Finite Universes

Finite Universes

- When the universe is finite (e.g., the interval [$\left.0,2^{32}-1\right]$), all objects can be encoded by words of the same length.
- A language L has length $n \geq 0$ if
- $L=\varnothing$, or
- every word of L has length n.
- L is a fixed-length language if it has length n for some $n \geq 0$.
- Observe:
- Fixed-length languages contain finitely many words.
$-\emptyset$ and $\{\varepsilon\}$ are the only two languages of length 0 .
- \varnothing is a language of any length!

The fixed-length master automaton

The fixed-length master automaton

- The fixed-length master automaton over Σ is the tuple $\mathrm{M}=\left(Q_{M}, \Sigma, \delta_{M}, F_{M}\right)$, where
- Q_{M} is the set of all fixed-length languages;
$-\delta_{M}: Q_{M} \times \Sigma \rightarrow Q_{M}$ is given by $\delta_{M}(L, a)=L^{a}$;
$-F_{M}$ is the set $\{\{\varepsilon\}\}$ (the only final state is the language $\{\varepsilon\}$).
- Prop: The language recognized from state L of the master automaton is L.
Proof: By induction on the length n of L.
$n=0$. Then either $L=\emptyset$ or $L=\{\varepsilon\}$, and result follows by inspection.
$n>0$. Then $\delta_{M}(L, a)=L^{a}$ for every $a \in \Sigma$, and L^{a} has smaller length than L. By induction hypothesis the state L^{a} recognizes the language L^{a}, and so the state L recognizes the language L.

The fixed-length master automaton

- We denote the "fragment" of the master automaton reachable from state L by A_{L} :
- Initial state is L.
- States and transitions are those reachable from L.
- Prop: A_{L} is the minimal DFA recognizing L. Proof: By definition, all states of A_{L} are reachable from its initial state.
Since every state of the master automaton recognizes its „own" language, distinct states of A_{L} recognize distinct languages.

Data structure for fixed-length languages

- The structure representing the set of languages
$\mathcal{L}=\left\{L_{1}, \ldots, L_{m}\right\}$ is the fragment of the master automaton containing states L_{1}, \ldots, L_{m} and their descendants.
- It is a multi-DFA , i.e., a DFA with multiple initial states.

Data structure for fixed-length languages

- We represent multi-DFAs as tables of nodes.
- A node is a pair $\langle q, s\rangle$ where
- q is a state identifier, and
$-s=\left(q_{1}, \ldots, q_{m}\right)$ is a successor tuple.
- The table for a multi-DFA contains a node for each state but the states for \varnothing and $\{\varepsilon\}$.

Ident.	a-succ	b-succ
2	1	0
3	1	1
4	0	1
5	2	2
6	2	3
7	4	4

Data structure for fixed-length languages

- The procedure make[T](s)
- returns the state identifier of the node of table T having s as successor tuple, if such a node exists;
- otherwise it adds a new node $\langle q, s\rangle$ to T, where q is a fresh identifier, and returns q.
- make $[T](s)$ assumes that T contains a node for every identifier in s.

Implementing union and intersection

- We give a recursive algorithm inter $[T]\left(q_{1}, q_{2}\right)$:
- Input: state identifiers q_{1}, q_{2} from table T of the same length.
- Output: identifier of the state recognizing $L\left(q_{1}\right) \cap L\left(q_{2}\right)$ in the multi-DFA for T.
- Side-effect: if the identifier is not in T, then the algorithm adds new nodes to T, i.e., after termination the table T may have been extended.
- The algorithm follows immediately from the following properties
(1) if $L_{1}=\emptyset$ or $L_{2}=\emptyset$ then $L_{1} \cap L_{2}=\emptyset$;
(2) if $L_{1}=\{\varepsilon\}=L_{2}$ then $L_{1} \cap L_{2}=\{\varepsilon\}$;
(3) If $L_{1} \neq \emptyset$ and $L_{2} \neq \emptyset$, then $\left(L_{1} \cap L_{2}\right)^{a}=L_{1}^{a} \cap L_{2}^{a}$ for every $a \in \Sigma$.

Implementing union and intersection

$\operatorname{inter}\left(q_{1}, q_{2}\right)$
Input: states q_{1}, q_{2} recognizing languages of the same length
Output: state recognizing $L\left(q_{1}\right) \cap L\left(q_{2}\right)$
1 if $G\left(q_{1}, q_{2}\right)$ is not empty then return $G\left(q_{1}, q_{2}\right)$
2 if $q_{1}=q_{0}$ or $q_{2}=q_{0}$ then return q_{0}
3 else if $q_{1}=q_{\varepsilon}$ and $q_{2}=q_{\varepsilon}$ then return q_{ϵ}
4 else $/ * q_{1}, q_{2} \notin\left\{q_{\emptyset}, q_{\varepsilon}\right\} * /$
$5 \quad$ for all $i=1, \ldots, m$ do $r_{i} \leftarrow \operatorname{inter}\left(q_{1}^{a_{i}}, q_{2}^{a_{i}}\right)$
$6 \quad G\left(q_{1}, q_{2}\right) \leftarrow \operatorname{make}\left(r_{1}, \ldots, r_{m}\right)$
7 return $G\left(q_{1}, q_{2}\right)$

Implementing union and intersection

Implementing union and intersection

Implementing fixed-length complement

- If a set $X \subseteq U$ is encoded by a language L of length n, then the set $U \backslash X$ is encoded by the fixed-length complement $\Sigma^{n} \backslash L$, denoted by \bar{L}^{n}. This is different from \bar{L} !
- Since the empty language has all lengths, we have $\bar{\varnothing}^{n}=\Sigma^{n}$ for every $n \geq 0$, in particular $\bar{\phi}^{0}=\Sigma^{0}=\{\epsilon\}$,
- The algorithm follows immediately from the following properties

1. If L has length 0 and $L=\varnothing$ then $\bar{L}^{0}=\{\epsilon\}$.
2. If L has length 0 and $L=\{\varepsilon\}$ then $\bar{L}^{0}=\emptyset$.
3. If L has length $n \geq 1$, then $\left(\bar{L}^{n}\right)^{a}={\overline{L^{a}}}^{n-1}$.

Implementing fixed-length complement

$\operatorname{comp}(n, q)$
Input: length n, state q of length n
Output: state recognizing $\overline{L(q)}^{n}$
1 if $G(n, q)$ is not empty then return $G(n, q)$
2 if $n=0$ and $q=q_{\emptyset}$ then return q_{ϵ}
3 else if $n=0$ and $q=q_{\epsilon}$ then return q_{\emptyset}
4 else $/ * n \geq 1 * /$
5 for all $i=1, \ldots, m$ do $r_{i} \leftarrow \operatorname{comp}\left(n-1, q^{a_{i}}\right)$
$6 \quad G(n, q) \leftarrow \operatorname{make}\left(r_{1}, \ldots, r_{m}\right)$
7 return $G(n, q)$

Implementing fixed-length complement

Implementing fixed-length complement

Implementing fixed-length universality

- A language L of length n is fixed-length universal if $L=\Sigma^{n}$.
- The algorithm for universality follows immediately from the following properties
(1) If $L=\varnothing$ then L is not universal.
(2) If $L=\{\varepsilon\}$ then L is universal.
(3) If $\varnothing \neq L \neq\{\varepsilon\}$ then L is universal iff L^{a} is universal for every $a \in \Sigma$.

Implementing fixed-length universality

$u n i v(q)$
Input: state q
Output: true if $L(q)$ is fixed-length universal,
false otherwise
1 if $G(q)$ is not empty then return $G(q)$
2 if $q=q_{0}$ then return false
3 else if $q=q_{\epsilon}$ then return true
4 else $/ * q \neq q_{\emptyset}$ and $q \neq q_{\epsilon} * /$
$5 \quad G(q) \leftarrow \operatorname{and}\left(\operatorname{univ}\left(q^{a_{1}}\right), \ldots, \operatorname{univ}\left(q^{a_{m}}\right)\right)$
6 return $G(q)$

Implementing fixed-length equality

- If two languages L_{1}, L_{2} of the same length are represented by nodes q_{1}, q_{2} of the same table then we have $L_{1}=L_{2}$ iff $q_{1}=q_{2}$, and so equality can be checked in constant time.
- If the languages are represented by nodes from different tables, then equality amounts to isomorphism of the DFAs rooted at the nodes.

```
eq2(q1, q2)
Input: states }\mp@subsup{q}{1}{},\mp@subsup{q}{2}{}\mathrm{ of different tables
Output: true if L(\mp@subsup{q}{1}{})=L(\mp@subsup{q}{2}{}), false otherwise
    1 if G(\mp@subsup{q}{1}{},\mp@subsup{q}{2}{})\mathrm{ is not empty then return G( }\mp@subsup{q}{1}{},\mp@subsup{q}{2}{})
    2 if q}\mp@subsup{q}{1}{}=\mp@subsup{q}{01}{}\mathrm{ and }\mp@subsup{q}{2}{}=\mp@subsup{q}{02}{}\mathrm{ then }G(\mp@subsup{q}{1}{},\mp@subsup{q}{2}{})\leftarrow\mathrm{ true
    3 else if q}\mp@subsup{q}{1}{}=\mp@subsup{q}{01}{}\mathrm{ and }\mp@subsup{q}{2}{}\not=\mp@subsup{q}{02}{}\mathrm{ then }G(\mp@subsup{q}{1}{},\mp@subsup{q}{2}{})\leftarrow\mathrm{ false
    4 else if q}\mp@subsup{q}{1}{}\not=\mp@subsup{q}{01}{}\mathrm{ and }\mp@subsup{q}{2}{}=\mp@subsup{q}{02}{}\mathrm{ then }G(\mp@subsup{q}{1}{},\mp@subsup{q}{2}{})\leftarrow\mathrm{ false
    5 else / * q}\mp@subsup{q}{1}{}\not=\mp@subsup{q}{01}{}\mathrm{ and q}\mp@subsup{q}{2}{*}\mp@subsup{|}{02}{*}
        G(q1, q2)\leftarrow\operatorname{and}(\textrm{eq}(\mp@subsup{q}{1}{\mp@subsup{a}{1}{}},\mp@subsup{q}{2}{\mp@subsup{a}{1}{}}),\ldots,\textrm{eq}(\mp@subsup{q}{1}{\mp@subsup{a}{m}{}},\mp@subsup{q}{2}{\mp@subsup{a}{m}{}}))
        return G(q, q},\mp@subsup{q}{2}{}
```


NFAs as starting point

- Given: Acyclic NFA A accepting a fixed-length language. Goal: Simultaneously determinize and minimize A
- Each state of A accepts a fixed-length language.
- We give an algorithm state(S):
- Input: a subset S of states of A accepting languages of the same length.
- Output: the state of the master automaton accepting

$$
\cup_{q \in S} L(q) .
$$

- Goal is achieved by calling state $\left(Q_{0}\right)$

NFAs as starting point

- The algorithm follows from the following observations:

1) If $S=\varnothing$ then $L(S)=\varnothing$.
2) If $S \cap F \neq \emptyset$ then $L(S)=\{\epsilon\}$.
3) If $S \neq \varnothing$ and $S \cap F \neq \varnothing$ then $L(S)=\bigcup_{i=1}^{n} a_{i} \cdot L\left(S_{i}\right)$, where $L\left(S_{i}\right)=\delta\left(S, a_{i}\right)$.

- This leads directly to a recursive algorithm:

NFAs as starting point

```
det&min(A)
Input: NFA A = (Q, \Sigma, \delta, Q , F)
Output: master state recognizing L(A)
    1 return state( ( }\mp@subsup{Q}{0}{}
state(S)
```

Input: set $S \subseteq Q$ recognizing languages of the same length
Output: state recognizing $L(S)$
1 if $G(S)$ is not empty then return $G(S)$
2 else if $S=\emptyset$ then return q_{\emptyset}
$3 \quad$ else if $S \cap F \neq \emptyset$ then return q_{ϵ}
$4 \quad$ else $/ * S \neq \emptyset$ and $S \cap F=\emptyset * /$
$5 \quad$ for all $i=1, \ldots, m$ do $S_{i} \leftarrow \delta\left(S, a_{i}\right)$
$6 \quad G(S) \leftarrow \operatorname{make}\left(\operatorname{state}\left(S_{1}\right), \ldots, \operatorname{state}\left(S_{m}\right)\right.$);
7 return $G(S)$

NFAs as starting point

Implementing operations on relations

- Assumptions:
- Objects are encoded as words of Σ^{n} (one word for each object)
- Pairs of objects are encoded as words of $(\Sigma \times \Sigma)^{n}$. Recall: $\Sigma^{n} \times \Sigma^{n}$ and $(\Sigma \times \Sigma)^{n}$ are isomorphic.
- Observe: objects and pairs of objects are both encoded as words of length n, but over different alphabets.
- Notation: Given $R \subseteq \Sigma^{n} \times \Sigma^{n}$, we denote

$$
R^{[a, b]}=\left\{\left(w_{1}, w_{2}\right) \in \Sigma^{n-1} \times \Sigma^{n-1} \mid\left(a w_{1}, b w_{2}\right) \in R\right\} .
$$

- M aster transducer: M aster automaton over the alphabet $\Sigma \times \Sigma$.

Implementing fixed-length join

- The algorithm follows from:

1) $\emptyset \circ R=R \circ \emptyset=\emptyset$
2) $\{[\epsilon, \epsilon]\} \circ\{[\epsilon, \epsilon]\}=\{[\epsilon, \epsilon]\}$
3) If R_{1}, R_{2} have length at least 1 , then

$$
R_{1} \circ R_{2}=\bigcup_{a, b, c \in \Sigma}[a, b] \cdot\left(R_{1}^{[a, c]} \circ R_{2}^{[c, b]}\right)
$$

Implementing fixed-length join

$\operatorname{join}\left(r_{1}, r_{2}\right)$
Input: states r_{1}, r_{2} of transducer table
Output: state recognizing $L\left(r_{1}\right) \circ L\left(r_{2}\right)$
if $G\left(r_{1}, r_{2}\right)$ is not empty then return $G\left(r_{1}, r_{2}\right)$
2 if $r_{1}=q_{\emptyset}$ or $r_{2}=q_{\emptyset}$ then return q_{\emptyset}
3 else if $r_{1}=q_{\epsilon}$ and $r_{2}=q_{\epsilon}$ then return q_{ϵ}
$4 \quad$ else $/ * q_{\emptyset} \neq r_{1} \neq q_{\epsilon}$ and $q_{\emptyset} \neq r_{2} \neq q_{\epsilon} * /$
5 for all $\left(a_{i}, a_{j}\right) \in \Sigma \times \Sigma$ do
$G\left(r_{1}, r_{2}\right)=\operatorname{make}\left(r_{1,1}, \ldots, \ldots, r_{m, m}\right)$
8 return $G\left(r_{1}, r_{2}\right)$

Implementing fixed-length pre and post

- The algorithm for pere (post is analogous) follows from:

1) If $R=\emptyset$ or $L=\varnothing$ then $p r e_{R(L)}=\varnothing$
2) If $R=\{[\epsilon, \epsilon]\}$ and $L=\{\epsilon\}$ then $\operatorname{pre}_{R(L)}=\{\epsilon\}$
3) If $\emptyset \neq R \neq\{[\epsilon, \epsilon]\}$ and $\emptyset \neq L \neq\{\epsilon\}$ then

$$
\operatorname{pre}_{R}(L)=\bigcup_{a, b \in \Sigma} a \cdot p r e_{R^{[a, b]}}\left(L^{b}\right)
$$

Proof of 3):

$$
\begin{array}{ll}
& a w_{1} \in \operatorname{pre}_{R}(L) \\
\Leftrightarrow & \exists b w_{2} \in L:\left[a w_{1}, b w_{2}\right] \in R \\
\Leftrightarrow & \exists b \in \Sigma \exists w_{2} \in L^{b}:\left[w_{1}, w_{2}\right] \in R^{[a, b]} \\
\Leftrightarrow & \exists b \in \Sigma: w_{1} \in \operatorname{pre}_{R^{[a, b]}}\left(L^{b}\right) \\
\Leftrightarrow & a w_{1} \in \bigcup_{b \in \Sigma} a \cdot \operatorname{pre}_{R^{[a, b]}}\left(L^{b}\right)
\end{array}
$$

Implementing fixed-length pre and post

pre (r, q)

Input: state r of transducer table, state q of automaton table
Output: state recognizing $\operatorname{pre}_{L(r)}(L(q))$
1 if $G(r, q)$ is not empty then return $G(r, q)$
2 if $r=r_{\emptyset}$ or $q=q_{\emptyset}$ then return q_{\emptyset}
3 else if $r=r_{\epsilon}$ and $q=q_{\epsilon}$ then return q_{ϵ}
4 else
5 for all $a_{i} \in \Sigma$ do
6
7
8 return $G(q, r)$

Implementing projection

- We reduce projection to pre.
- The projection of a language $R \subseteq \Sigma^{n} \times \Sigma^{n}$ onto the first component is the language $\operatorname{pre}_{R}\left(\Sigma^{n}\right)$.
- Specializing the algorithm for pre we obtain:

```
pro
Input: state r of transducer table
Output: state recognizing }\mp@subsup{\operatorname{proj}}{1}{}(L(r)
    1 if G(r) is not empty then return G(r)
    2 if r= r then return q}\mp@subsup{q}{0}{
    3 else if r= r\epsilon}\mathrm{ then return }\mp@subsup{q}{\epsilon}{
    4 else
    for all }\mp@subsup{a}{i}{}\in\Sigma\mathrm{ do
    6 qui
    7 G(r)\leftarrow\operatorname{make}(\mp@subsup{q}{1}{\prime},\ldots,\mp@subsup{q}{m}{\prime})
    r return G(r)
```


Decision Diagrams (DDs)

Decision Diagrams (DDs)

- A decision diagram is an automaton
- whose transitions are labeled by regular expressions of the form $a \Sigma^{n}, n \geq 0$, and
- satisfies the following determinacy condition for every state q and letter a : there is exactly one $k \geq 0$ such that $\delta\left(q, a \Sigma^{k}\right) \neq \emptyset$, and for this k there is a state q^{\prime} such that $\delta\left(q, a \Sigma^{k}\right)=\left\{q^{\prime}\right\}$.
- Observe: Every DFA is a DD.
- A fixed-length language L is a kernel if $L=\emptyset, L=\{\epsilon\}$, or there are $a, b \in \Sigma$ such that $L^{a} \neq L^{b}$.
- The kernel $\langle L\rangle$ of a fixed-length language L is the unique kernel satisfying $L=\Sigma^{k}\langle L\rangle$ for some $k \geq 0$. Observe: k and $\langle L\rangle$ uniquely determine L for every $L \neq \emptyset$.

The fixed-length master decision diagram

- All kernels as states, $\{\epsilon\}$ as final state, transitions ($K, a \Sigma^{k},\left\langle K^{a}\right\rangle$)

Reduction rule

- Proposition: The unique minimal DD for a kernel is the fragment of the fixed-length master DD rooted at the kernel (modulo labels of transitions leaving the states \varnothing and $\{\epsilon\}$).
- Proposition: The minimal DD for a kernel is obtained from its minimal DFA by exhaustively applying the following „reduction rule":

Data structure for kernels

- The structure representing the set of kernels $\mathcal{L}=\left\{L_{1}, \ldots, L_{m}\right\}$ is the fragment of the master DD containing states L_{1}, \ldots, L_{m} and their descendants.
- It is a multi-DD , i.e., a DD with multiple initial states.

Data structure for kernels

- We represent multi-DDs as tables of kernodes.
- A kernode is a triple $\langle q, l, s\rangle$ where
$-q$ is a state identifier,
$-l$ is a length, and
$-s=\left(q_{1}, \ldots, q_{m}\right)$ is a successor tuple.
- The table for a multi-DD contains a node for each state but the states for \emptyset and ϵ.

Ident.	Length	a-succ	b-succ
2	1	1	0
4	1	0	1
6	2	2	1

Implementing intersection

- Given kernels K_{1}, K_{2} of languages L_{1}, L_{2}, we wish to compute $K_{1} \sqcap K_{2}=\left\langle L_{1} \cap L_{2}\right\rangle$.
- We have

1. If $K_{1}=\emptyset$ or $K_{2}=\varnothing$ then $K_{1} \sqcap K_{2}=\emptyset$.
2. If $K_{1} \neq \emptyset \neq K_{2}$ then

$$
K_{1} \sqcap K_{2}=\left\{\begin{array}{cc}
\left\langle\Sigma^{l_{2}-l_{1}} K_{1} \cap K_{2}\right\rangle & \text { if } l_{1}<l_{2} \\
\left\langle K_{1} \cap \Sigma^{l_{1}-l_{2}} K_{2}\right\rangle & \text { if } l_{2}<l_{1} \\
\left\langle K_{1} \cap K_{2}\right\rangle & \text { if } l_{1}=l_{2}
\end{array}\right.
$$

3. If $l_{1}<l_{2}$ then $\left\langle\left(\Sigma^{l_{2}-l_{1}} K_{1} \cap K_{2}\right)^{a}\right\rangle=K_{1} \sqcap\left\langle K_{2}^{a}\right\rangle$
4. If $l_{2}<l_{1}$ then $\left\langle\left(\mathrm{K}_{1} \cap \Sigma^{l_{1}-l_{2}} K_{2}\right)^{a}\right\rangle=\left\langle K_{1}^{a}\right\rangle \sqcap K_{2}$
5. If $l_{1}=l_{2}$ then $\left\langle\left(K_{1} \cap K_{2}\right)^{a}\right\rangle=\left\langle K_{1}^{a}\right\rangle \square\left\langle K_{2}^{a}\right\rangle$

- 3.-5. lead to a recursive algorithm

Implementing intersection

```
kinter(q},\mp@subsup{q}{1}{},\mp@subsup{q}{2}{}
Input: states }\mp@subsup{q}{1}{},\mp@subsup{q}{2}{}\mathrm{ recognizing }\langle\mp@subsup{L}{1}{}\rangle,\langle\mp@subsup{L}{2}{}
Output: state recognizing }\langle\mp@subsup{L}{1}{}\cap\mp@subsup{L}{2}{}
    if G(\mp@subsup{q}{1}{},\mp@subsup{q}{2}{})\mathrm{ is not empty then return G(q},\mp@subsup{q}{2}{})
    if }\mp@subsup{q}{1}{}=\mp@subsup{q}{0}{}\mathrm{ or }\mp@subsup{q}{2}{}=\mp@subsup{q}{0}{}\mathrm{ then return }\mp@subsup{q}{0}{
    if }\mp@subsup{q}{1}{}\not=\mp@subsup{q}{0}{}\mathrm{ and }\mp@subsup{q}{2}{}\not=\mp@subsup{q}{0}{}\mathrm{ then
    if l1< l2 /* lengths of the kernodes for }\mp@subsup{q}{1}{},\mp@subsup{q}{2}{*}/\mathrm{ then
            for all i=1,\ldots,m do }\mp@subsup{r}{i}{}\leftarrow\operatorname{kinter}(\mp@subsup{q}{1}{},\mp@subsup{q}{2}{\mp@subsup{a}{i}{}}
            G(q1, q2)}\leftarrow\operatorname{kmake}(\mp@subsup{l}{2}{},\mp@subsup{r}{1}{},\ldots,\mp@subsup{r}{m}{}
    else if }\mp@subsup{l}{1}{}\quad\mp@subsup{l}{2}{}\mathrm{ then
        for all i=1,\ldots,m do r}\mp@subsup{r}{i}{}\leftarrow\operatorname{kinter}(\mp@subsup{q}{1}{\mp@subsup{a}{i}{}},\mp@subsup{q}{2}{}
        G(q1, q2)}\leftarrow\operatorname{kmake( }\mp@subsup{l}{1}{},\mp@subsup{r}{1}{},\ldots,\mp@subsup{r}{m}{}
        else /* l}\mp@subsup{l}{1}{}=\mp@subsup{l}{2}{*}*
            for all }i=1,\ldots,m\mathrm{ do }\mp@subsup{r}{i}{}\leftarrow\operatorname{kinter}(\mp@subsup{q}{1}{\mp@subsup{a}{i}{}},\mp@subsup{q}{2}{\mp@subsup{a}{i}{}}
            G(q1, q2)\leftarrow\operatorname{kmake}(\mp@subsup{l}{1}{},\mp@subsup{r}{1}{},\ldots,\mp@subsup{r}{m}{})
        return G(q1, q2)
```


Implementing intersection

Implementing intersection

