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Finite Universes

• When the universe is finite (e.g., the interval
0, 2 − 1 ), all objects can be encoded by words

of the same length.
• A language 퐿 has length 푛 ≥ 0 if

 퐿 = ∅, or
 every word of 퐿 has length 푛.

• 퐿 is a fixed-length language if it has length 푛 for some 
푛 ≥ 0 .

• Observe:
– Fixed-length languages contain finitely many words.
– ∅ and {휀} are the only two languages of length 0.
– ∅ is a language of any length!



The fixed-length master automaton



• The fixed-length master automaton over Σ is the tuple 
M = 푄 ,Σ, 훿 ,퐹 , where
– 푄 is the set of all fixed-length languages;
– 훿 :  푄 ×  Σ → 푄 is given by 훿 퐿,푎 = 퐿 ;
– 퐹 is the set { 휀  } (the only final state is the language 휀 ).

• Prop: The language recognized from state 퐿 of the master 
automaton is 퐿.
Proof: By induction on the length 푛 of 퐿.
푛 = 0. Then either 퐿 = ∅ or 퐿 = 휀 , and result follows by inspection.
푛 > 0. Then 훿 퐿, 푎 = 퐿 for every  푎 ∈ Σ, and 퐿 has smaller length than 

퐿. By induction hypothesis the state 퐿 recognizes the language 퐿 , 
and so the state 퐿 recognizes the language 퐿.

The fixed-length master automaton



• We denote the  „fragment“ of the master automaton 
reachable from state 퐿 by 퐴 :
• Initial state is 퐿.
• States and transitions are those reachable from 퐿.

• Prop: 퐴 is the minimal DFA recognizing 퐿.
Proof: By definition, all states of 퐴 are reachable 
from its initial state. 
Since every state of the master automaton recognizes 
its „own“ language, distinct states of 퐴 recognize 
distinct languages. 

The fixed-length master automaton



• The structure representing the set of languages                     
퓛 = {퐿 , … , 퐿 } is the fragment of the master automaton 
containing states 퐿 , … , 퐿 and their descendants.

• It is a multi-DFA , i.e., a DFA with multiple initial states.

Data structure for fixed-length languages



• We represent multi-DFAs as tables of nodes .
• A node is a pair 푞, 푠 where

– 푞 is a state identifier, and 
– 푠 = 푞 , … , 푞 is a successor tuple.

• The table for a multi-DFA contains a node for each state but the
states for ∅ and {휀}.

Data structure for fixed-length languages



• The procedure 푚푎푘푒[푇](푠)
– returns the state identifier of the node of table 푇 having s 

as successor tuple, if such a node exists; 
– otherwise it adds a new node 푞, 푠 to 푇, where 푞 is a 

fresh identifier, and returns 푞.
• 푚푎푘푒[푇](푠) assumes that 푇 contains a node for every 

identifier in 푠.

Data structure for fixed-length languages



Implementing union and intersection
• We give a recursive algorithm 푖푛푡푒푟 푇 푞 ,푞 :

– Input: state identifiers 푞 , 푞 from table 푇 of the same length.
– Output: identifier of the state recognizing 퐿 푞 ∩ 퐿 푞 in 

the multi-DFA for 푇.
– Side-effect: if the identifier is not in 푇, then the algorithm 

adds new nodes to 푇, i.e., after termination the table 푇 may 
have been extended.

• The algorithm follows immediately from the following properties
(1) if 퐿 = ∅ or 퐿 = ∅ then 퐿 ∩ 퐿 = ∅ ;
(2) if 퐿 = 휀 = 퐿 then 퐿 ∩ 퐿 = {휀} ;
(3) If 퐿 ≠ ∅ and 퐿 ≠ ∅ , then 퐿 ∩ 퐿 = 퐿 ∩ 퐿 for every 

푎 ∈ Σ.



Implementing union and intersection
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Implementing fixed-length complement
• If a set 푋 ⊆ 푈 is encoded by a language 퐿 of length 푛, then the set
푈 ∖ 푋 is encoded by the fixed-length complement Σ ∖ 퐿, 
denoted by 퐿 .  This is different from 퐿!

• Since the empty language has all lengths, we have ∅ = Σ for
every 푛 ≥ 0, in particular ∅ = Σ = {휖}, 

• The algorithm follows immediately from the following properties
1. If 퐿 has length 0 and 퐿 = ∅ then  퐿 = 휖 .
2. If 퐿 has length 0 and 퐿 = {휀} then  퐿 = ∅.

3. If 퐿 has length 푛 ≥ 1, then 퐿 =  퐿 .



Implementing fixed-length complement
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Implementing fixed-length universality
• A language 퐿 of length 푛 is fixed-length universal if 퐿 = Σ . 

• The algorithm for universality follows immediately from the 
following properties
(1) If 퐿 = ∅ then 퐿 is not universal.
(2) If 퐿 = {휀} then 퐿 is universal.
(3) If ∅ ≠ 퐿 ≠ {휀} then 퐿 is universal iff 퐿 is universal for every

푎 ∈ Σ. 



Implementing fixed-length universality



Implementing fixed-length equality
• If two languages 퐿 , 퐿 of the same length are represented by

nodes 푞 , 푞 of the same table then we have 퐿 = 퐿 iff 푞 = 푞  , 
and so equality can be checked in constant time.

• If the languages are represented by nodes from different tables, 
then equality amounts to isomorphism of the DFAs rooted at the
nodes.



• Given: Acyclic NFA 퐴 accepting a fixed-length language.
Goal: Simultaneously determinize and minimize 퐴

• Each state of 퐴 accepts a fixed-length language.
• We give an algorithm state(S):

– Input: a subset 푆 of states of 퐴 accepting languages of the 
same length.

– Output: the state of the master automaton accepting 
⋃ 퐿(푞)∈ .

• Goal is achieved by calling state(푄 )

NFAs as starting point



• The algorithm follows from the following observations:
1) If 푆 = ∅ then 퐿 푆 = ∅.
2) If 푆 ∩ 퐹 ≠ ∅ then 퐿 푆 = {휖}.
3) If 푆 ≠ ∅ and 푆 ∩ 퐹 ≠ ∅ then 퐿 푆 = ⋃ 푎 ⋅ 퐿 푆 , 

where 퐿 푆 = 훿(푆,푎 ).
• This leads directly to a recursive algorithm:

NFAs as starting point



NFAs as starting point



NFAs as starting point



Implementing operations on relations
• Assumptions: 

– Objects are encoded as words of Σ (one word for each object)

– Pairs of objects are encoded as words of Σ × Σ . 
Recall:  Σ × Σ and Σ × Σ are isomorphic.

– Observe: objects and pairs of objects are both encoded as
words of length 푛, but over different alphabets.

• Notation: Given 푅 ⊆ Σ × Σ , we denote

푅 , = 푤 ,푤 ∈ Σ × Σ 푎푤 , 푏푤 ∈ 푅 .

• Master transducer:  Master automaton over the
alphabet Σ × Σ.



Implementing fixed-length join
• The algorithm follows from:

1) ∅ ∘ 푅 = 푅 ∘ ∅ = ∅
2) 휖, 휖 ∘ 휖, 휖 = 휖, 휖
3) If 푅 ,푅 have length at least 1, then

푅 ∘ 푅 = 푎, 푏 ⋅ 푅 , ∘ 푅 ,

, , ∈



Implementing fixed-length join



Implementing fixed-length pre and post
• The algorithm for pre (post is analogous) follows from:

1) If 푅 = ∅ or 퐿 = ∅ then 푝푟푒 = ∅

2) If 푅 = { 휖, 휖 } and 퐿 = 휖 then 푝푟푒 = {휖}

3) If ∅ ≠ 푅 ≠ { 휖, 휖 } and ∅ ≠  퐿 ≠ {휖} then 

푝푟푒 (퐿)  = 푎 ⋅ 푝푟푒 , (퐿 )
, ∈

Proof of 3):



Implementing fixed-length pre and post



Implementing projection
• We reduce projection to pre.
• The projection of a language 푅 ⊆ Σ × Σ onto the first

component is the language 푝푟푒 (Σ ).
• Specializing the algorithm for pre we obtain:



Decision Diagrams (DDs)



Decision Diagrams (DDs)
• A decision diagram is an automaton
 whose transitions are labeled by regular expressions of the

form 푎Σ , 푛 ≥ 0, and
 satisfies the following determinacy condition for every

state 푞 and letter 푎: there is exactly one 푘 ≥ 0 such that
훿 푞,푎Σ ≠ ∅, and for this 푘 there is a state 푞′ such that
훿 푞,푎Σ = {푞 }.

• Observe: Every DFA is a DD.
• A fixed-length language 퐿 is a kernel if 퐿 = ∅, 퐿 = {휖}, or there

are 푎, 푏 ∈ Σ such that 퐿 ≠ 퐿 .
• The kernel 〈퐿〉 of a fixed-length language 퐿 is the unique kernel

satisfying 퐿 = Σ 퐿 for some 푘 ≥ 0. Observe: 푘 and 〈퐿〉
uniquely determine 퐿 for every 퐿 ≠ ∅.



The fixed-length master decision diagram

• All kernels as states, {휖} as final state, transitions (퐾,푎Σ , 퐾 )



Reduction rule
• Proposition: The unique minimal DD for a kernel is the

fragment of the fixed-length master DD rooted at the kernel
(modulo labels of transitions leaving the states ∅ and {휖}).

• Proposition: The minimal DD for a kernel is obtained from its
minimal DFA by exhaustively applying the following „reduction
rule“:



• The structure representing the set of kernels
퓛 = {퐿 , … , 퐿 } is the fragment of the master DD containing 
states 퐿 , … , 퐿 and their descendants.

• It is a multi-DD , i.e., a DD with multiple initial states.

Data structure for kernels



• We represent multi-DDs as tables of kernodes .
• A kernode is a triple 푞, 푙, 푠 where

– 푞 is a state identifier,
– 푙 is a length, and
– 푠 = 푞 , … , 푞 is a successor tuple.

• The table for a multi-DD contains a node for each state but the states
for ∅ and 휖.

Data structure for kernels



Implementing intersection
• Given kernels 퐾 ,퐾 of languages 퐿 ,퐿 , we wish to compute
퐾 ⊓ 퐾 = 〈퐿 ∩ 퐿 〉.

• We have
1. If 퐾 = ∅ or 퐾 = ∅ then 퐾 ⊓ 퐾 = ∅.
2. If 퐾 ≠ ∅ ≠ 퐾 then

퐾 ⊓ 퐾 =
〈Σ 퐾 ∩ 퐾 〉 if 푙 < 푙

〈퐾 ∩ Σ 퐾 〉 if 푙 < 푙
〈퐾 ∩ 퐾 〉 if 푙 = 푙

3. If 푙 < 푙 then  (Σ 퐾 ∩ 퐾 〉 = 퐾 ⊓ 〈퐾 〉
4. If 푙 < 푙 then  (K ∩ Σ 퐾 〉 =  퐾 ⊓ 퐾
5. If 푙 = 푙 then 퐾 ∩ 퐾 = 퐾 ⊓ 〈퐾 〉

• 3.-5. lead to a recursive algorithm



Implementing intersection
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