
Presburger Arithmetic

• Which arithmetical problems can be solved
using automata?

• Presburger arithmetic (PA): a logical language to
define arithmetical properties of (tuples of)
natural numbers

3푥 − 4푦 = 5
−푥 + 푦 = 3

Is there an integer solution?

2푥 + 3푦 ≥ 5
−푥 + 4푦 ≤ 3

Is there an integer solution?

Are there integers 푥, 푦 such that

3푥 − 4푦 = 5
−푥 + 푦 = 3

but not

2푥 + 3푦 ≥ 2
−푥 + 4푦 ≤ 4 ?

For every integer solution 푥, 푦 of

2푥 + 3푦 ≥ 5

−푥 + 4푦 ≤ 3

is there is an integer solution 푧, 푢 of

3푧 − 2푢 ≥ 3

−푧 + 4푢 ≤ −2

such that 푥 + 푧 = 푦 + 푢 ?

Syntax of PA

• Symbols:
Variables x, y, z ...
Constants 0, 1
Arithmetical symbols +, ≤
Logical symbols ∨, ¬, ∃ (∧, ∀, →,…)
Parenthesis (,)

• Terms:
Variables, 0 and 1 are terms.
If 푡 and 푢 are terms, then 푡 + 푢 is a term.

Syntax of PA

• Atomic formulas:
푡 ≤ 푢 , where 푡 and 푢 are terms

• Formulas:
Atomic formulas are formulas.
If 휑 , 휑 are formulas, then so are 휑 ∨휑 , ¬휑 , ∃푥휑

• Free and bound variables:
A variable is bound if it is in the scope of an existential
quantifier, otherwise it is free.

• Sentences: formulas without free variables.

Abbreviations

• Logical abbrevations:
휑 ∧ 휑 ≡ ¬(¬휑 ∨¬휑)
휑 → 휑 ≡ ¬휑 ∨휑
휑 ↔ 휑 ≡ ¬(휑 ∨휑) ∨ ¬(¬휑 ∨ ¬ 휑)
∀푥 휑 ≡ ¬ ∃푥 ¬ 휑

• Arithmetic abbreviations:

Semantics (intuition)

• The semantics of a sentence is true or false.
• The semantics of a formula with free variables

푥 , … , 푥 is the set containing all tuples
(푛 , … , 푛) of natural numbers that ‘’satisfy the
formula’’

Semantics (more formally)

• An interpretation of a formula 휑 is a function 퓘
that assigns a natural number to every free
variable appearing in 휑 (and perhaps also to
others).

• Given an interpretation 퓘, a variable 푥, and a
number 푛, we denote by 퓘[푛/푥] the
interpretation that assigns to 푥 the number 푛,
and to all other variables the same value as 퓘.

Semantics (more formally)

• We inductively define when an interpretation 퓘
satisfies a formula 휑, denoted by 퓘 ⊨ 휑 :

Semantics (more formally)

• Lemma: If two interpretations of a formula 휑 assign the
same values to all free variables of 휑, then either both
satisfy 휑 or none satisfy 휑.

• Corollary: if 휑 is a sentence, either all interpretations
satisfy 휑, or none satisfy 휑.

• A model or solution of 휑 is the projection of an
interpretation that satisfies 휑 onto the free variables of
휑. The set of solutions or solution space is denoted by
푆표푙(휑).

Formulating questions

Are there integers 푥, 푦 such that

2푥 + 3푦 ≥ 5

−푥 + 4푦 ≤ 3 ?

∃푥∃푦 (2푥 + 3푦 ≥ 5 ∧ −푥 + 4푦 ≤ 3)

Formulating questions

For every solution 푥, 푦 of

2푥 + 3푦 ≥ 5

−푥 + 4푦 ≤ 3

is there is a solution 푧, 푢 of

3푧 − 2푢 ≥ 3

−푧 + 4푢 ≤ −2

such that 푥 + 푧 = 푦 + 푢 ?

∀ 푥 ∀ 푦

(2푥 + 3푦 ≥ 5 ∧ −푥 + 4푦 ≤ 3)
→

 (∃ 푧 ∃ 푢

(3푧 − 2푢 ≥ 3 ∧

−푧 + 4푢 ≤ −2 ∧

푥 + 푧 = 푦 + 푢))

Language of a formula

• We encode natural numbers with the 푙푠푏푓 encoding.
• If 휑 has free variables 푥 , … , 푥 , we encode a

solution of 휑 as a word over 0,1 in the usual way.
E.g, the minimal encoding of 푥 , 푥 , 푥 = (5,10,0) is

• The language of 휑, denoted by 퐿(휑), is the set of
encodings of the solutions of 휑.

An NFA for the solution space

• Given 휑, we construct an NFA 퐴 such that 퐿 퐴 = 퐿(휑)
• We can take:

퐴¬ ∶= CompNFA(퐴)

퐴(∨) ∶= UnionNFA(퐴 , 퐴)
퐴∃ ∶= Projection_푥(퐴)

where Projection_푥 projects onto all variables but 푥
• It remains to construct 퐴 for an atomic formula 휑.

DFA for atomic formulas

• Every atomic formula has the same solutions as
an equation of the form

푎 푥 + … + 푎 푥 ≤ 푏 ≔ 푎 푥 ≤ 푏
where the 푎 and 푏 are arbitrary integers
(possibly negative).

• Given 푎 푥 ≤ 푏 we construct a DFA with
integers as states and b as initial state satisfying:

Each state 푞 ∈ ℤ recognizes the
tuples c ∈ ℕ such that 푎 푐 ≤ 푞

• Given 푞 ∈ ℤ and a letter 휁 ∈ 0,1 we compute the target state
푞′ ∈ ℤ of the transition 푞, 휁, 푞 .

• For every word 푤 ∈ (0,1)∗ we have:
푤 is accepted from 푞′ iff 휁푤 is accepted from 푞

and so for every tuple 푐 ∈ ℕ :
푐 is accepted from 푞′ iff 2푐 + 휁 is accepted from 푞

• Hence we choose 푞′ so that
푎 푐 ≤ 푞 iff 푎 (2푐 + 휁) ≤ 푞

• Since 푎 (2푐 + 휁) ≤ 푞 iff 2(푎 푐) + 푎 휁 ≤ 푞 iff 푎 푐 ≤
we take

푞 =
푞 − 푎 휁

2

Transitions

Final states

• A state is final iff it accepts the empty word
• So 푞 ∈ ℤ is final iff it accepts 0, … , 0 ∈ ℕ
• So we take 푞 ∈ ℤ final iff 푎 (0, … , 0) ≤ 푞 iff 푞 ≥ 0

Example: 3푥 − 2푦 ≥ 6

Conversion: −3푥 + 2푦 ≤ −6
푎 = , 푏 = −6

Initial state: −6

Transition from state -6 with letter 1
1 :

푞 =
푞 − 푎 휁

2

푞 =
−6 − (−3,2)

2
 =

−6 + 1
2

 = −3

Example: 2푥 − 푦 ≤ 2

Example: 푥 + 푦 ≥ 4

Termination of AFtoDFA

• Lemma: Let 휑 = 푎 푐 ≤ 푏 and 푠 = ∑ |푎 |.
All states 푠 added by AFtoDFA(휑) satisfy

− 푏 − 푠 ≤ 푗 ≤ 푏 + 푠
Proof: Holds for the first state added: 푠
Assume 푠 is added to the workset when processing 푠 .
By ind. hyp.: − 푏 − 푠 ≤ 푘 ≤ 푏 + 푠.

Together with 푗 = we get

Some arithmetic yields

and together we get

Solving a system of inequations

• We compute all solutions of

2푥 − 푦 ≤ 2
푥 + 푦 ≥ 2

s.t. 푥, 푦 are multiples of 4. They are the solutions of

∃푧 푥 = 4푧 ∧ ∃푤 푦 = 4푤 ∧ (2푥 − 푦 ≤ 2) ∧ (푥 + 푦 ≥ 4)

• DFA for ∃푧 푥 = 4푧 ∧ ∃푤 푦 = 4푤

• Final result

