ω-Automata

ω-Automata

- Automata that accept (or reject) words of infinite length.
- Languages of infinite words appear:
- in verification, as encodings of non-terminating executions of a program.
- in arithmetic, as encodings of sets of real numbers.

ω-Languages

- An ω-word is an infinite sequence of letters.
- The set of all ω-words is denoted by Σ^{ω}.
- An ω-language is a subset of Σ^{ω}.
- A language L_{1} can be concatenated with an ω-language L_{2} to yield the ω-language $L_{1} L_{2}$, but two ω-languages cannot be concatenated.
- The ω-iteration of a language $L \subseteq \Sigma^{*}$, denoted by L^{ω}, is an ω language.
- Observe:
$-\{a b\}^{*}$ contains infinitely many words, $\{a b\}^{\omega}$ contains only
one
$-\emptyset^{\omega}=\{\epsilon\}^{\omega}=\varnothing$

ω-Regular Expressions

- ω-regular expressions have syntax

$$
s::=r^{\omega}\left|r s_{1}\right| s_{1}+s_{2}
$$

where r is an (ordinary) regular expression.

- The ω-language $L_{\omega}(s)$ of an ω-regular expression s is inductively defined by

$$
\begin{aligned}
& L_{\omega}\left(r^{\omega}\right)=(L(r))^{\omega} L_{\omega}\left(r s_{1}\right)=L(r) L_{\omega}\left(s_{1}\right) \\
& L_{\omega}\left(s_{1}+s_{2}\right)=L_{\omega}\left(s_{1}\right) \cup L_{\omega}\left(s_{2}\right)
\end{aligned}
$$

- An ω-language is ω-regular if it is the language of some ω-regular expression.

The Quest for a Trinity

The Quest for a Trinity

The Rules of the Quest

- Automata should still have states, transitions, and initial states, only the acceptance condition can change.

The Rules of the Quest

- Automata should still have states, transitions, and initial states, only the acceptance condition can change.
- For automata on finite words the acceptance condition depends only on the last state of a run (i.e., runs that end in the same state are all accepting or rejecting).

The Rules of the Quest

- Automata should still have states, transitions, and initial states, only the acceptance condition can change.
- For automata on finite words the acceptance condition depends only on the last state of a run (i.e., runs that end in the same state are all accepting or rejecting).
- For automata on infinite words we choose: the acceptance condition depends only on the set of states visited infinitely often by a run (i.e., runs that visit the same states infinitely often are all accepting or rejecting).

Basic notions: Semi-automata

- A semi-automaton is a tuple $S=\left(Q, \Sigma, \delta, Q_{0}\right)$ of states, alphabet, transitions, and initial states.

Basic notions: Runs

- A run of a semi-automaton is an infinite sequence of states and transitions starting at an initial state
- $\rho_{1}=q_{0} \xrightarrow[b]{a} q_{1} \xrightarrow[b]{a} q_{1} \xrightarrow[b]{a} q_{1} \xrightarrow[b]{a} q_{1} \ldots$
- $\rho_{2}=q_{0} \rightarrow \underset{a}{\rightarrow} q_{0} \rightarrow q_{0} \rightarrow q_{0} \rightarrow q_{0} \cdots$
- $\rho_{3}=q_{0} \rightarrow q_{1} \rightarrow q_{0} \rightarrow q_{0} \rightarrow q_{1} \cdots$

Basic notions: Runs

- The set of states visited infinitely often by a run ρ is denoted $\inf (\rho)$
- $\rho_{1}=q_{0} \xrightarrow[b]{a} q_{1} \xrightarrow[b]{a} q_{1} \xrightarrow[b]{a} q_{1} \xrightarrow[b]{a} q_{1} \cdots \quad \inf \left(\rho_{1}\right)=\left\{q_{1}\right\}$
- $\rho_{2}=q_{0} \xrightarrow[a]{\rightarrow} q_{0} \xrightarrow[b]{b} q_{0} \xrightarrow[a]{\rightarrow} q_{0} \xrightarrow[b]{b} q_{0} \cdots \quad \inf \left(\rho_{2}\right)=\left\{q_{0}\right\}$
- $\rho_{3}=q_{0} \xrightarrow{a} q_{1} \xrightarrow{b} q_{0} \xrightarrow{a} q_{0} \xrightarrow{b} q_{1} \cdots \quad \inf \left(\rho_{3}\right)=\left\{q_{0}, q_{1}\right\}$

Basic notions: Acceptance conditions

- An acceptance condition is a mapping $\alpha: 2^{Q} \rightarrow\{0,1\}$ that determines for every set $Q^{\prime} \subseteq Q$ of states whether the runs ρ with $\inf (\rho)=Q^{\prime}$ are accepting or not.
- $\alpha_{1}:\left\{q_{0}\right\} \mapsto 0,\left\{q_{1}\right\} \mapsto 0,\left\{q_{0}, q_{1}\right\} \mapsto 0$
- $\alpha_{2}:\left\{q_{0}\right\} \mapsto 0,\left\{q_{1}\right\} \mapsto 1,\left\{q_{0}, q_{1}\right\} \mapsto 1$

Basic notions: ω-Automata

- An ω-automaton is a pair $A=(S, \alpha)$, where S is a semi-automaton and α is an acceptance condition

Basic notions: ω-Language

- An ω-automaton A accepts an ω-word if it has at least one accepting run on it. The ω-language $L_{\omega}(A)$ of A is the set of ω-words it accepts.
- $\alpha_{1}:\left\{q_{0}\right\} \mapsto 0,\left\{q_{1}\right\} \mapsto 0,\left\{q_{0}, q_{1}\right\} \mapsto 0$
- $\alpha_{2}:\left\{q_{0}\right\} \mapsto 0,\left\{q_{1}\right\} \mapsto 1,\left\{q_{0}, q_{1}\right\} \mapsto 1$
?

Basic notions: ω-Language

- An ω-automaton A accepts an ω-word if it has at least one accepting run on it. The ω-language $L_{\omega}(A)$ of A is the set of ω-words it accepts.
- $\alpha_{1}:\left\{q_{0}\right\} \mapsto 0,\left\{q_{1}\right\} \mapsto 0,\left\{q_{0}, q_{1}\right\} \mapsto 0$
- $\alpha_{2}:\left\{q_{0}\right\} \mapsto 0,\left\{q_{1}\right\} \mapsto 1,\left\{q_{0}, q_{1}\right\} \mapsto 1$ infinitely many a

Basic notions: ω-Language

- An ω-automaton A accepts an ω-word if it has at least one accepting run on it. The ω-language $L_{\omega}(A)$ of A is the set of ω-words it accepts.
- $\alpha_{1}:\left\{q_{0}\right\} \mapsto 0,\left\{q_{1}\right\} \mapsto 0,\left\{q_{0}, q_{1}\right\} \mapsto 0$
- $\alpha_{2}:\left\{q_{0}\right\} \mapsto 0,\left\{q_{1}\right\} \mapsto 1,\left\{q_{0}, q_{1}\right\} \mapsto 1$
$\left(b^{*} a\right)^{\omega}$

Types of ω-automata

- There are many different types of acceptance conditions (Büchi, co-Büchi, Rabin, Streett, parity, M uller, generalized Büchi, Emerson-Lei ...)
They lead to different types of ω-automata: Büchi automata, co-Büchi automata, etc.
- A type is defined by stating a property that an acceptance condition may or may not satisfy. The type is the subset of all possible acceptance conditions that satisfy the property.
- This set of slides explains why this variety is needed.

Büchi automata

- Invented by J.R. Büchi, swiss logician.

Büchi automata

- An acceptance condition $\alpha: 2^{Q} \rightarrow\{0,1\}$ is a Büchi condition if there is a set $F \subseteq Q$ of accepting states such that $\alpha\left(Q^{\prime}\right)=1$ iff $Q^{\prime} \cap F \neq \varnothing$.
$-\left\{q_{0}\right\} \mapsto 0,\left\{q_{1}\right\} \mapsto 1,\left\{q_{0}, q_{1}\right\} \mapsto 1$ is Büchi $F=\left\{q_{1}\right\}$
$-\left\{q_{0}\right\} \mapsto 0,\left\{q_{1}\right\} \mapsto 1,\left\{q_{0}, q_{1}\right\} \mapsto 0$ is not Büchi
- By definition, a run ρ is accepting iff $\inf (\rho) \cap F \neq \varnothing$ iff (in words) ρ visits F infinitely often.
- A Büchi condition α is completely determined by F. We write $A=(S, F)=\left(Q, \Sigma, \delta, Q_{0}, F\right)$.

Some Büchi automata

From ω-regular expressions to NBAs

NFA for r

NBA for r^{ω}

From ω-regular expressions to NBAs

NFA for r

NBA for s

From ω-regular expressions to NBAs

From NBAs to ω-regular expressions

- Lemma: Let A be a NFA, and let q, q^{\prime} be states of A. The language $L_{q}^{q^{\prime}}$ of words with runs leading from q to q^{\prime} and visiting q^{\prime} exactly once after leaving q is regular.
- Let $r_{q}^{q^{\prime}}$ denote a regular expression for $L_{q}^{q^{\prime}}$.

From NBAs to ω-regular expressions

- Example:

From NBAs to ω-regular expressions

- Given a NBA A, we look at it as a NFA, and compute regular expressions $r_{q}^{q^{\prime}}$.
- We show:

$$
L_{\omega}(A)=L\left(\sum_{q \in F} r_{q_{0}}^{q}\left(r_{q}^{q}\right)^{\omega}\right)
$$

- An ω-word belongs to $L_{\omega}(A)$ iff it is accepted by a run that starts at q_{0} and visits some accepting state q infinitely often.

From NBAs to ω-regular expressions

- Example:

DBAs are less expressive than NBAs

- Prop.: The ω-language $(a+b)^{*} b^{\omega}$ of words containing finitely many a is not recognized by any DBA.

DBAs are less expressive than NBAs

- Prop.: The ω-language $(a+b)^{*} b^{\omega}$ of words containing finitely many a is not recognized by any DBA.
- Proof: By contradiction. Assume some DBA recognizes $(a+b)^{*} b^{\omega}$.

DBAs are less expressive than NBAs

- Prop.: The ω-language $(a+b)^{*} b^{\omega}$ of words containing finitely many a is not recognized by any DBA.
- Proof: By contradiction. Assume some DBA recognizes $(a+b)^{*} b^{\omega}$.
- DBA accepts b^{ω}
\rightarrow DFA accepts $b^{n_{0}}$

DBAs are less expressive than NBAs

- Prop.: The ω-language $(a+b)^{*} b^{\omega}$ of words containing finitely many a is not recognized by any DBA.
- Proof: By contradiction. Assume some DBA recognizes $(a+b)^{*} b^{\omega}$.
- DBA accepts b^{ω}
\rightarrow DFA accepts $b^{n_{0}}$
DBA accepts $b^{n_{0}} a b^{\omega}$
\rightarrow DFA accepts $b^{n_{0}} a b^{n_{1}}$

DBAs are less expressive than NBAs

- Prop.: The ω-language $(a+b)^{*} b^{\omega}$ of words containing finitely many a is not recognized by any DBA.
- Proof: By contradiction. Assume some DBA recognizes $(a+b)^{*} b^{\omega}$.
- DBA accepts b^{ω}
\rightarrow DFA accepts $b^{n_{0}}$
DBA accepts $b^{n_{0}} a b^{\omega} \quad \rightarrow$ DFA accepts $b^{n_{0}} a b^{n_{1}}$
DBA accepts $b^{n_{0}} a b^{n_{1}} a b^{\omega} \rightarrow$ DFA accepts $b^{n_{0}} a b^{n_{1}} a b^{n_{2}}$ etc.

DBAs are less expressive than NBAs

- Prop.: The ω-language $(a+b)^{*} b^{\omega}$ of words containing finitely many a is not recognized by any DBA.
- Proof: By contradiction. Assume some DBA recognizes $(a+b)^{*} b^{\omega}$.
- DBA accepts b^{ω}
\rightarrow DFA accepts $b^{n_{0}}$
DBA accepts $b^{n_{0}} a b^{\omega} \quad \rightarrow$ DFA accepts $b^{n_{0}} a b^{n_{1}}$
DBA accepts $b^{n_{0}} a b^{n_{1}} a b^{\omega} \rightarrow$ DFA accepts $b^{n_{0}} a b^{n_{1}} a b^{n_{2}}$ etc.
- By determinism and finite number of states, the DBA accepts

$$
b^{n_{0}} a b^{n_{1}} a b^{n_{2}} \ldots a b^{n_{i}}\left(a b^{n_{i+1}} \ldots a b^{n_{j}}\right)^{\omega}
$$

for some $i<j$. This word does not belong to $(a+b)^{*} b^{\omega}$.

Büchi automata do not form a Trinity

Co-Büchi automata

- An accepting condition $\alpha: 2^{Q} \rightarrow\{0,1\}$ is a co-Büchi condition if there is a set F of accepting states such that $\alpha\left(Q^{\prime}\right)=1$ iff $Q^{\prime} \cap F=\varnothing$.

$$
\begin{array}{ll}
-\left\{q_{0}\right\} \mapsto 0,\left\{q_{1}\right\} \mapsto 1,\left\{q_{0}, q_{1}\right\} \mapsto 0 & \\
\text { is co-Büchi } F=\left\{q_{0}\right\} \\
-\left\{q_{0}\right\} \mapsto 0,\left\{q_{1}\right\} \mapsto 1,\left\{q_{0}, q_{1}\right\} \mapsto 1 & \\
\text { is not co-Büchi }
\end{array}
$$

- Equivalently: ρ is accepting iff $\inf (\rho) \cap F=\varnothing$ iff (in words) ρ visits F finitely often.
- A co-Büchi condition α is completely determined by F. We write $A=(S, F)=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ (danger!)

Co-Büchi automata

- Let A be a Büchi automaton, let B be the same coBüchi automaton (with the same set F), and let ρ be a run:
$-\rho$ is accepting in A if it visits F infinitely often $-\rho$ is accepting in B if it visits F finitely often
- So an accepting run of A is a rejecting run of B and vice versa.
- Therefore: If A is a DBA recognizing an ω-language L, then B is a DCA recognizing \bar{L}.
- Not necessarily true for NBA!

Which are the languages?

Determinizing co-Büchi automata

- Given a NCA A we construct a DCA B such that $L(A)=L(B)$.
- We proceed in three steps:
- We assign to every ω-word w a directed acyclic graph $\operatorname{dag}(w)$ that "contains" all runs of A on w.
- We prove that w is accepted by A iff $\operatorname{dag}(w)$ is infinite but contains only finitely many breakpoints.
- We construct a DCA B such that w is accepted by B iff $\operatorname{dag}(w)$ is infinite but contains only finitely many breakpoints.
- Running example:

- A accepts w iff some infinite path of $\operatorname{dag}(w)$ only visits accepting states finitely often

Levels of a dag

Breakpoints of a dag

- We define inductively the set of levels that are breakpoints:
- Level 0 is always a breakpoint
- If level l is a breakpoint, then the next level l^{\prime} such that every path from l to l^{\prime} visits an accepting state at some level between $l+1$ and l^{\prime} 's also a breakpoint.

Only two breakpoints

Infinitely many breakpoints

Lemma: A accepts w iff $\operatorname{dag}(w)$ is infinite and has only finitely many breakpoints.

Proof:
(\Rightarrow) If A accepts w, then it has at least one run on w, and so $\operatorname{dag}(w)$ is infinite.
M oreover, the run visits accepting states only finitely often, and so after it stops visiting accepting states there are no further breakpoints.

Lemma: A accepts w iff $\operatorname{dag}(w)$ is infinite and has only finitely many breakpoints.

Proof:
(\Leftarrow) Assume $\operatorname{dag}(w)$ is infinite and has only finitely many breakpoints. Let l be the last breakpoint.
Since $\operatorname{dag}(w)$ is infinite, for every $l^{\prime}>l$ there is a path from l to l^{\prime} that visits no accepting states.
The subdag containing all these paths is infinite and has finite degree.
By König's Lemma the dag contains an infinite path.

Constructing the DCA

If we could tell if a level is a breakpoint by looking at it and to no other level, then we could take the set of all levels/ breakpoints as the set of states/accepting states of the DCA.

Constructing the DCA

However, in oder to decide if a level is a breakpoint we need information about its "history".
Solution: add that information to the level.

Constructing the DCA

- States: pairs [P,O] where:
$-P$ is the set of states of a level, and
$-O \subseteq P$ is the set of states
"that owe a visit to the set of accepting states".
- Formally: $q \in O$ if q is the endpoint of a path starting at the last breakpoint that has not yet visited any accepting state.

Constructing the DCA

- States: pairs [P,O]
- Initial state: pair $\left[Q_{0}, \varnothing\right]$.
- Transitions: $\delta([P, O], a)=\left[P^{\prime}, O^{\prime}\right]$ where $P^{\prime}=\delta(P, a)$ and O^{\prime} is given by:
$-O^{\prime}=\delta(O, a) \backslash F$ if $O \neq \varnothing$
(automaton updates set of owing states)
$-O^{\prime}=\delta(P, a) \backslash F$ if $O=\varnothing$
(automaton starts search for next breakpoint)
- Accepting states: pairs [P, Ø] (no owing states)

NCAtoDCA(A)
Input: $\mathrm{NCA} A=\left(Q, \Sigma, \delta, Q_{0}, F\right)$
Output: $\operatorname{DCA} B=\left(\tilde{Q}, \Sigma, \tilde{\delta}, \tilde{q}_{0}, \tilde{F}\right)$ with $L_{\omega}(A)=L_{\omega}(B)$
$1 \tilde{Q}, \tilde{\delta}, \tilde{F} \leftarrow \emptyset ; \tilde{q}_{0} \leftarrow\left[Q_{0}, \emptyset\right]$
$2 W \leftarrow\left\{\tilde{q}_{0}\right\}$
3 while $W \neq \emptyset$ do
$4 \quad$ pick $[P, O]$ from W; add $[P, O]$ to \tilde{Q}
$5 \quad$ if $O=\emptyset$ then add $[P, O]$ to \tilde{F}
$6 \quad$ for all $a \in \Sigma$ do
$7 \quad P^{\prime}=\delta(P, a)$
8
$9 \quad \operatorname{add}\left([P, O], a,\left[P^{\prime}, O^{\prime}\right]\right)$ to $\tilde{\delta}$
10 if $\left[P^{\prime}, O^{\prime}\right] \notin \tilde{Q}$ then add $\left[P^{\prime}, Q^{\prime}\right]$ to W

- Complexity: at most 3^{n} states

Running example

Co-Büchi Automata do not form a Trinity

Lemma: No DCA (and so no NCA) recognizes the ω-language $\left(b^{*} a\right)^{\omega}$.
Proof: Assume the contrary. Then the same automaton seen as a DBA recognizes the complement ω-language $(a+b)^{*} b^{\omega}$. Contradiction.

It can be proven that all ω-languages accepted by NCA are ω-regular (exercise!).
So NCA are strictly less expressive than NBA.

Co-Büchi Automata do not form a Trinity

Generalizing NBAs

- Recall: No DBA for $(a+b)^{*} b^{\omega}$
- Can be „repaired" by combining Büchi and co-Büchi conditions:

Runs that visit q finitely often and moreover visit r infinitely often recognize $(a+b)^{*} b^{\omega}$

Rabin automata

- A Rabin pair is a pair $\langle F, G\rangle$ of sets of states.
- An accepting condition $\alpha: 2^{Q} \rightarrow\{0,1\}$ is a Rabin condition if there is a set \mathcal{R} of Rabin pairs such that

$$
\begin{array}{ll}
\alpha\left(Q^{\prime}\right)=1 & \text { iff } Q^{\prime} \cap F \neq \varnothing \text { and } Q^{\prime} \cap G=\varnothing \\
& \text { for some pair }\langle F, G\rangle \in \mathcal{R} .
\end{array}
$$

ρ is accepting
iff $\inf (\rho) \cap F \neq \emptyset$ and $\inf (\rho) \cap G=\varnothing$ for some $\langle F, G\rangle \in \mathcal{R}$ iff (in words) ρ visits F infinitely often and G finitely often for some $\langle F, G\rangle \in \mathcal{R}$.

Rabin automata

- The accepting condition

$$
\left\{q_{0}\right\} \mapsto 1,\left\{q_{1}\right\} \mapsto 1,\left\{q_{0}, q_{1}\right\} \mapsto 0
$$

is neither Büchi nor co-Büchi, but it is the Rabin condition $\left\{\left\langle\left\{q_{0}\right\},\left\{q_{1}\right\}\right\rangle,\left\langle\left\{q_{1}\right\},\left\{q_{0}\right\}\right\rangle\right\}$ (two Rabin pairs)

- Büchi condition $F \equiv$ Rabin condition $\{\langle F, \varnothing\rangle\}$
- Co-Büchi condition $G \equiv$ Rabin condition $\{\langle Q, G\rangle\}$
- Theorem (Safra): Any NRA with n states can be effectively transformed into a DRA with $n^{O(n)}$ states.

From Rabin to Büchi automata

- Let A be a NRA with condition $\left\{\left\langle F_{1}, G_{1}\right\rangle, \ldots,\left\langle F_{m}, G_{m}\right\rangle\right\}$.
- Let A_{1}, \ldots, A_{m} be NRAs with the same semi-automaton as A but Rabin conditions $\left\{\left\langle F_{1}, G_{1}\right\rangle\right\}, \ldots, \quad\left\{\left\langle F_{m}, G_{m}\right\rangle\right\}$ respectively.
- We have: $L(A)=L\left(A_{1}\right) \cup \cdots \cup L\left(A_{m}\right)$
- We proceed in two steps:

1. we construct for each NRA A_{i} an NBA A_{i}^{\prime} such that

$$
L\left(A_{i}\right)=L\left(A_{i}^{\prime}\right)
$$

2. we (easily) construct an NBA A^{\prime} such that

$$
L\left(A^{\prime}\right)=L\left(A_{1}^{\prime}\right) \cup \ldots \cup L\left(A_{m}^{\prime}\right)
$$

Beyond Trinities

- Can we find a class X of ω-automata such that
- RE, NXA, DXA form a Trinity, and
- Boolean operations for DXAs can be implemented „as for DFAs" ?

1) For every DXA $A=(S, \alpha)$ there is a $\operatorname{DXA} \bar{A}=(S, \bar{\alpha})$ recognizing $\overline{L_{\omega}(A)}$
2) For every two DXAs $A_{1}=\left(S_{1}, \alpha_{1}\right)$ and $A_{2}=\left(S_{2}, \alpha_{2}\right)$ there is $\operatorname{a} \operatorname{DXA} A_{U}=\left(\left[S_{1}, S_{2}\right], \alpha_{\cup}\right)$ recognizing $L_{\omega}\left(A_{1}\right) \cup L_{\omega}\left(A_{2}\right)$
3) For every two DXAs $A_{1}=\left(S_{1}, \alpha_{1}\right)$ and $A_{2}=\left(S_{2}, \alpha_{1}\right)$ there is a DXA $A_{\cup}=\left(\left[S_{1}, S_{2}\right], \alpha_{n}\right)$ recognizing $L_{\omega}\left(A_{1}\right) \cap L_{\omega}\left(A_{2}\right)$

Beyond Trinities

- Rabin automata: 1): No. 2): Yes. 3): No.
- Given two DRAs $A_{1}=\left(S_{1}, \alpha_{1}\right)$ and $A_{2}=\left(S_{2}, \alpha_{2}\right)$, the DRA $A_{\cup}=\left(\left[S_{1}, S_{2}\right], \alpha\right)$ where

$$
\alpha=\begin{gathered}
\left\{\left\langle F_{1} \times Q_{2}, G_{1} \times Q_{2}\right\rangle:\left\langle F_{1}, G_{1}\right\rangle \in \alpha_{1}\right\} \\
\cup \cup \\
\left\{\left\langle Q_{1} \times F_{2}, Q_{1} \times G_{2}\right\rangle:\left\langle F_{2}, G_{2}\right\rangle \in \alpha_{2}\right\}
\end{gathered}
$$

recognizes $L_{\omega}\left(A_{1}\right) \cup L_{\omega}\left(A_{2}\right)$

Beyond Trinities

- Two further Trinities (see notes):
- Street automata: 1): Yes. 2): No. 3): No.
- Parity automata: 1): No. 2): No. 3): Yes.
- A final Trinity:
- M uller automata: 1): Yes. 2): Yes. 3): Yes.

M uller automata

- Automata with arbitrary acceptance conditions.
- A M uller automaton (NM A) is an automaton $A=(S, \alpha)$ where $\alpha: 2^{Q} \rightarrow\{0,1\}$ is an arbitrary acceptance condition.
- We represent α by the set \mathcal{F} of all sets of states $Q^{\prime} \subseteq Q$ such that $\alpha\left(Q^{\prime}\right)=1$.
- A run is accepting if the set of states it visits infinitely often is equal to one of the sets in \mathcal{F}.
- Theorem: RE, NM A, and DM A form a Trinity.

M uller automata

- Infinitely many a

$$
\left\{\left\{q_{a}\right\},\left\{q_{a}, q_{b}\right\},\left\{q_{a}, q_{c}\right\},\left\{q_{a}, q_{b}, q_{c}\right\}\right\}
$$

M uller automata

- Infinitely many a

$$
\left\{\left\{q_{a}\right\},\left\{q_{a}, q_{b}\right\},\left\{q_{a}, q_{c}\right\},\left\{q_{a}, q_{b}, q_{c}\right\}\right\}
$$

- Infinitely many a or infinitely many b

M uller automata

- Infinitely many a

$$
\left\{\left\{q_{a}\right\},\left\{q_{a}, q_{b}\right\},\left\{q_{a}, q_{c}\right\},\left\{q_{a}, q_{b}, q_{c}\right\}\right\}
$$

- Infinitely many a or infinitely many b $\left\{\left\{q_{a}\right\},\left\{q_{b}\right\},\left\{q_{a}, q_{b}\right\},\left\{q_{a}, q_{c}\right\},\left\{q_{a}, q_{c}\right\},\left\{q_{a}, q_{b}, q_{c}\right\}\right\}$

M uller automata

- Infinitely many a

$$
\left\{\left\{q_{a}\right\},\left\{q_{a}, q_{b}\right\},\left\{q_{a}, q_{c}\right\},\left\{q_{a}, q_{b}, q_{c}\right\}\right\}
$$

- Infinitely many a or infinitely many b $\left\{\left\{q_{a}\right\},\left\{q_{b}\right\},\left\{q_{a}, q_{b}\right\},\left\{q_{a}, q_{c}\right\},\left\{q_{a}, q_{c}\right\},\left\{q_{a}, q_{b}, q_{c}\right\}\right\}$
- Infinitely many a and infinitely many b

M uller automata

- Infinitely many a

$$
\left\{\left\{q_{a}\right\},\left\{q_{a}, q_{b}\right\},\left\{q_{a}, q_{c}\right\},\left\{q_{a}, q_{b}, q_{c}\right\}\right\}
$$

- Infinitely many a or infinitely many b $\left\{\left\{q_{a}\right\},\left\{q_{b}\right\},\left\{q_{a}, q_{b}\right\},\left\{q_{a}, q_{c}\right\},\left\{q_{a}, q_{c}\right\},\left\{q_{a}, q_{b}, q_{c}\right\}\right\}$
- Infinitely many a and infinitely many b

$$
\left\{\left\{q_{a}, q_{b}\right\},\left\{q_{a}, q_{b}, q_{c}\right\}\right\}
$$

M uller automata

- Infinitely many a

$$
\left\{\left\{q_{a}\right\},\left\{q_{a}, q_{b}\right\},\left\{q_{a}, q_{c}\right\},\left\{q_{a}, q_{b}, q_{c}\right\}\right\}
$$

- Infinitely many a or infinitely many b $\left\{\left\{q_{a}\right\},\left\{q_{b}\right\},\left\{q_{a}, q_{b}\right\},\left\{q_{a}, q_{c}\right\},\left\{q_{a}, q_{c}\right\},\left\{q_{a}, q_{b}, q_{c}\right\}\right\}$
- Infinitely many a and infinitely many b

$$
\left\{\left\{q_{a}, q_{b}\right\},\left\{q_{a}, q_{b}, q_{c}\right\}\right\}
$$

- Finitely many a or finitely many b

M uller automata

- Infinitely many a

$$
\left\{\left\{q_{a}\right\},\left\{q_{a}, q_{b}\right\},\left\{q_{a}, q_{c}\right\},\left\{q_{a}, q_{b}, q_{c}\right\}\right\}
$$

- Infinitely many a or infinitely many b $\left\{\left\{q_{a}\right\},\left\{q_{b}\right\},\left\{q_{a}, q_{b}\right\},\left\{q_{a}, q_{c}\right\},\left\{q_{a}, q_{c}\right\},\left\{q_{a}, q_{b}, q_{c}\right\}\right\}$
- Infinitely many a and infinitely many b

$$
\left\{\left\{q_{a}, q_{b}\right\},\left\{q_{a}, q_{b}, q_{c}\right\}\right\}
$$

- Finitely many a or finitely many b

$$
\left\{\left\{q_{a}\right\},\left\{q_{b}\right\},\left\{q_{c}\right\},\left\{q_{a}, q_{c}\right\},\left\{q_{b}, q_{c}\right\}\right\}
$$

Boolean operations on DM As

- Let $A=(S, \mathcal{F})$ be a DMA. The $\operatorname{DRA} \bar{A}=(S, \overline{\mathcal{F}})$, where

$$
\overline{\mathcal{F}}=\{R \subseteq Q: R \notin \mathcal{F}\}
$$

recognizes $\overline{L_{\omega}(A)}$.

Boolean operations on DMAs

- Let $A=(S, \mathcal{F})$ be a DMA. The DRA $\bar{A}=(S, \overline{\mathcal{F}})$, where

$$
\overline{\mathcal{F}}=\{R \subseteq Q: R \notin \mathcal{F}\}
$$

recognizes $\overline{L_{\omega}(A)}$.
Problem: $\overline{\mathcal{F}}$ can be exponentially larger than \mathcal{F} !!

Boolean operations on DM As

- Let $A_{1}=\left(S_{1}, \mathcal{F}_{1}\right)$ and $A_{2}=\left(S_{2}, \mathcal{F}_{2}\right)$ be DMAs
- Given $R \subseteq Q_{1} \times Q_{2}$, let $\left.R\right|_{1}$ and $\left.R\right|_{2}$ denote the projections of R on Q_{1} and Q_{2}.
- The DRAs $A_{\cup}=\left(\left[S_{1}, S_{2}\right], \mathcal{F}_{\cup}\right)$ and $A_{\cap}=\left(\left[S_{1}, S_{2}\right], \mathcal{F}_{\cap}\right)$, where

$$
\begin{aligned}
& \mathcal{F}_{\cup}=\left\{R \subseteq Q_{1} \times Q_{2}:\left.R\right|_{1} \in \mathcal{F}_{1} \text { or }\left.R\right|_{2} \in \mathcal{F}_{2}\right\} \\
& \mathcal{F}_{\mathrm{n}}=\left\{R \subseteq Q_{1} \times Q_{2}:\left.R\right|_{1} \in \mathcal{F}_{1} \text { and }\left.R\right|_{2} \in \mathcal{F}_{2}\right\}
\end{aligned}
$$

recognize $L_{\omega}\left(A_{1}\right) \cup L_{\omega}\left(A_{2}\right)$ and $L_{\omega}\left(A_{1}\right) \cap L_{\omega}\left(A_{2}\right)$.

- Same problem as for complementation: \mathcal{F}_{U} and \mathcal{F}_{N} can be exponentially larger than \mathcal{F}.

Summary

Automaton Type	Expr.	Det.	Union	Inters.	Comp.	
NFA/DFA		$\underline{\mathrm{Y}}$	Y	$\underline{\mathrm{Y}}$	$\underline{\mathrm{Y}}$	$\underline{\mathrm{Y}}$
NBA/DBA	(Büchi)	$\underline{\mathrm{Y}}$	N	$\underline{\mathrm{Y}}$	N	N
NCA/DCA	(Co-Büchi)	N	Y	N	$\underline{\mathrm{Y}}$	N
NRA/DRA	(Rabin)	$\underline{\mathrm{Y}}$	Y	$\underline{\mathrm{Y}}$	N	N
NSA/DSA	(Streett)	$\underline{\mathrm{Y}}$	Y	N	$\underline{\mathrm{Y}}$	N
NPA/DPA	(Parity)	$\underline{\mathrm{Y}}$	Y	N	N	$\underline{\mathrm{Y}}$
NMA/DMA	(Muller)	Y	Y	Y	Y	Y

Expr: Is there a conversion from RE to NXA?
Det: Is there a conversion from NXA to DXA?
Union: Does pairing work for DXA and union?
Inters: Does pairing work for DXA and intersection?
Comp: Can DXA be complemented without changing the semi-automaton?
\underline{Y} : the underlying conversion or operation has polynomial blow-up

