Presburger Arithmetic

- Which arithmetical problems can be solved using automata?
- Presburger arithmetic (PA): a logical language to define arithmetical properties of (tuples of) natural numbers

Is there an integer solution?

$$
\begin{aligned}
& 3 x-4 y=5 \\
& -x+y=3
\end{aligned}
$$

Is there an integer solution?

$$
\begin{array}{r}
2 x+3 y \geq 5 \\
-x+4 y \leq 3
\end{array}
$$

Are there integers x, y such that

$$
\begin{gathered}
3 x-4 y=5 \\
-x+y=3 \\
\text { but not }
\end{gathered}
$$

$$
\begin{array}{r}
2 x+3 y \geq 2 \\
-x+4 y \leq 4
\end{array} ?
$$

For every integer solution x, y of

$$
\begin{aligned}
2 x+3 y & \geq 5 \\
-x+4 y & \leq 3
\end{aligned}
$$

is there is an integer solution z, u of

$$
\begin{gathered}
3 z-2 u \geq 3 \\
-z+4 u \leq-2
\end{gathered}
$$

such that $x+z=y+u$?

Syntax of PA

- Symbols:

Variables
$x, y, z \ldots$
Constants
0,1
Arithmetical symbols
$+, \leq$
Logical symbols
\vee, \neg, \exists
$(\wedge, \forall, \rightarrow, \ldots)$
Parenthesis
$($,

- Terms:

Variables, 0 and 1 are terms.
If t and u are terms, then $t+u$ is a term.

Syntax of PA

- Atomic formulas:
$t \leq u$, where t and u are terms
- Formulas:

Atomic formulas are formulas.
If φ_{1}, φ_{2} are formulas, then so are $\varphi_{1} \vee \varphi_{2}, \neg \varphi_{1}, \exists x \varphi_{1}$

- Free and bound variables:

A variable is bound if it is in the scope of an existential quantifier, otherwise it is free.

- Sentences: formulas without free variables.

Abbreviations

- Logical abbrevations:

$$
\begin{aligned}
& \varphi_{1} \wedge \varphi_{2} \equiv \neg\left(\neg \varphi_{1} \vee \neg \varphi_{2}\right) \\
& \varphi_{1} \rightarrow \varphi_{2} \equiv \neg \varphi_{1} \vee \varphi_{2} \\
& \varphi_{1} \leftrightarrow \varphi_{2} \equiv \neg\left(\varphi_{1} \vee \varphi_{2}\right) \vee \neg\left(\neg \varphi_{1} \vee \neg \varphi_{2}\right) \\
& \forall x \varphi \equiv \neg \exists x \neg \varphi
\end{aligned}
$$

- Arithmetic abbreviations:

$$
\begin{aligned}
& n:=\underbrace{1+1+\ldots+1}_{n \text { times }} t \geq t^{\prime} \\
& n x:=t^{\prime} \leq t \\
& t=t^{\prime} \quad:=t \leq t^{\prime} \wedge t \geq t^{\prime} \\
& x+\ldots+x
\end{aligned} \begin{aligned}
& t<t^{\prime} \quad:=t \leq t^{\prime} \wedge \neg\left(t=t^{\prime}\right) \\
& t>t^{\prime} \quad:=t^{\prime}<t
\end{aligned}
$$

Semantics (intuition)

- The semantics of a sentence is true or false.
- The semantics of a formula with free variables $\left(x_{1}, \ldots, x_{k}\right)$ is the set containing all tuples $\left(n_{1}, \ldots, n_{k}\right)$ of natural numbers that "satisfy the formula"

Semantics (more formally)

- An interpretation of a formula φ is a function J that assigns a natural number to every free variable appearing in φ (and perhaps also to others).
- Given an interpretation \mathcal{J}, a variable x, and a number n, we denote by $\mathcal{J}[n / x]$ the interpretation that assigns to x the number n, and to all other variables the same value as \boldsymbol{J}.

Semantics（more formally）

－We inductively define when an interpretation \boldsymbol{J} satisfies a formula φ ，denoted by $\mathcal{J} \vDash \varphi$ ：
$\mathcal{J} \vDash t \leq u \quad$ iff $\quad \mathcal{J}(t) \leq \mathcal{J}(u)$
Jキ $\vDash \varphi_{1} \quad$ iff $\mathcal{J} \neq \varphi_{1}$
Jた $\varphi_{1} \vee \varphi_{2}$ iff Jた φ_{1} or J $\vDash \varphi_{2}$
$\mathcal{J} \vDash \exists x \varphi \quad$ iff \quad there exists $n \geq 0$ such that $\mathcal{J}[n / x] \vDash \varphi$

Semantics (more formally)

- Lemma: If two interpretations of a formula φ assign the same values to all free variables of φ, then either both satisfy φ or none satisfy φ.
- Corollary: if φ is a sentence, either all interpretations satisfy φ, or none satisfy φ.
- A model or solution of φ is the projection of an interpretation that satisfies φ onto the free variables of φ. The set of solutions or solution space is denoted by $\operatorname{Sol}(\varphi)$.

Formulating questions

Are there integers x, y such that

$$
\begin{aligned}
& 2 x+3 y \geq 5 \\
& -x+4 y \leq 3
\end{aligned}
$$

$$
\exists x \exists y \quad(2 x+3 y \geq 5 \wedge-x+4 y \leq 3)
$$

Formulating questions

For every solution x, y of

$$
\begin{array}{cc}
2 x+3 y \geq 5 & \forall x \forall y \\
-x+4 y \leq 3 & (2 x+3 y \geq 5 \wedge-x+4 y \leq 3)
\end{array}
$$

(ヨ $\exists \exists u$

$$
\begin{gathered}
3 z-2 u \geq 3 \\
-z+4 u \leq-2
\end{gathered}
$$

$$
\begin{aligned}
3 z-2 u & \geq 3 \\
-z+4 u & \leq-2
\end{aligned}
$$

$$
x+z=y+u \quad \text {)) }
$$

such that $x+z=y+u$?

Language of a formula

- We encode natural numbers with the $l s b f$ encoding.
- If φ has free variables x_{1}, \ldots, x_{k}, we encode a solution of φ as a word over $\{0,1\}^{k}$ in the usual way. E.g, the minimal encoding of $\left(x_{1}, x_{2}, x_{3}\right)=(5,10,0)$ is

$$
\left.\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

- The language of φ, denoted by $L(\varphi)$, is the set of encodings of the solutions of φ.

An NFA for the solution space

- Given φ, we construct an NFA A_{φ} such that $L\left(A_{\varphi}\right)=L(\varphi)$
- We can take:

$$
\begin{array}{ll}
A_{\neg \varphi} & :=\operatorname{CompNFA}\left(A_{\varphi}\right) \\
A_{\left(\varphi_{1} \vee \varphi_{2}\right)} & :=\text { UnionNFA }\left(A_{\varphi_{1}}, A_{\varphi_{2}}\right) \\
A_{\exists x \varphi} & :=\text { Projection_x }\left(A_{\varphi}\right)
\end{array}
$$

where Projection_x projects onto all variables but x

- It remains to construct A_{φ} for an atomic formula φ.

DFA for atomic formulas

- Every atomic formula has the same solutions as an equation of the form

$$
a_{1} x_{1}+\ldots+a_{n} x_{n} \leq b:=a \cdot x \leq b
$$

where the a_{i} and b are arbitrary integers (possibly negative).

- Given $a \cdot x \leq b$ we construct a DFA with integers as states and b as initial state satisfying:

Each state $q \in \mathbb{Z}$ recognizes the
tuples $\mathrm{c} \in \mathbb{N}^{n}$ such that $a \cdot c \leq q$

Transitions

- Given $q \in \mathbb{Z}$ and a letter $\zeta \in\{0,1\}^{n}$ we compute the target state $q^{\prime} \in \mathbb{Z}$ of the transition $\left(q, \zeta, q^{\prime}\right)$.
- For every word $w \in\left(\{0,1\}^{n}\right)^{*}$ we have:
w is accepted from q^{\prime} iff ζw is accepted from q and so for every tuple $c \in \mathbb{N}^{n}$:
c is accepted from q^{\prime} iff $2 c+\zeta$ is accepted from q
- Hence we choose q^{\prime} so that

$$
a \cdot c \leq q^{\prime} \text { iff } a \cdot(2 c+\zeta) \leq q
$$

- Since $a \cdot(2 c+\zeta) \leq q$ iff $2(a \cdot c)+a \cdot \zeta \leq q$ iff $a \cdot c \leq\left\lfloor\frac{q-a \cdot \zeta}{2}\right\rfloor$ we take

$$
q^{\prime}=\left\lfloor\frac{q-a \cdot \zeta}{2}\right\rfloor
$$

Final states

- A state is final iff it accepts the empty word
- So $q \in \mathbb{Z}$ is final iff it accepts $(0, \ldots, 0) \in \mathbb{N}^{n}$
- So we take $q \in \mathbb{Z}$ final iff $a \cdot(0, \ldots, 0) \leq q$ iff $q \geq 0$

AFtoDFA(φ)

Input: Atomic formula $\varphi=a \cdot x \leq b$
Output: DFA $A_{\varphi}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L\left(A_{\varphi}\right)=L(\varphi)$
$1 \quad Q, \delta, F \leftarrow \emptyset ; q_{0} \leftarrow s_{b}$
$2 W \leftarrow\left\{s_{b}\right\}$
3 while $W \neq \emptyset$ do
4 pick s_{k} from W
5 add s_{k} to Q
$6 \quad$ if $k \geq 0$ then add s_{k} to F
7 for all $\zeta \in\{0,1\}^{n}$ do
$8 \quad j \leftarrow\left\lfloor\frac{k-a \cdot \zeta}{2}\right\rfloor$
9
if $s_{j} \notin Q$ then add s_{j} to W
10 add $\left(s_{k}, \zeta, s_{j}\right)$ to δ

Example: $3 x-2 y \geq 6$

Conversion:

$$
\begin{aligned}
& -3 x+2 y \leq-6 \\
& a=\binom{-3}{2}, \quad b=-6
\end{aligned}
$$

Initial state:
Transition from state -6 with letter $\left[\begin{array}{l}1 \\ 1\end{array}\right]$:

$$
q^{\prime}=\left\lfloor\frac{q-a \cdot \zeta}{2}\right\rfloor
$$

$$
q^{\prime}=\left\lfloor\frac{-6-(-3,2) \cdot\binom{1}{1}}{2}\right\rfloor=\left\lfloor\frac{-6+1}{2}\right\rfloor=-3
$$

Example: $2 x-y \leq 2$

Example: $x+y \geq 4$

Termination of AFtoDFA

- Lemma: Let $\varphi=a \cdot c \leq b$ and $s=\sum_{i=1}^{n}\left|a_{i}\right|$. All states s_{j} added by AFtoDFA (φ) satisfy

$$
-|b|-s \leq j \leq|b|+s
$$

Proof: Holds for the first state added: s_{b}
Assume s_{j} is added to the workset when processing s_{k}. By ind. hyp.: $-|b|-s \leq k \leq|b|+s$.
Together with $j=\left\lfloor\frac{k-a \cdot \zeta}{2}\right\rfloor$ we get

$$
\left\lfloor\frac{-|b|-s-a \cdot \zeta}{2}\right\rfloor \leq j \leq\left\lfloor\frac{|b|+s-a \cdot \zeta}{2}\right\rfloor
$$

$$
\left\lfloor\frac{-|b|-s-a \cdot \zeta}{2}\right\rfloor \leq j \leq\left\lfloor\frac{|b|+s-a \cdot \zeta}{2}\right\rfloor
$$

Some arithmetic yields

$$
\left.\begin{array}{rl}
-|b|-s & \leq \frac{-|b|-2 s}{2}
\end{array} \leq\left\lfloor\frac{-|b|-s-a \cdot \zeta}{2}\right\rfloor\right]
$$

and together we get

$$
-|b|-s \leq j \leq|b|+s
$$

Solving a system of inequations

- We compute all solutions of

$$
\begin{gathered}
2 x-y \leq 2 \\
x+y \geq 2
\end{gathered}
$$

s.t. x, y are multiples of 4 . They are the solutions of

$$
(\exists z x=4 z) \wedge(\exists w y=4 w) \wedge(2 x-y \leq 2) \wedge(x+y \geq 4)
$$

- DFA for $(\exists z x=4 z) \wedge(\exists w y=4 w)$

- Final result

