
Logic



Logics on words

• Regular expressions give operational descriptions 
of regular languages.

• Often the natural description of a language is 
declarative:
 even number of 풂's and even number of 풃's vs.
푎푎 + 푏푏 + 푎푏 + 푏푎 푎푎 + 푏푏 ∗ 푏푎 + 푎푏 ∗

 words not containing ‘hello’ 
• Goal: find a declarative language  able to express 

all the regular languages, and only the regular 
languages.



Logics on words

• Idea: use a logic that has an interpretation on words
• A formula expresses a property that each word may 

satisfy or not, like
– the word contains only 풂's
– the word has even length
– between every occurrence of an  풂 and a  풃 there 

is an occurrence of a  풄
• Every formula (indirectly) defines a language: the 

language of all the words over the given fixed 
alphabet that satisfy it. 



First-order logic on words

• Atomic formulas: for each letter 푎 we 
introduce the formula 푄 (푥), with intuitive 
meaning: the letter at position 풙 is an 풂.



First-order logic on words: Syntax

• Formulas constructed out of atomic formulas 
by means of standard “logic machinery”:
– Alphabet Σ = {푎, 푏, … } and position variables       
푉 = {푥,푦, … }

– 푄 푥 is a formula for every 푎 ∈ Σ and 푥 ∈ 푉.
– 푥 < 푦 is a formula for every 푥, 푦 ∈ 푉
– If 휑,휑 ,휑 are formulas then so are ¬휑 and
휑 ∨ 휑

– If 휑 is a formula then so is ∃푥 휑 for every 푥 ∈ 푉



Abbreviations

• 휑 ∧ 휑 ≔ ¬ ¬ 휑 ∨ ¬휑

• 휑 → 휑  ≔ ¬휑 ∨ 휑

• 휑 ↔ 휑  ≔ 휑 ∧ 휑 ∨ ¬휑 ∧ ¬휑

• ∀푥 휑 ≔ ¬ ∃푥 ¬휑



Abbreviations

• first 푥 ≔ ¬∃푦  푦 < 푥 last 푥 ≔ ¬∃푦  푥 < 푦

• 푦 = 푥 + 1 ≔ 푥 < 푦 ∧ ¬∃푧 (푥 < 푧 ∧ 푧 < 푦)

• 푦 = 푥 + 2 ≔ ∃푧 푧 = 푥 + 1 ∧ 푦 = 푧 + 1
…

• 푦 = 푥 + 푘 ≔ ∃푧 (푧 = 푥 + 1 ∧ 푦 = 푧 + (푘 − 1))

• 푥 < 푘 ≔ ∀푦∀푧 (first 푦 ∧ 푧 = 푦 + 푘) → 푥 < 푧) 

• last < 푘 ≔ ∀푥 (last 푥 → 푥 < 푘)



Examples (without semantics yet)
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First-order logic on words: Semantics

• Formulas are interpreted on pairs (푤,풥) called 
interpretations, where

– 푤 is a word, and

– 풥 assigns positions to the free variables of the 
formula (and maybe to others too—who cares)

• It does not make sense to say a formula is true or false: 
it can only be true or false for a given interpretation.

• If the formula has no free variables (if it is a sentence), 
then for each word it is either true or false.



• More logic jargon:
 A formula is valid if it is true for all its 

interpretations
 A formula is satisfiable if is is true for at least 

one of its interpretations 

• Satisfaction relation:



The empty word ...

• … satisfies all universally quantified formulas, 
and no existentially quantified formula.



Can FOL express non-regular languages?
Can FOL express all regular languages?

• The language 퐿 휑 of a sentence 휑 is the set of 
words that satisfy 휑.

• A language 퐿 is expressible in first-order logic or  FO-
definable if some sentence 휑 satisfies 퐿 휑 = 퐿.

• Proposition: a language over a one-letter alphabet is 
expressible in first-order logic iff it is finite or co-
finite (its complement is finite).

• Consequence: we can only express regular 
languages, but not all, not even the language of 
words of even length.



Proof sketch

1. If 퐿 is finite, then it is FO-definable

2. If 퐿 is co-finite, then it is FO-definable.



Proof sketch

3. If 퐿 is FO-definable (over a one-letter 
alphabet), then it is finite or co-finite.

1) We define a new logic QF (quantifier-free 
fragment)

2) We show that a language is QF-definable iff it is 
finite or co-finite

3) We show that a language is QF-definable iff it is
FO-definable.



1) The logic QF

• 푥 < 푘 푥 > 푘
푥 < 푦 + 푘 푥 > 푦 + 푘
푘 < last 푘 > last
are formulas for every variable 푥, 푦 and every 
푘 ≥ 0 .

• If 푓 ,푓 are formulas, then so are 푓 ∨ 푓 and 
푓 ∧ 푓



2) 퐿 is QF-definable iff it is finite or co-finite

(→) Let f be a sentence of QF.
Then f is a positive boolean combination of formulas 
푘 < last and 푘 > last.

퐿(푘 < last) = {푘 + 1, 푘 + 2, … } is co-finite (we identify 
words and numbers)
퐿(푘 > last) = {0,1, … , 푘} is finite
퐿 푓 ∨ 푓 = 퐿 푓  ∪ 퐿 푓 and so if 퐿(푓 ) and 퐿 푓
finite or co-finite then 퐿 is finite or co-finite.
퐿 푓 ∧ 푓 = 퐿 푓  ∩ 퐿 푓 and so if 퐿(푓 ) and 퐿 푓
finite or co-finite then 퐿 is finite or co-finite.



2) 퐿 is QF-definable iff it is finite or co-finite

(←) If  퐿 =  {푘 , … , 푘 } is finite, then
푘 − 1 < last ∧  last < 푘 + 1 ∨ ⋯∨

(푘 − 1 < last ∧  last < 푘 + 1)              

expresses 퐿.

If 퐿 is co-finite, then its complement is finite, and so expressed by 
some formula. We show that for every  푓 some formula  neg(푓)
expresses  퐿(푓)

• neg 푘 < last = 푘 − 1 < last ∧  last < 푘 + 1 ∨  last < 푘

• neg 푓 ∨ 푓 = neg 푓 ∧ neg 푓

• neg(푓 ∧ 푓 ) = neg(푓 ) ∨ neg(푓 )



3) Every first-order formula 휑 has an equivalent 
QF-formula 푄퐹(휑)

• 푄퐹 푥 < 푦 = 푥 < 푦 + 0

• 푄퐹 ¬휑 = neg 푄퐹 휑
• 푄퐹 휑 ∨ 휑 = 푄퐹 휑 ∨ 푄퐹 휑  
• 푄퐹 휑 ∧ 휑 = 푄퐹 휑 ∧ 푄퐹 휑  
• 푄퐹 ∃푥 휑 =

– Put 푄퐹 휑 in  disjunctive normal form. Assume 푄퐹 휑 = (휑 ∨ ... ∨
휑 ), where each 휑 is a conjunction of atomic formulas.

– Since ∃x (휑 ∨ ... ∨ 휑 ) ≡ ∃x 휑 ∨  ... ∨ ∃x 휑 , it suffices to define
푄퐹 ∃푥 휑 for the case in which 휑 is a conjunction of atomic
formulas of QF

– For this case, see example in the next slide.



• Consider the formula
∃푥     푥 < 푦 + 3     ∧

푧 < 푥 + 4     ∧
푧 < 푦 + 2     ∧
푦 < 푥 + 1 

• The equivalent QF-formula is
푧 < 푦 + 8  ∧   푦 < 푦 + 5  ∧   푧 < 푦 + 2



Monadic second-order logic

• First-order variables: interpreted on positions
• Monadic second-order variables: interpreted 

on sets of positions.
– Diadic second-order variables: interpreted on 

relations over positions
– Monadic third-order variables: interpreted on sets 

of sets of positions
– New atomic formulas:  푥 ∈ 푋



Expressing „even length“

• Express 
There is a set 푿of positions such that
– 푿 contains exactly the even positions, and
– the last position belongs to 푿.

• Express 
푿 contains exactly the even positions 

as 
A position is in 푿 iff it is the second position or 
the second successor of another position of 푿



Syntax and semantics of MSO

• New set 푋,푌,푍, … of second-order variables
• New syntax:  푥 ∈ 푋 and ∃푋 휑
• New semantics:

– Interpretations now also assign sets of positions to 
the free second-order variables.

– Satisfaction defined as expected.



Expressing „even length“

• second 푥 = ∃푦 (first 푦 ∧ 푥 = 푦 + 1)

• Even 푋 = ∀푦 푥 ∈ 푋 ↔ second 푥
∨ ∃푦 푥 = 푦 + 2 ∧ 푦 ∈ 푋

• Evenlength = ∃푋 Even 푋 ∧
∀푥 last 푥 → 푥 ∈ 푋



Expressing 푐∗ 푎푏 ∗푑∗

• Express: 
There is a block 푿 of consecutive positions such that 

– before 푿 there are only 풄‘s; 
– after 푿 there are only 풅‘s; 

– 풂‘s and 풃‘s alternate in 푿; 

– the first letter in 푿 is an 풂, and the last is a 풃.

• Then we can take the formula
∃푋 (퐶표푛푠 푋  ∧ 퐵표푐 푋 ∧ 퐴표푑 푋 ∧ 퐴푙푡 푋
∧ 퐹푎 푋 ∧ 퐿푏 푋  )



• 푿 is a block of consecutive positions

• Before 푿 there are only 풄‘s

• In 푿 풂‘s and 풃‘s alternate



• 푿 is a block of consecutive positions

• Before 푿 there are only 풄‘s
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• 푿 is a block of consecutive positions

• Before 푿 there are only 풄‘s

• In 푿 풂‘s and 풃‘s alternate



• 푿 is a block of consecutive positions

• Before 푿 there are only 풄‘s

• In 푿 풂‘s and 풃‘s alternate



Every regular language is expressible in 
MSO logic

• Goal: given an arbitrary regular language 퐿, 
construct an MSO sentence 휑 s.t. 퐿 = 퐿(휑).

• It suffices to construct 휑 s.t. 푤 ∈ 퐿 iff
푤 ∈ 퐿 휑 for every nonempty word 푤. 
(Avoid the corner-case of the empty word.)

• We use: if 퐿 is regular, then there is a DFA 퐴
recognizing 퐿. 

• Idea: construct a formula expressing 
the run of 푨 on this word is accepting



• Fix a regular language 퐿. 
• Fix a DFA 퐴 with states 푞 , … , 푞 recognizing 퐿.
• Fix a nonempty word 푤 = 푎 푎 … 푎 . 
• Let 푅(푞) be the set of positions 푖 such that after 

reading 푎 푎 …푎 the automaton 퐴 is in state 푞.
• We have: 

퐴 accepts 푤 iff 푚 ∈ 푃 for some final state 푞.





• Assume we can construct a formula 
Visits(푋 , … ,푋 )

which  is true for 푤, 퓘  iff
 퓘 푋 = 푅(푞 ), … , 퓘 푋 = 푅 푞

• Then (푤, 퓘) satisfies the formula

iff the state after the last position is accepting, 
and we easily get a formula expressing 퐿 .



• To construct Visits(푋 , … ,푋 ) we observe that 
the sets 푅(푞) are the unique sets satisfying
a) 1 ∈ 푅(훿 푞 ,푎 ) i.e., after reading the first letter 

the DFA is in state 훿 푞 ,푎 .
b) The sets 푅(푞) build a partition of the set of 

positions, i.e., the DFA is always in exactly one 
state.

c) If 푖 ∈ 푅(푞) and 훿 푞, 푎 = 푞′ then 푖 + 1 ∈ 푅(푞 ),
i.e., the sets „match“ 훿.

• We give formulas for a) , b), and c)





• Formula for c)

• Together:



Every language expressible in MSO logic is 
regular

• Recall: an interpretation of a formula is a pair 
(푤, 퓘) consisting of a word 푤 and 
assignments 퓘 to the free first and second 
order variables (and perhaps to others).



• We encode interpretations as words.



• Given a formula with 푛 free variables, we 
encode an interpretation (푤, 퓘) as a word 
푒푛푐(푤, 퓘) over the alphabet Σ × 0,1 .

• The language of the formula 휑 , denoted by 
퐿(휑), is given by 

퐿 휑 :={푒푛푐 푤, 퓘 | 푤, 퓘 ⊨ 휑}

• We prove by induction on the structure of 휑
that 퐿 휑 is regular (and explicitely construct 
an automaton for it).



Case  휑 = 푄 (푥)



Case  휑 = 푥 < 푦



Case  휑 = 푥 ∈ 푋



• Then free 휑 = free(휓) . By i.h. 퐿 휓 is regular.
• 퐿 휑 is equal to 퐿 휓 minus the words that do not encode any 

implementation („the garbage“).
• Equivalently, 퐿 휑 is equal to the intersection of 퐿 휓 and the 

encodings of all interpretations of 휓.
• We show that the set of these encodings is regular.

– Condition for encoding: Let 푥 be a free first-oder variable of 
휓 . The projection of an encoding onto 푥 must belong to 
0∗10∗ (because it represents one position). 

– So we just need an automaton for the words satisfying this 
condition for every free first-order variable.

Case  휑 = ¬휓



Example: free 휑 = {푥,푦}



• Then free 휑 = free 휑 ∪ free 휑 . By i.h. 퐿 휑
and 퐿 휑  are regular.

• If free 휑 = free 휑 then 퐿 휑 = 퐿 휑 ∪ 퐿(휑 )
and so 퐿 휑 is regular.

• If free 휑 ≠ free 휑 then we extend 퐿 휑 to 퐿
encoding all interpretations of free 휑 ∪ free 휑
whose projection onto free 휑 belongs to 퐿 휑 . 
Similarly we extend 퐿 휑 to 퐿 . We have

 퐿 and 퐿 are regular.

 퐿 휑 = 퐿 ∪ 퐿 .

Case  휑 = 휑 ∨ 휑



Example: 휑 = 푄 푥 ∨ 푄 (푦)

• 퐿 contains the encodings of all 
interpretations (푤, 푥 ⟼ 푛 , 푦 ⟼ 푛 ) such 
that the encoding of (푤, 푥 ⟼ 푛 ) belongs 
to 퐿 푄 푥 .

• Automata for 퐿 푄 푥 and 퐿 :



• Then free(휑)= free 휓   ⃥ {푥} or 
free(휑)= free 휓   ⃥ {푋}

• By i.h. 퐿(휓) is regular. 
• 퐿 휑 is the result of projecting 퐿(휓) onto the 

components for free 휓   ⃥ {푥} or for 
free 휓   ⃥ 푋 .

Cases  휑 = ∃푥 휓 and 휑 = ∃푋 휓



• Automata for  푄 푥 and   ∃푥 푄 푥

Example: 휑 = 푄 푥



The mega-example

• We compute an automaton for
∃푥 last 푥 ∧ 푄 푥 ∧ ∀푥 ¬last 푥 → 푄 푥

• First we rewrite it into
∃푥 last 푥 ∧ 푄 푥 ∧ ¬∃푥 ¬last 푥 ∧ ¬푄 푥

• In the next slides we 
1. compute a DFA for last 푥
2. compute DFAs for ∃푥 (last 푥 ∧ 푄 푥 ) and 

¬∃푥 (¬last 푥 ∧ ¬푄 푥 )
3. compute a DFA for the complete formula.

• We denote the DFA for a formula 휓 by [휓].



[last 푥 ]



[last 푥 ]



[last 푥 ]



[last 푥 ]

[∃푦 푥 < 푦]



[∃푥 last 푥 ∧ 푄 푥 ]



[푄 푥 ]

[¬푄 푥 ]



[¬∃푥 ¬last 푥 ∧ ¬푄 푥 ]



[∃푥 last 푥 ∧ 푄 푥 ∧ ¬∃푥 ¬last 푥 ∧ ¬푄 푥 ]


