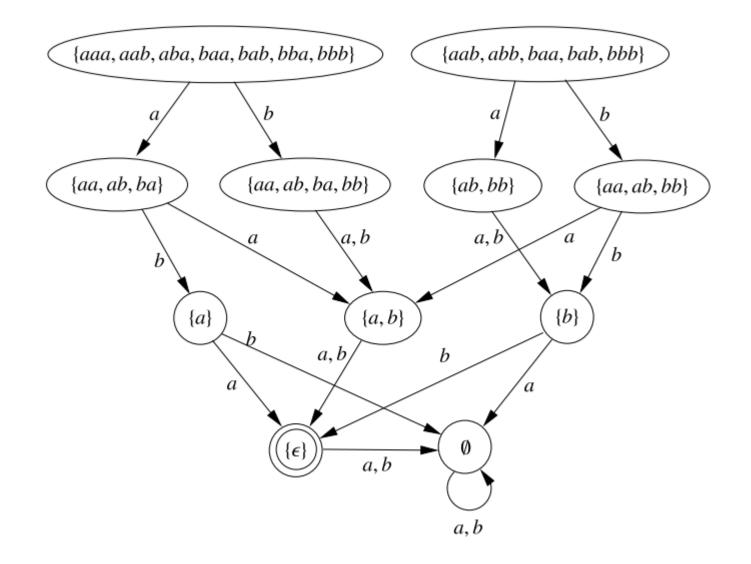
Finite Universes

Finite Universes

- When the universe is finite (e.g., the interval [0, 2³² – 1]), all objects can be encoded by words of the same length.
- A language *L* has length $n \ge 0$ if
 - $-L = \emptyset$, or
 - every word of *L* has length *n*.
- L is a fixed-length language if it has length n for some $n \ge 0$.
- Observe:
 - Fixed-length languages contain finitely many words.
 - Ø and $\{\varepsilon\}$ are the only two languages of length 0.
 - Ø is a language of any length!

The fixed-length master automaton



The fixed-length master automaton

- The fixed-length master automaton over Σ is the tuple $M = (Q_M, \Sigma, \delta_M, F_M)$, where
 - $-Q_M$ is the set of all fixed-length languages;
 - $-\delta_M: Q_M \times \Sigma \to Q_M$ is given by $\delta_M(L, a) = L^a;$
 - F_M is the set { { ε } } (the only final state is the language { ε }).
- Prop: The language recognized from state *L* of the master automaton is *L*.

Proof: By induction on the length n of L.

n = 0. Then either $L = \emptyset$ or $L = \{\varepsilon\}$, and result follows by inspection.

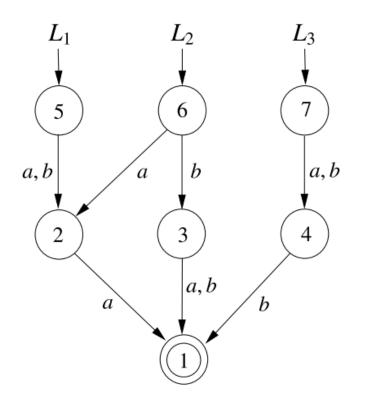
n > 0. Then $\delta_M(L, a) = L^a$ for every $a \in \Sigma$, and L^a has smaller length than L. By induction hypothesis the state L^a recognizes the language L^a , and so the state L recognizes the language L.

The fixed-length master automaton

- We denote the "fragment" of the master automaton reachable from state *L* by *A*_L :
 - Initial state is *L*.
 - States and transitions are those reachable from *L*.
- Prop: A_L is the minimal DFA recognizing L.
 Proof: By definition, all states of A_L are reachable from its initial state.
 Since every state of the master automaton recognizes
 - its "own" language, distinct states of A_L recognize distinct languages.

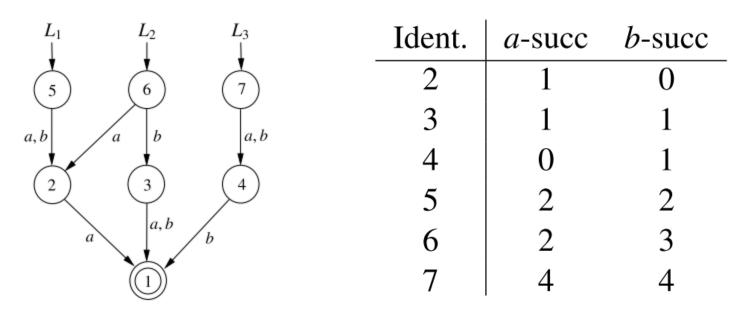
Data structure for fixed-length languages

- The structure representing the set of languages $\mathcal{L} = \{L_1, \dots, L_m\}$ is the fragment of the master automaton containing states L_1, \dots, L_m and their descendants.
- It is a multi-DFA , i.e., a DFA with multiple initial states.



Data structure for fixed-length languages

- We represent multi-DFAs as tables of nodes .
- A node is a pair $\langle q, s \rangle$ where
 - -q is a state identifier, and
 - $-s = (q_1, \dots, q_m)$ is a successor tuple.
- The table for a multi-DFA contains a node for each state but the states for Ø and {ε}.



Data structure for fixed-length languages

- The procedure *make*[*T*](*s*)
 - returns the state identifier of the node of table T having s as successor tuple, if such a node exists;
 - otherwise it adds a new node $\langle q, s \rangle$ to T, where q is a fresh identifier, and returns q.
- make[T](s) assumes that T contains a node for every identifier in s.

- We give a recursive algorithm $inter[T](q_1, q_2)$:
 - Input: state identifiers q_1 , q_2 from table T of the same length.
 - Output: identifier of the state recognizing $L(q_1) \cap L(q_2)$ in the multi-DFA for T.
 - Side-effect: if the identifier is not in *T*, then the algorithm adds new nodes to *T*, i.e., after termination the table *T* may have been extended.
- The algorithm follows immediately from the following properties

 if L₁ = Ø or L₂ = Ø then L₁ ∩ L₂ = Ø;
 if L₁ = {ε} = L₂ then L₁ ∩ L₂ = {ε};
 If L₁ ≠ Ø and L₂ ≠ Ø, then (L₁ ∩ L₂)^a = L₁^a ∩ L₂^a for every a ∈ Σ.

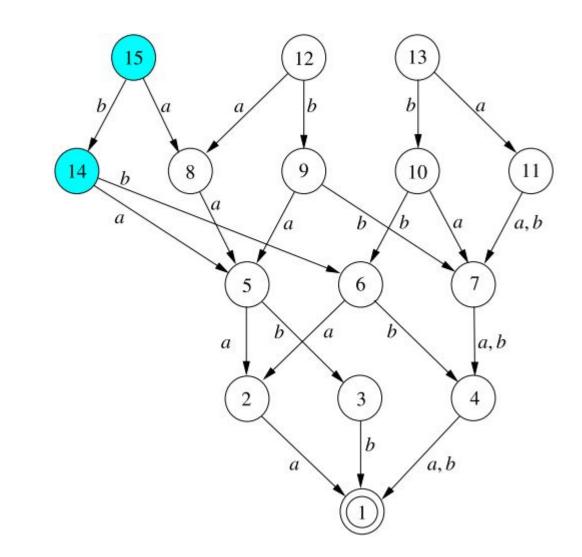
 $inter(q_1, q_2)$

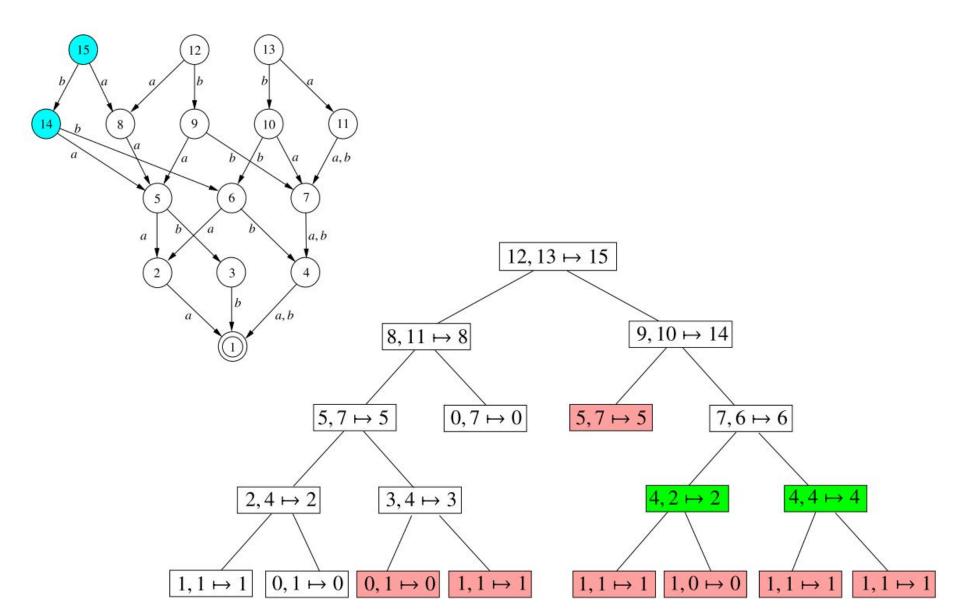
Input: states q_1, q_2 recognizing languages of the same length **Output:** state recognizing $L(q_1) \cap L(q_2)$

- 1 if $G(q_1, q_2)$ is not empty then return $G(q_1, q_2)$
- 2 **if** $q_1 = q_{\emptyset}$ **or** $q_2 = q_{\emptyset}$ **then return** q_{\emptyset}
- 3 else if $q_1 = q_{\varepsilon}$ and $q_2 = q_{\varepsilon}$ then return q_{ε}

4 else
$$/ * q_1, q_2 \notin \{q_\emptyset, q_\varepsilon\} * /$$

- 5 **for all** i = 1, ..., m **do** $r_i \leftarrow inter(q_1^{a_i}, q_2^{a_i})$
- 6 $G(q_1, q_2) \leftarrow \mathsf{make}(r_1, \ldots, r_m)$
- 7 **return** $G(q_1, q_2)$

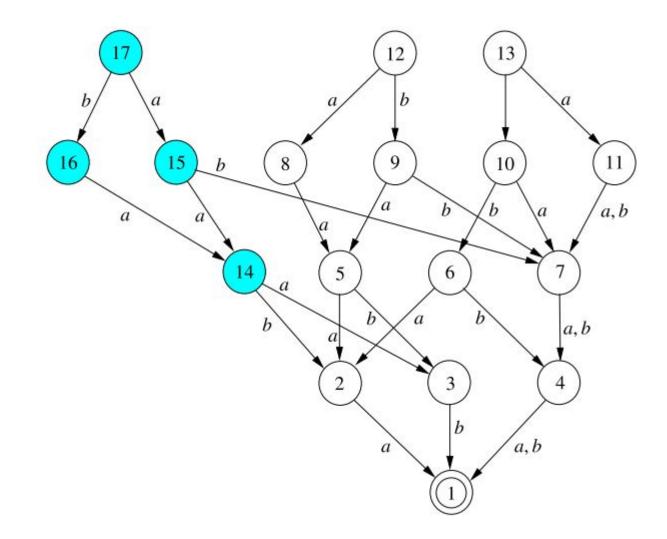


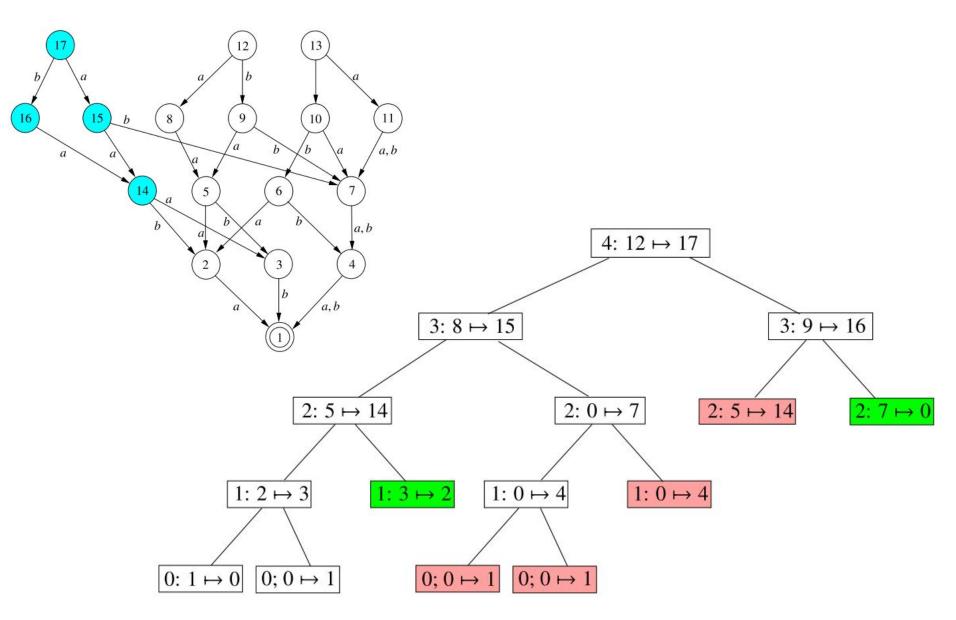


- If a set X ⊆ U is encoded by a language L of length n, then the set U \ X is encoded by the fixed-length complement Σⁿ \ L, denoted by L
 ⁿ. This is different from L
 ¹.
- Since the empty language has all lengths, we have φⁿ = Σⁿ for every n ≥ 0, in particular φ⁰ = Σ⁰ = {ε},
- The algorithm follows immediately from the following properties
 - 1. If *L* has length 0 and $L = \emptyset$ then $\overline{L}^0 = \{\epsilon\}$.
 - 2. If *L* has length 0 and $L = \{\varepsilon\}$ then $\overline{L}^0 = \emptyset$.
 - 3. If *L* has length $n \ge 1$, then $(\overline{L}^n)^a = \overline{L}^a^{n-1}$.

comp(n,q) **Input:** length *n*, state *q* of length *n* **Output:** state recognizing $\overline{L(q)}^n$

- 1 **if** G(n,q) is not empty **then return** G(n,q)
- 2 **if** n = 0 and $q = q_{\emptyset}$ then return q_{ϵ}
- 3 else if n = 0 and $q = q_{\epsilon}$ then return q_{\emptyset}
- 4 else $/ * n \ge 1 * /$
- 5 **for all** i = 1, ..., m **do** $r_i \leftarrow comp(n-1, q^{a_i})$
- 6 $G(n,q) \leftarrow \mathsf{make}(r_1,\ldots,r_m)$
- 7 return G(n,q)





Implementing fixed-length universality

- A language L of length n is fixed-length universal if $L = \Sigma^n$.
- The algorithm for universality follows immediately from the following properties
 - (1) If $L = \emptyset$ then L is not universal.
 - (2) If $L = \{\varepsilon\}$ then L is universal.
 - (3) If $\emptyset \neq L \neq \{\varepsilon\}$ then *L* is universal iff L^a is universal for every $a \in \Sigma$.

Implementing fixed-length universality

- univ(q)
- **Input:** state q
- **Output:** true if L(q) is fixed-length universal, false otherwise
 - 1 if G(q) is not empty then return G(q)
 - 2 **if** $q = q_{\emptyset}$ **then return false**
 - 3 else if $q = q_{\epsilon}$ then return true
 - 4 **else** $/ * q \neq q_{\emptyset}$ and $q \neq q_{\epsilon} * /$
 - 5 $G(q) \leftarrow \operatorname{and}(univ(q^{a_1}), \ldots, univ(q^{a_m}))$
 - 6 return G(q)

Implementing fixed-length equality

- If two languages L_1 , L_2 of the same length are represented by nodes q_1 , q_2 of the same table then we have $L_1 = L_2$ iff $q_1 = q_2$, and so equality can be checked in constant time.
- If the languages are represented by nodes from different tables, then equality amounts to isomorphism of the DFAs rooted at the nodes.

 $eq2(q_1, q_2)$ **Input:** states q_1, q_2 of different tables **Output: true** if $L(q_1) = L(q_2)$, **false** otherwise if $G(q_1, q_2)$ is not empty then return $G(q_1, q_2)$ 1 if $q_1 = q_{\emptyset 1}$ and $q_2 = q_{\emptyset 2}$ then $G(q_1, q_2) \leftarrow \text{true}$ 2 else if $q_1 = q_{\emptyset 1}$ and $q_2 \neq q_{\emptyset 2}$ then $G(q_1, q_2) \leftarrow \texttt{false}$ 3 else if $q_1 \neq q_{\emptyset 1}$ and $q_2 = q_{\emptyset 2}$ then $G(q_1, q_2) \leftarrow \texttt{false}$ 4 5 else $/ * q_1 \neq q_{\emptyset_1}$ and $q_2 \neq q_{\emptyset_2} * /$ $G(q_1, q_2) \leftarrow \text{and}(eq(q_1^{a_1}, q_2^{a_1}), \dots, eq(q_1^{a_m}, q_2^{a_m}))$ 6 7 return $G(q_1, q_2)$

- Given: Acyclic NFA A accepting a fixed-length language.
 Goal: Simultaneously determinize and minimize A
- Each state of *A* accepts a fixed-length language.
- We give an algorithm *state(S*):
 - Input: a subset S of states of A accepting languages of the same length.
 - Output: the state of the master automaton accepting $\bigcup_{q \in S} L(q)$.
- Goal is achieved by calling state(Q₀)

- The algorithm follows from the following observations:
- 1) If $S = \emptyset$ then $L(S) = \emptyset$.
- 2) If $S \cap F \neq \emptyset$ then $L(S) = \{\epsilon\}$.
- 3) If $S \neq \emptyset$ and $S \cap F \neq \emptyset$ then $L(S) = \bigcup_{i=1}^{n} a_i \cdot L(S_i)$, where $L(S_i) = \delta(S, a_i)$.
- This leads directly to a recursive algorithm:

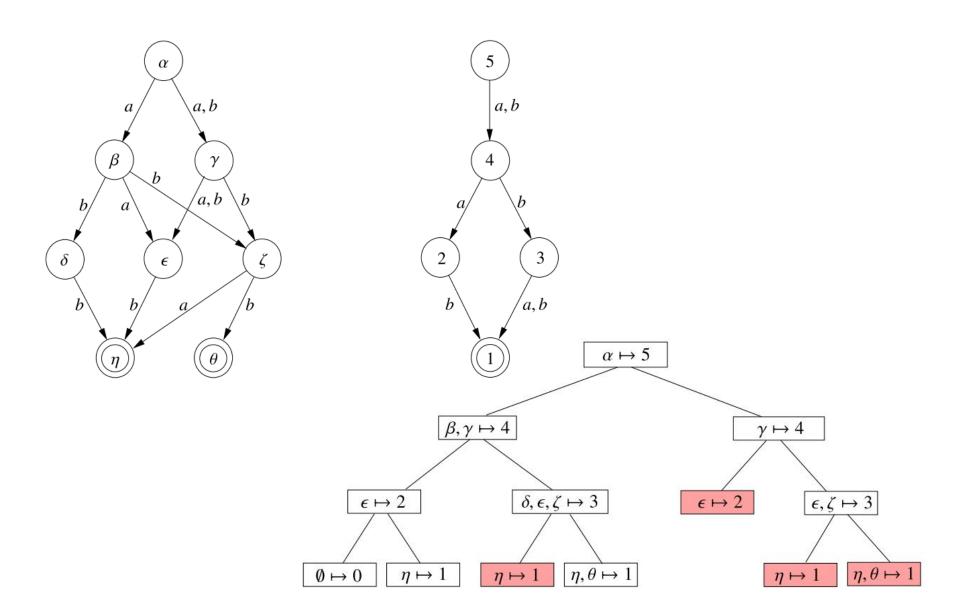
det&min(*A*) **Input:** NFA $A = (Q, \Sigma, \delta, Q_0, F)$ **Output:** master state recognizing L(A)

1 return $state(Q_0)$

state(S)

Input: set $S \subseteq Q$ recognizing languages of the same length **Output:** state recognizing L(S)

- 1 **if** G(S) is not empty **then return** G(S)
- 2 else if $S = \emptyset$ then return q_{\emptyset}
- 3 else if $S \cap F \neq \emptyset$ then return q_{ϵ}
- 4 **else** $/ * S \neq \emptyset$ and $S \cap F = \emptyset * /$
- 5 **for all** i = 1, ..., m **do** $S_i \leftarrow \delta(S, a_i)$
- 6 $G(S) \leftarrow make(state(S_1), \ldots, state(S_m));$
- 7 return G(S)



Implementing operations on relations

- Assumptions:
 - Objects are encoded as words of Σ^n (one word for each object)
 - Pairs of objects are encoded as words of $(\Sigma \times \Sigma)^n$. Recall: $\Sigma^n \times \Sigma^n$ and $(\Sigma \times \Sigma)^n$ are isomorphic.
 - Observe: objects and pairs of objects are both encoded as words of length n, but over different alphabets.
- Notation: Given $R \subseteq \Sigma^n \times \Sigma^n$, we denote

 $R^{[a,b]} = \{ (w_1, w_2) \in \Sigma^{n-1} \times \Sigma^{n-1} \mid (aw_1, bw_2) \in R \}.$

• Master transducer: Master automaton over the alphabet $\Sigma \times \Sigma$.

Implementing fixed-length join

• The algorithm follows from:

1)
$$\emptyset \circ R = R \circ \emptyset = \emptyset$$

- 2) { $[\epsilon, \epsilon]$ } { $[\epsilon, \epsilon]$ } = { $[\epsilon, \epsilon]$ }
- 3) If R_1 , R_2 have length at least 1, then

$$R_1 \circ R_2 = \bigcup_{a,b,c \in \Sigma} [a,b] \cdot \left(R_1^{[a,c]} \circ R_2^{[c,b]} \right)$$

Implementing fixed-length join

 $join(r_1, r_2)$

6

Input: states r_1, r_2 of transducer table

Output: state recognizing $L(r_1) \circ L(r_2)$

1 **if** $G(r_1, r_2)$ is not empty **then return** $G(r_1, r_2)$

2 **if**
$$r_1 = q_{\emptyset}$$
 or $r_2 = q_{\emptyset}$ **then return** q_{\emptyset}

3 else if
$$r_1 = q_{\epsilon}$$
 and $r_2 = q_{\epsilon}$ then return q_{ϵ}

4 **else**
$$/ * q_{\emptyset} \neq r_1 \neq q_{\epsilon}$$
 and $q_{\emptyset} \neq r_2 \neq q_{\epsilon} * /$

5 **for all**
$$(a_i, a_j) \in \Sigma \times \Sigma$$
 do

$$r_{i,j} \leftarrow union\left(join\left(r_1^{[a_i,a_1]}, r_2^{[a_1,a_j]}\right), \dots, join\left(r_1^{[a_i,a_m]}, r_2^{[a_m,a_j]}\right)\right)$$

7
$$G(r_1, r_2) = make(r_{1,1}, \dots, r_{m,m})$$

8 return $G(r_1, r_2)$

Implementing fixed-length pre and post

• The algorithm for *pre* (*post* is analogous) follows from:

1) If
$$R = \emptyset$$
 or $L = \emptyset$ then $pre_{R(L)} = \emptyset$

- 2) If $R = \{[\epsilon, \epsilon]\}$ and $L = \{\epsilon\}$ then $pre_{R(L)} = \{\epsilon\}$
- 3) If $\emptyset \neq R \neq \{[\epsilon, \epsilon]\}$ and $\emptyset \neq L \neq \{\epsilon\}$ then

$$pre_R(L) = \bigcup_{a,b\in\Sigma} a \cdot pre_{R^{[a,b]}}(L^b)$$

Proof of 3):

$$aw_{1} \in pre_{R}(L)$$

$$\Leftrightarrow \exists bw_{2} \in L: [aw_{1}, bw_{2}] \in R$$

$$\Leftrightarrow \exists b \in \Sigma \exists w_{2} \in L^{b}: [w_{1}, w_{2}] \in R^{[a,b]}$$

$$\Leftrightarrow \exists b \in \Sigma: w_{1} \in pre_{R^{[a,b]}}(L^{b})$$

$$\Leftrightarrow aw_{1} \in \bigcup_{b \in \Sigma} a \cdot pre_{R^{[a,b]}}(L^{b})$$

Implementing fixed-length pre and post

pre(r,q)

Input: state *r* of transducer table, state *q* of automaton table **Output:** state recognizing $pre_{L(r)}(L(q))$

- 1 **if** G(r,q) is not empty **then return** G(r,q)
- 2 **if** $r = r_{\emptyset}$ **or** $q = q_{\emptyset}$ **then return** q_{\emptyset}
- 3 else if $r = r_{\epsilon}$ and $q = q_{\epsilon}$ then return q_{ϵ}

4 else

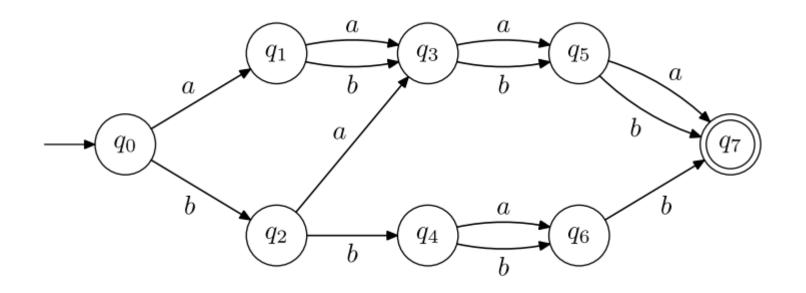
5 **for all**
$$a_i \in \Sigma$$
 do
6 $q'_i \leftarrow union\left(pre\left(r^{[a_i,a_1]}, q^{a_1}\right), \dots, pre\left(r^{[a_i,a_m]}, q^{a_m}\right)\right)$
7 $G(q,r) \leftarrow make(q'_1, \dots, q'_m)$
8 **return** $G(q,r)$

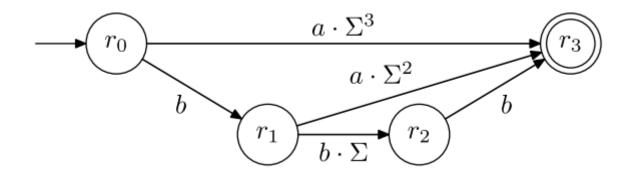
Implementing projection

- We reduce projection to *pre*.
- The projection of a language $R \subseteq \Sigma^n \times \Sigma^n$ onto the first component is the language $pre_R(\Sigma^n)$.
- Specializing the algorithm for *pre* we obtain:

```
pro_1(r)
Input: state r of transducer table
Output: state recognizing proj_1(L(r))
          if G(r) is not empty then return G(r)
  1
          if r = r_{\emptyset} then return q_{\emptyset}
  2
          else if r = r_{\epsilon} then return q_{\epsilon}
  3
  4
          else
  5
              for all a_i \in \Sigma do
                 q'_i \leftarrow union\left(pro_1\left(r^{[a_i,a_1]}\right), \dots, pro_1\left(r^{[a_i,a_m]}\right)\right)
 6
              G(r) \leftarrow make(q'_1, \ldots, q'_m)
  7
              return G(r)
  8
```

Decision Diagrams (DDs)



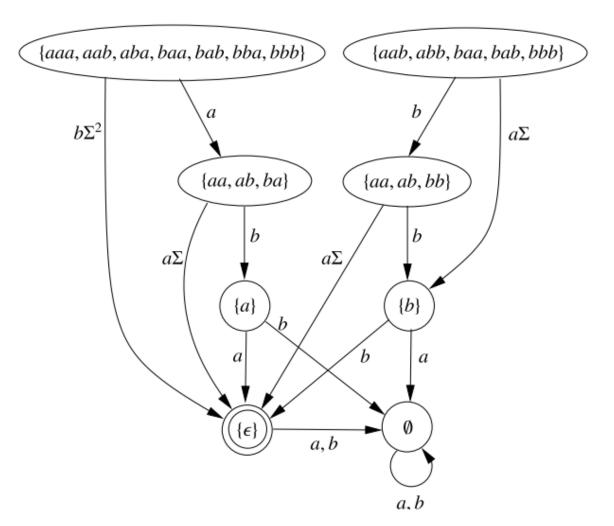


Decision Diagrams (DDs)

- A decision diagram is an automaton
 - whose transitions are labeled by regular expressions of the form $a\Sigma^n$, $n \ge 0$, and
 - satisfies the following determinacy condition for every state q and letter a: there is exactly one $k \ge 0$ such that $\delta(q, a\Sigma^k) \neq \emptyset$, and for this k there is a state q' such that $\delta(q, a\Sigma^k) = \{q'\}.$
- Observe: Every DFA is a DD.
- A fixed-length language *L* is a kernel if $L = \emptyset$, $L = \{\epsilon\}$, or there are $a, b \in \Sigma$ such that $L^a \neq L^b$.
- The kernel $\langle L \rangle$ of a fixed-length language L is the unique kernel satisfying $L = \Sigma^k \langle L \rangle$ for some $k \ge 0$. Observe: k and $\langle L \rangle$ uniquely determine L for every $L \ne \emptyset$.

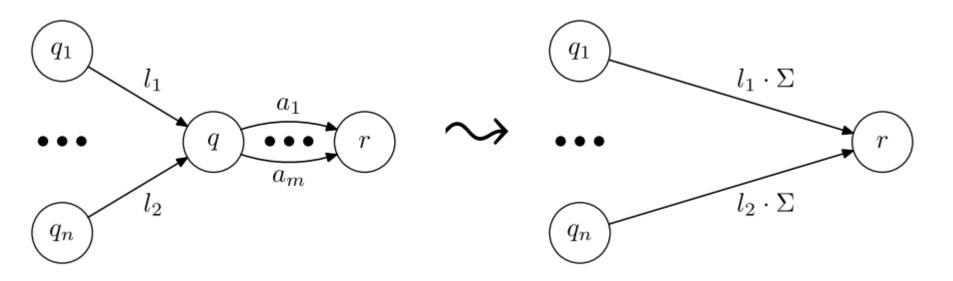
The fixed-length master decision diagram

• All kernels as states, $\{\epsilon\}$ as final state, transitions $(K, a\Sigma^k, \langle K^a \rangle)$



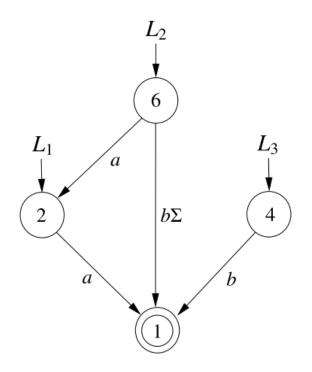
Reduction rule

- Proposition: The unique minimal DD for a kernel is the fragment of the fixed-length master DD rooted at the kernel (modulo labels of transitions leaving the states Ø and {ε}).
- Proposition: The minimal DD for a kernel is obtained from its minimal DFA by exhaustively applying the following "reduction rule":



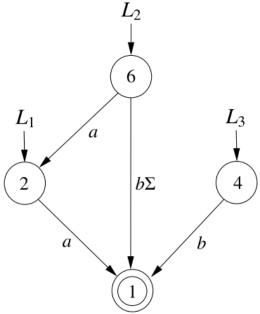
Data structure for kernels

- The structure representing the set of kernels
 \$\mathcal{L}\$ = {L₁, ..., L_m} is the fragment of the master DD containing states L₁, ..., L_m and their descendants.
- It is a multi-DD , i.e., a DD with multiple initial states.



Data structure for kernels

- We represent multi-DDs as tables of kernodes .
- A kernode is a triple $\langle q, l, s \rangle$ where
 - q is a state identifier,
 - -l is a length, and
 - $-s = (q_1, \dots, q_m)$ is a successor tuple.
- The table for a multi-DD contains a node for each state but the states for Ø and ε.



Ident.	Length	a-succ	<i>b</i> -succ
2	1	1	0
4	1	0	1
6	2	2	1

- Given kernels K_1 , K_2 of languages L_1 , L_2 , we wish to compute $K_1 \sqcap K_2 = \langle L_1 \cap L_2 \rangle$.
- We have

1. If $K_1 = \emptyset$ or $K_2 = \emptyset$ then $K_1 \sqcap K_2 = \emptyset$. 2. If $K_1 \neq \emptyset \neq K_2$ then $K_{1} \sqcap K_{2} = \begin{cases} \langle \Sigma^{l_{2}-l_{1}}K_{1} \cap K_{2} \rangle & \text{if } l_{1} < l_{2} \\ \langle K_{1} \cap \Sigma^{l_{1}-l_{2}}K_{2} \rangle & \text{if } l_{2} < l_{1} \\ \langle K_{1} \cap K_{2} \rangle & \text{if } l_{1} = l_{2} \end{cases}$ 3. If $l_1 < l_2$ then $\langle (\Sigma^{l_2 - l_1} K_1 \cap K_2)^a \rangle = K_1 \sqcap \langle K_2^a \rangle$ 4. If $l_2 < l_1$ then $\langle (K_1 \cap \Sigma^{l_1 - l_2} K_2)^a \rangle = \langle K_1^a \rangle \sqcap K_2$ 5. If $l_1 = l_2$ then $\langle (K_1 \cap K_2)^a \rangle = \langle K_1^a \rangle \sqcap \langle K_2^a \rangle$

• 3.-5. lead to a recursive algorithm

 $kinter(q_1, q_2)$ **Input:** states q_1, q_2 recognizing $\langle L_1 \rangle, \langle L_2 \rangle$ **Output:** state recognizing $\langle L_1 \cap L_2 \rangle$ if $G(q_1, q_2)$ is not empty then return $G(q_1, q_2)$ 1 2 if $q_1 = q_0$ or $q_2 = q_0$ then return q_0 3 if $q_1 \neq q_0$ and $q_2 \neq q_0$ then if $l_1 < l_2$ /* lengths of the kernodes for q_1, q_2 */ then 4 for all i = 1, ..., m do $r_i \leftarrow kinter(q_1, q_2^{a_i})$ 5 $G(q_1, q_2) \leftarrow \operatorname{kmake}(l_2, r_1, \ldots, r_m)$ 6 7 else if $l_1 = l_2$ then for all i = 1, ..., m do $r_i \leftarrow kinter(q_1^{a_i}, q_2)$ 8 $G(q_1, q_2) \leftarrow \operatorname{kmake}(l_1, r_1, \ldots, r_m)$ 9 else /* $l_1 = l_2 */$ 10 for all i = 1, ..., m do $r_i \leftarrow kinter(q_1^{a_i}, q_2^{a_i})$ 11 $G(q_1, q_2) \leftarrow \operatorname{kmake}(l_1, r_1, \ldots, r_m)$ 12

13 **return** $G(q_1, q_2)$



