
Presburger Arithmetic



• Which arithmetical problems can be solved 
using automata?

• Presburger arithmetic (PA): a logical language to 
define arithmetical properties of (tuples of) 
natural numbers 



3푥 − 4푦 = 5
−푥 +  푦 = 3  

Is there an integer solution?



2푥 + 3푦 ≥ 5
−푥 + 4푦 ≤ 3  

Is there an integer solution?



Are there integers 푥, 푦 such that

3푥 − 4푦 = 5
−푥 + 푦 = 3  

but not

2푥 + 3푦 ≥ 2
−푥 + 4푦 ≤ 4  ?



For every integer solution 푥, 푦 of

2푥 + 3푦 ≥ 5

−푥 + 4푦 ≤ 3  

is there is an integer solution 푧, 푢 of

3푧 − 2푢 ≥ 3

−푧 + 4푢 ≤ −2  

such that  푥 + 푧 =  푦 + 푢 ?



Syntax of PA

• Symbols: 
Variables x, y, z ...
Constants 0, 1
Arithmetical symbols +, ≤
Logical symbols ∨, ¬, ∃ (∧, ∀, →,…)
Parenthesis ( , )

• Terms:   
Variables, 0 and 1 are terms.
If  푡 and  푢 are terms, then  푡 +  푢  is  a term.



Syntax of PA

• Atomic formulas:  
푡 ≤  푢 , where  푡 and  푢 are terms

• Formulas:   
Atomic formulas are formulas.
If 휑 , 휑 are formulas, then so are 휑 ∨휑 , ¬휑 , ∃푥휑

• Free and bound variables: 
A variable is bound if it is in the scope of an existential 
quantifier, otherwise it is free.

• Sentences: formulas without free variables.



Abbreviations

• Logical abbrevations:  
휑 ∧ 휑  ≡ ¬(¬휑 ∨¬휑 )
휑 → 휑 ≡  ¬휑 ∨휑
휑 ↔ 휑 ≡  ¬(휑 ∨휑 ) ∨ ¬(¬휑 ∨ ¬ 휑 )
∀푥 휑 ≡ ¬ ∃푥 ¬ 휑

• Arithmetic abbreviations:   



Semantics (intuition)

• The semantics of a sentence is true or false.
• The semantics of a formula with free variables 

푥 , … , 푥 is the set containing all tuples  
(푛 , … , 푛 ) of natural numbers that ‘’satisfy the 
formula’’ 



Semantics (more formally)

• An interpretation of a formula 휑 is a function 퓘
that assigns a natural number to every free 
variable appearing in 휑 (and perhaps also to 
others).

• Given an interpretation 퓘, a variable 푥, and a 
number 푛, we denote  by 퓘[푛/푥]  the 
interpretation that assigns to  푥 the number 푛, 
and to all other variables the same value as 퓘.



Semantics (more formally)

• We inductively define when an interpretation 퓘
satisfies a formula 휑, denoted by 퓘 ⊨ 휑 :



Semantics (more formally)

• Lemma: If two interpretations of a formula 휑 assign the 
same values to all free variables of 휑, then either both 
satisfy 휑 or none satisfy 휑.

• Corollary: if 휑 is a sentence, either all interpretations                              
satisfy 휑, or none satisfy 휑.

• A model or solution of 휑 is the projection of an 
interpretation that satisfies 휑 onto the free variables of 
휑. The set of solutions or solution space is denoted by 
푆표푙(휑).



Formulating questions

Are there integers  푥, 푦 such that

2푥 + 3푦 ≥ 5      

−푥 + 4푦 ≤ 3   ?  

∃푥∃푦 (2푥 + 3푦 ≥ 5 ∧  −푥 + 4푦 ≤ 3) 



Formulating questions

For every solution 푥, 푦 of

2푥 + 3푦 ≥ 5

−푥 + 4푦 ≤ 3  

is there is a solution 푧, 푢 of

3푧 − 2푢 ≥ 3

−푧 + 4푢 ≤ −2  

such that  푥 + 푧 =  푦 + 푢 ?

∀ 푥 ∀ 푦

(2푥 + 3푦 ≥ 5 ∧  −푥 + 4푦 ≤ 3) 
→

   ( ∃ 푧 ∃ 푢

( 3푧 − 2푢 ≥ 3      ∧ 

−푧 + 4푢 ≤ −2   ∧

푥 + 푧 =  푦 + 푢 )   )



Language of a formula

• We encode natural numbers with the 푙푠푏푓 encoding.
• If 휑 has free variables 푥 , … , 푥 , we encode a 

solution of 휑 as a word over 0,1 in the usual way. 
E.g, the minimal encoding of 푥 , 푥 , 푥 = (5,10,0) is 

• The language of 휑, denoted by 퐿(휑), is the set of 
encodings of the solutions of 휑. 



An NFA for the solution space

• Given 휑, we construct an NFA 퐴  such that 퐿 퐴 = 퐿(휑)
• We can take:

퐴¬ ∶= CompNFA(퐴 )

퐴( ∨ ) ∶= UnionNFA(퐴 , 퐴 )
퐴∃ ∶= Projection_푥(퐴 )

where Projection_푥 projects onto all variables but 푥
• It remains to construct 퐴 for an atomic formula 휑.



DFA for atomic formulas

• Every atomic formula has the same solutions as
an equation of the form

푎 푥 +  … + 푎 푥  ≤ 푏 ≔ 푎 푥 ≤ 푏
where the 푎 and 푏 are arbitrary integers 
(possibly negative).

• Given 푎 푥 ≤ 푏 we construct a DFA with 
integers as states and b as initial state satisfying:

Each state  푞 ∈ ℤ recognizes the 
tuples  c ∈ ℕ such that 푎 푐 ≤ 푞



• Given 푞 ∈ ℤ and a letter 휁 ∈ 0,1 we compute the target state 
푞′ ∈ ℤ of the transition 푞, 휁, 푞 .

• For every word 푤 ∈ ( 0,1 )∗ we have:
푤 is accepted from 푞′ iff 휁푤 is accepted from 푞

and so for every tuple 푐 ∈ ℕ :
푐 is accepted from 푞′ iff 2푐 + 휁 is accepted from 푞

• Hence we choose 푞′ so that
푎 푐 ≤ 푞 iff   푎 (2푐 + 휁) ≤ 푞

• Since  푎 (2푐 + 휁) ≤ 푞 iff 2(푎 푐) + 푎 휁 ≤ 푞 iff 푎 푐 ≤
we take

푞 =
푞 − 푎 휁

2

Transitions



Final states

• A state is final iff it accepts the empty word
• So 푞 ∈ ℤ is final iff it accepts  0, … , 0 ∈ ℕ
• So we take 푞 ∈ ℤ final iff 푎 (0, … , 0) ≤ 푞 iff 푞 ≥ 0





Example:  3푥 − 2푦 ≥ 6

Conversion: −3푥 + 2푦 ≤ −6
푎 =  ,  푏 = −6

Initial state: −6

Transition from state -6  with letter  1
1 :

푞 =
푞 − 푎 휁

2

푞 =
−6 − (−3,2)

2
 =

−6 + 1
2

 = −3



Example:  2푥 − 푦 ≤ 2



Example:  푥 + 푦 ≥ 4



Termination of AFtoDFA

• Lemma:  Let   휑 = 푎 푐 ≤ 푏 and  푠 =  ∑ |푎 |. 
All states  푠  added by  AFtoDFA(휑) satisfy

− 푏 − 푠 ≤ 푗 ≤ 푏 + 푠
Proof: Holds for the first state added: 푠
Assume 푠 is added to the workset when processing 푠 .   
By ind. hyp.:  − 푏 − 푠 ≤ 푘 ≤ 푏 + 푠.

Together with  푗 =  we get



Some arithmetic yields

and together we get



Solving a system of inequations

• We compute all solutions of

2푥 − 푦 ≤ 2 
푥 + 푦 ≥ 2 

s.t. 푥, 푦 are multiples of 4. They are the solutions of

∃푧 푥 = 4푧  ∧ ∃푤 푦 = 4푤 ∧ (2푥 − 푦 ≤ 2) ∧ (푥 + 푦 ≥ 4) 



• DFA for ∃푧 푥 = 4푧  ∧ ∃푤 푦 = 4푤



• Final result 


