an automaton B recognizing the set

$$Post(X, R) = \{ y \mid \exists x \in X : (x, y) \in R \}$$

We slightly modify the construction for join.
Computing Pre and Post

Join construction

\[
\begin{bmatrix} q_1 \\ q_2 \end{bmatrix} \xrightarrow{[a]} \begin{bmatrix} q'_1 \\ q'_2 \end{bmatrix}
\]
iff

\[
q_1 \xrightarrow{[a]} q'_1
q_2 \xrightarrow{[b]} q'_2
\]
for some \(c \in \Sigma \)

Post construction

\[
\begin{bmatrix} q_1 \\ q_2 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} q'_1 \\ q'_2 \end{bmatrix}
\]
iff

\[
q_1 \xrightarrow{a} q'_1
q_2 \xrightarrow{[b]} q'_2
\]
for some \(a \in \Sigma \)
Computing Pre and Post

$$\text{Join}(T_1, T_2)$$

Input: transducers
$$T_1 = (Q_1, \Sigma \times \Sigma, \delta_1, Q_{01}, F_1),$$
$$T_2 = (Q_2, \Sigma \times \Sigma, \delta_2, Q_{02}, F_2)$$

Output: transducer
$$T_1 \circ T_2 = (Q, \Sigma \times \Sigma, \delta, Q_0, F)$$

1. \(Q, \delta, F' \leftarrow \emptyset; \ Q_0 \leftarrow Q_{01} \times Q_{02}\)
2. \(W \leftarrow Q_0\)
3. while \(W \neq \emptyset\) do
4. pick \([q_1, q_2]\) from \(W\)
5. add \([q_1, q_2]\) to \(Q\)
6. if \(q_1 \in F_1\) and \(q_2 \in F_2\) then add \([q_1, q_2]\) to \(F'\)
7. for all \((q_1, (a, c), q'_1) \in \delta_1, (q_2, (c, b), q'_2) \in \delta_2\) do
8. add \([(q_1, q_2], (a, b), [q'_1, q'_2]\) to \(\delta\)
9. if \([q'_1, q'_2] \notin Q\) then add \([q'_1, q'_2]\) to \(W\)
10. \(F \leftarrow \text{PadClosure}((Q, \Sigma \times \Sigma, \delta, Q_0, F'), (_, _))\)
Computing Pre and Post

• Example.
 • Let f be the Collatz function.
 • We compute the set $\{f(n) \mid n \text{ is a multiple of } 3\}$

• DFA for the multiples of 3 in lsfb encoding

\[
\text{Post}() = \cdots
\]
Computing Pre and Post