Presburger Arithmetic

• Which arithmetical problems can be solved using automata?

 Presburger arithmetic (PA): a logical language to define arithmetical properties of (tuples of) natural numbers

Is there an integer solution?

3x - 4y = 5-x + y = 3

Is there an integer solution?

 $2x + 3y \geq 5$ $-x + 4y \leq 3$

Are there integers x, y such that

$$3x - 4y = 5$$
$$-x + y = 3$$

but not

 $2x + 3y \ge 2$ $-x + 4y \le 4 ?$

For every integer solution x, y of $2x + 3y \ge 5$ $-x + 4y \le 3$

is there is an integer solution z, u of

 $3z - 2u \geq 3$

 $-z + 4u \leq -2$

such that x + z = y + u?

Syntax of PA

- Symbols:
 Variables
 - Constants Arithmetical symbols Logical symbols Parenthesis

 $\begin{array}{l} X, \, y, \, z \, \dots \\ 0, \, 1 \\ +, \, \leq \\ V, \, \neg, \, \exists \qquad (\Lambda, \, \forall, \, \rightarrow, \dots) \\ (\, , \,) \end{array}$

• Terms:

Variables, 0 and 1 are terms.

If t and u are terms, then t + u is a term.

Syntax of PA

- Atomic formulas:
 - $t \leq u$, where t and u are terms
- Formulas:

Atomic formulas are formulas.

If φ_1, φ_2 are formulas, then so are $\varphi_1 \lor \varphi_2, \neg \varphi_1, \exists x \varphi_1$

• Free and bound variables:

A variable is **bound** if it is in the scope of an existential quantifier, otherwise it is **free**.

• Sentences: formulas without free variables.

Abbreviations

• Logical abbrevations:

$$\begin{split} \varphi_1 \wedge \varphi_2 &\equiv \neg (\neg \varphi_1 \vee \neg \varphi_2) \\ \varphi_1 \rightarrow \varphi_2 &\equiv \neg \varphi_1 \vee \varphi_2 \\ \varphi_1 \leftrightarrow \varphi_2 &\equiv \neg (\varphi_1 \vee \varphi_2) \vee \neg (\neg \varphi_1 \vee \neg \varphi_2) \\ \forall x \ \varphi &\equiv \neg \exists x \neg \varphi \end{split}$$

• Arithmetic abbreviations:

$$n := \underbrace{1+1+\ldots+1}_{n \text{ times}} \qquad t \ge t' \quad := \quad t' \le t$$

$$nx := \underbrace{x+x+\ldots+x}_{n \text{ times}} \qquad t < t' \quad := \quad t \le t' \land t \ge t'$$

$$n \text{ times} \qquad t < t' \quad := \quad t \le t' \land \neg(t = t')$$

Semantics (intuition)

- The semantics of a sentence is true or false.
- The semantics of a formula with free variables (x₁,..., x_k) is the set containing all tuples (n₁,..., n_k) of natural numbers that ''satisfy the formula''

Semantics (more formally)

- An interpretation of a formula φ is a function *J* that assigns a natural number to every free variable appearing in φ (and perhaps also to others).
- Given an interpretation *I*, a variable *x*, and a number *n*, we denote by *I*[*n*/*x*] the interpretation that assigns to *x* the number *n*, and to all other variables the same value as *I*.

Semantics (more formally)

• We inductively define when an interpretation \mathcal{J} satisfies a formula φ , denoted by $\mathcal{J} \models \varphi$:

 $\mathcal{I} \models t \le u \qquad \text{iff} \quad \mathcal{I}(t) \le \mathcal{I}(u)$

- $\mathfrak{I} \models \varphi_1 \lor \varphi_2 \quad \text{iff} \quad \mathfrak{I} \models \varphi_1 \text{ or } \mathfrak{I} \models \varphi_2$
- $\mathcal{I} \models \exists x \varphi$ iff there exists $n \ge 0$ such that $\mathcal{I}[n/x] \models \varphi$

Semantics (more formally)

- Lemma: If two interpretations of a formula φ assign the same values to all free variables of φ, then either both satisfy φ or none satisfy φ.
- Corollary: if φ is a sentence, either all interpretations satisfy φ , or none satisfy φ .
- A model or solution of φ is the projection of an interpretation that satisfies φ onto the free variables of φ. The set of solutions or solution space is denoted by Sol(φ).

Formulating questions

Are there integers x, y such that

 $2x + 3y \ge 5$ $-x + 4y \le 3$?

 $\exists x \exists y \ (2x + 3y \ge 5 \land -x + 4y \le 3)$

Formulating questions

For every solution x, y of

$$2x + 3y \ge 5$$
$$-x + 4y \le 3$$

is there is a solution z, u of

$$3z - 2u \geq 3$$

$$-z + 4u \leq -2$$

such that x + z = y + u?

 $\forall x \forall y$ $(2x + 3y \ge 5 \land -x + 4y \le 3)$ \rightarrow $(\exists z \exists u$ $(3z - 2u \geq 3 \wedge$ $-z + 4u \leq -2 \wedge$ x + z = y + u))

Language of a formula

- We encode natural numbers with the *lsbf* encoding.
- If φ has free variables x₁,..., x_k, we encode a solution of φ as a word over {0,1}^k in the usual way.
 E.g, the minimal encoding of (x₁, x₂, x₃) = (5,10,0) is

$$\begin{array}{ccc} x_1 & \begin{bmatrix} 1 \\ 0 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

• The language of φ , denoted by $L(\varphi)$, is the set of encodings of the solutions of φ .

An NFA for the solution space

- Given φ , we construct an NFA A_{φ} such that $L(A_{\varphi}) = L(\varphi)$
- We can take:

where *Projection_x* projects onto all variables but x

• It remains to construct A_{φ} for an atomic formula φ .

DFA for atomic formulas

• Every atomic formula has the same solutions as an equation of the form

 $a_1x_1 + \ldots + a_nx_n \leq b \coloneqq a \cdot x \leq b$

where the a_i and b are arbitrary integers (possibly negative).

Given a · x ≤ b we construct a DFA with integers as states and b as initial state satisfying:
 Each state q ∈ Z recognizes the tuples c ∈ Nⁿ such that a · c ≤ q

Transitions

- Given $q \in \mathbb{Z}$ and a letter $\zeta \in \{0,1\}^n$ we compute the target state $q' \in \mathbb{Z}$ of the transition (q, ζ, q') .
- For every word w ∈ ({0,1}ⁿ)* we have: w is accepted from q' iff ζw is accepted from q and so for every tuple c ∈ Nⁿ: c is accepted from q' iff 2c + ζ is accepted from q
- Hence we choose q' so that

 $a \cdot c \leq q' \text{ iff } a \cdot (2c + \zeta) \leq q$

• Since $a \cdot (2c + \zeta) \le q$ iff $2(a \cdot c) + a \cdot \zeta \le q$ iff $a \cdot c \le \left\lfloor \frac{q - a \cdot \zeta}{2} \right\rfloor$ we take

$$q' = \left\lfloor \frac{q - a \cdot \zeta}{2} \right\rfloor$$

Final states

- A state is final iff it accepts the empty word
- So $q \in \mathbb{Z}$ is final iff it accepts $(0, ..., 0) \in \mathbb{N}^n$
- So we take $q \in \mathbb{Z}$ final iff $a \cdot (0, ..., 0) \le q$ iff $q \ge 0$

AFtoDFA(φ) **Input:** Atomic formula $\varphi = a \cdot x \leq b$ **Output:** DFA $A_{\varphi} = (Q, \Sigma, \delta, q_0, F)$ such that $L(A_{\varphi}) = L(\varphi)$

1
$$Q, \delta, F \leftarrow \emptyset; q_0 \leftarrow s_b$$

- 2 $W \leftarrow \{s_b\}$
- 3 while $W \neq \emptyset$ do
- 4 pick s_k from W
- 5 add s_k to Q
- 6 **if** $k \ge 0$ **then add** s_k **to** F
- 7 **for all** $\zeta \in \{0, 1\}^n$ **do**

8
$$j \leftarrow \left| \frac{k - a \cdot \zeta}{2} \right|$$

- 9 **if** $s_j \notin Q$ then add s_j to W
- 10 **add** (s_k, ζ, s_j) to δ

Example: $3x - 2y \ge 6$

Conversion:

Initial state:

$$-3x + 2y \le -6$$

$$a = \begin{pmatrix} -3 \\ 2 \end{pmatrix}, \quad b = -6$$

$$-6$$

Transition from state -6 with letter $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$:

$$q' = \left\lfloor \frac{q - a \cdot \zeta}{2} \right\rfloor$$

$$q' = \left\lfloor \frac{-6 - (-3,2) \cdot \binom{1}{1}}{2} \right\rfloor = \left\lfloor \frac{-6 + 1}{2} \right\rfloor = -3$$

Example: $2x - y \le 2$

Example: $x + y \ge 4$

Termination of AFtoDFA

• Lemma: Let $\varphi = a \cdot c \leq b$ and $s = \sum_{i=1}^{n} |a_i|$. All states s_j added by $AFtoDFA(\varphi)$ satisfy $-|b| - s \leq j \leq |b| + s$

Proof: Holds for the first state added: *s*_b

Assume s_j is added to the workset when processing s_k . By ind. hyp.: $-|b| - s \le k \le |b| + s$.

Together with $j = \left\lfloor \frac{k - a \cdot \zeta}{2} \right\rfloor$ we get $\left\lfloor \frac{-|b| - s - a \cdot \zeta}{2} \right\rfloor \le j \le \left\lfloor \frac{|b| + s - a \cdot \zeta}{2} \right\rfloor$

$$\left\lfloor \frac{-|b| - s - a \cdot \zeta}{2} \right\rfloor \le j \le \left\lfloor \frac{|b| + s - a \cdot \zeta}{2} \right\rfloor$$

Some arithmetic yields

$$\begin{aligned} -|b| - s &\leq \frac{-|b| - 2s}{2} &\leq \left\lfloor \frac{-|b| - s - a \cdot \zeta}{2} \right\rfloor \\ \left\lfloor \frac{|b| + s - a \cdot \zeta}{2} \right\rfloor &\leq \frac{|b| + 2s}{2} &\leq |b| + s \end{aligned}$$

and together we get

$$-|b| - s \le j \le |b| + s$$

Solving a system of inequations

• We compute all solutions of

 $2x - y \le 2$ $x + y \ge 2$

s.t. x, y are multiples of 4. They are the solutions of $(\exists z \ x = 4z) \land (\exists w \ y = 4w) \land (2x - y \le 2) \land (x + y \ge 4)$ • DFA for $(\exists z \ x = 4z) \land (\exists w \ y = 4w)$

• Final result

