
ω-Automata

ω-Automata

• Automata that accept (or reject) words of
infinite length.

• Languages of infinite words appear:
– in verification, as encodings of non-terminating

executions of a program.
– in arithmetic, as encodings of sets of real

numbers.

ω-Languages

• An ω-word is an infinite sequence of letters.
• The set of all ω-words is denoted by Σ .
• An ω-language is a subset of Σ .
• A language 퐿 can be concatenated with an ω-language 퐿 to

yield the ω-language 퐿 퐿 , but two ω-languages cannot be
concatenated.

• The ω-iteration of a language 퐿 ⊆ Σ∗, denoted by 퐿 , is an ω-
language.

• Observe:
– {푎푏}∗ contains infinitely many words, {푎푏} contains only

one
– ∅ = 휖 = ∅

ω-Regular Expressions

• ω-regular expressions have syntax

푠 ∷= 푟 | 푟푠 | 푠 + 푠

where 푟 is an (ordinary) regular expression.

• The ω-language 퐿 (푠) of an ω-regular expression 푠 is
inductively defined by

퐿 푟 = 퐿 푟 퐿 푟푠 = 퐿 푟 퐿 (푠)

퐿 푠 + 푠 = 퐿 푠 ∪ 퐿 (푠)
• An ω-language is ω-regular if it is the language of some

ω-regular expression .

The Quest for a Trinity

DFANFA

RE

Regular
languages

The Quest for a Trinity

D??N??

ω-RE

ω-Regular
languages

The Rules of the Quest

• Automata should still have states, transitions, and
initial states, only the acceptance condition can
change.

• For automata on finite words the acceptance
condition depends only on the last state of a run
(i.e., runs ending in the same state are all
accepting or rejecting).

• For automata on infinite words we choose: the
acceptance condition can depend only on the
set of states visited infinitely often by a run
(i.e., runs that visit the same states infinitely often
are all accepting or rejecting).

The Rules of the Quest

• Automata should still have states, transitions, and
initial states, only the acceptance condition can
change.

• For automata on finite words the acceptance
condition depends only on the last state of a run
(i.e., runs that end in the same state are all
accepting or rejecting).

• For automata on infinite words we choose: the
acceptance condition can depend only on the
set of states visited infinitely often by a run
(i.e., runs that visit the same states infinitely often
are all accepting or rejecting).

The Rules of the Quest

• Automata should still have states, transitions, and
initial states, only the acceptance condition can
change.

• For automata on finite words the acceptance
condition depends only on the last state of a run
(i.e., runs that end in the same state are all
accepting or rejecting).

• For automata on infinite words we choose:
the acceptance condition depends only on the
set of states visited infinitely often by a run
(i.e., runs that visit the same states infinitely often
are all accepting or rejecting).

Basic notions: Semi-automata

• A semi-automaton is a tuple 푆 = (푄,Σ, 훿,푄) of
states, alphabet, transitions, and initial states.

Basic notions: Runs

• A run of a semi-automaton is an infinite sequence
of states and transitions starting at an initial state

• 휌 = 푞 → 푞 → 푞 → 푞 → 푞 ⋯
• 휌 = 푞 → 푞 → 푞 → 푞 → 푞 ⋯
• 휌 = 푞 → 푞 → 푞 → 푞 → 푞 ⋯

Basic notions: Runs

• The set of states visited infinitely often by a run 휌
is denoted inf 휌

• 휌 = 푞 → 푞 → 푞 → 푞 → 푞 ⋯ inf 휌 = {푞 }
• 휌 = 푞 → 푞 → 푞 → 푞 → 푞 ⋯ inf 휌 = {푞 }
• 휌 = 푞 → 푞 → 푞 → 푞 → 푞 ⋯ inf 휌 = {푞 , 푞 }

Basic notions: Acceptance conditions

• An acceptance condition is a mapping 훼: 2 → {0,1}
that determines for every set 푄 ⊆ 푄 of states whether
the runs 휌 with inf 휌 = 푄′ are accepting or not.

• 훼 : {푞 } ↦ 0, {푞 } ↦ 0, {푞 ,푞 } ↦ 0

• 훼 : {푞 } ↦ 0, {푞 } ↦ 1, {푞 ,푞 } ↦ 1

Basic notions: 휔-Automata

• An 휔-automaton is a pair 퐴 = (푆,훼), where 푆 is a
semi-automaton and 훼 is an acceptance condition

Basic notions: ω-Language

• An 휔-automaton 퐴 accepts an ω-word if it has at least
one accepting run on it. The ω-language 퐿 퐴 of 퐴 is
the set of ω-words it accepts.

• 훼 : {푞 } ↦ 0, {푞 } ↦ 0, {푞 , 푞 } ↦ 0

• 훼 : {푞 } ↦ 0, {푞 } ↦ 1, {푞 , 푞 } ↦ 1

∅

?

Basic notions: ω-Language

• 훼 : {푞 } ↦ 0, {푞 } ↦ 0, {푞 , 푞 } ↦ 0

• 훼 : {푞 } ↦ 0, {푞 } ↦ 1, {푞 , 푞 } ↦ 1

∅
infinitely many 푎

• An 휔-automaton 퐴 accepts an ω-word if it has at least
one accepting run on it. The ω-language 퐿 퐴 of 퐴 is
the set of ω-words it accepts.

Basic notions: ω-Language

• 훼 : {푞 } ↦ 0, {푞 } ↦ 0, {푞 , 푞 } ↦ 0

• 훼 : {푞 } ↦ 0, {푞 } ↦ 1, {푞 , 푞 } ↦ 1

∅
푏∗푎

• An 휔-automaton 퐴 accepts an ω-word if it has at least
one accepting run on it. The ω-language 퐿 퐴 of 퐴 is
the set of ω-words it accepts.

Types of 휔-automata

• There are many different types of acceptance
conditions (Büchi, co-Büchi, Rabin, Streett, parity,
Muller, generalized Büchi, Emerson-Lei …)

They lead to different types of 휔-automata:
Büchi automata, co-Büchi automata, etc.

• A type is defined by stating a property that an
acceptance condition may or may not satisfy. The
type is the subset of all possible acceptance
conditions that satisfy the property.

• This set of slides explains why this variety is
needed.

Büchi automata

• Invented by J.R. Büchi, swiss logician.

Büchi automata

• An acceptance condition 훼: 2 → {0,1} is a
Büchi condition if there is a set 퐹 ⊆ 푄 of accepting
states such that 훼 푄 = 1 iff 푄 ∩ 퐹 ≠ ∅.

– {푞 } ↦ 0, {푞 } ↦ 1, {푞 , 푞 } ↦ 1 is Büchi 퐹 = {푞 }
– {푞 } ↦ 0, {푞 } ↦ 1, {푞 , 푞 } ↦ 0 is not Büchi

• By definition, a run 휌 is accepting iff inf 휌 ∩ 퐹 ≠ ∅
iff (in words) 휌 visits 퐹 infinitely often.

• A Büchi condition 훼 is completely determined by 퐹.
We write 퐴 = 푆,퐹 = 푄,Σ, 훿,푄 ,퐹 .

Some Büchi automata

From ω-regular expressions to NBAs

From ω-regular expressions to NBAs

From ω-regular expressions to NBAs

From NBAs to ω-regular expressions

• Lemma: Let 퐴 be a NFA, and let 푞, 푞 be states
of 퐴 . The language 퐿 of words with runs
leading from 푞 to 푞 and visiting 푞 exactly
once after leaving 푞 is regular.

• Let 푟 denote a regular expression for 퐿 .

From NBAs to ω-regular expressions

• Example:

From NBAs to ω-regular expressions

• Given a NBA 퐴 , we look at it as a NFA, and
compute regular expressions 푟 .

• We show:

퐿 퐴 = 퐿 푟 푟
∈

– An ω-word belongs to 퐿 퐴 iff it is accepted by a
run that starts at 푞 and visits some accepting
state 푞 infinitely often.

From NBAs to ω-regular expressions

• Example:

퐿 퐴 = 푟 푟 + 푟 푟

DBAs are less expressive than NBAs

• Prop.: The ω-language 푎 + 푏 ∗푏 of words containing
finitely many 푎 is not recognized by any DBA.

• Proof: By contradiction. Assume some DBA recognizes
푎 + 푏 ∗푏 .

– DBA accepts 푏 → DFA accepts 푏
DBA accepts 푏 푎 푏 → DFA accepts 푏 푎 푏
DBA accepts 푏 푎 푏 푎푏 → DFA accepts 푏 푎 푏 푎 푏 etc.

– By determinism and finite number of states, the DBA accepts

 푏 푎 푏 푎 푏 …푎 푏 푎푏 … 푎푏

which does not belong to 푎 + 푏 ∗푏 .

DBAs are less expressive than NBAs

• Prop.: The ω-language 푎 + 푏 ∗푏 of words containing
finitely many 푎 is not recognized by any DBA.

• Proof: By contradiction. Assume some DBA recognizes
푎 + 푏 ∗푏 .

– DBA accepts 푏 → DFA accepts 푏
DBA accepts 푏 푎 푏 → DFA accepts 푏 푎 푏
DBA accepts 푏 푎 푏 푎푏 → DFA accepts 푏 푎 푏 푎 푏 etc.

– By determinism and finite number of states, the DBA accepts

 푏 푎 푏 푎 푏 …푎 푏 푎푏 … 푎푏

which does not belong to 푎 + 푏 ∗푏 .

DBAs are less expressive than NBAs

• Prop.: The ω-language 푎 + 푏 ∗푏 of words containing
finitely many 푎 is not recognized by any DBA.

• Proof: By contradiction. Assume some DBA recognizes
푎 + 푏 ∗푏 .

– DBA accepts 푏 → DFA accepts 푏
DBA accepts 푏 푎 푏 → DFA accepts 푏 푎 푏
DBA accepts 푏 푎 푏 푎푏 → DFA accepts 푏 푎 푏 푎 푏 etc.

– By determinism and finite number of states, the DBA accepts

 푏 푎 푏 푎 푏 …푎 푏 푎푏 … 푎푏

which does not belong to 푎 + 푏 ∗푏 .

DBAs are less expressive than NBAs

• Prop.: The ω-language 푎 + 푏 ∗푏 of words containing
finitely many 푎 is not recognized by any DBA.

• Proof: By contradiction. Assume some DBA recognizes
푎 + 푏 ∗푏 .

– DBA accepts 푏 → DFA accepts 푏
DBA accepts 푏 푎 푏 → DFA accepts 푏 푎 푏
DBA accepts 푏 푎 푏 푎푏 → DFA accepts 푏 푎 푏 푎 푏 etc.

– By determinism and finite number of states, the DBA accepts

 푏 푎 푏 푎 푏 …푎 푏 푎푏 … 푎푏

which does not belong to 푎 + 푏 ∗푏 .

DBAs are less expressive than NBAs

• Prop.: The ω-language 푎 + 푏 ∗푏 of words containing
finitely many 푎 is not recognized by any DBA.

• Proof: By contradiction. Assume some DBA recognizes
푎 + 푏 ∗푏 .

– DBA accepts 푏 → DFA accepts 푏
DBA accepts 푏 푎 푏 → DFA accepts 푏 푎 푏
DBA accepts 푏 푎 푏 푎푏 → DFA accepts 푏 푎 푏 푎 푏 etc.

– By determinism and finite number of states, the DBA accepts

 푏 푎 푏 푎 푏 …푎 푏 푎푏 … 푎푏

which does not belong to 푎 + 푏 ∗푏 .

DBAs are less expressive than NBAs

• Prop.: The ω-language 푎 + 푏 ∗푏 of words containing
finitely many 푎 is not recognized by any DBA.

• Proof: By contradiction. Assume some DBA recognizes
푎 + 푏 ∗푏 .

– DBA accepts 푏 → DFA accepts 푏
DBA accepts 푏 푎 푏 → DFA accepts 푏 푎 푏
DBA accepts 푏 푎 푏 푎푏 → DFA accepts 푏 푎 푏 푎 푏 etc.

– By determinism and finite number of states, the DBA accepts

 푏 푎 푏 푎 푏 …푎 푏 푎푏 … 푎푏

for some 푖 < 푗 . This word does not belong to 푎 + 푏 ∗푏 .

Büchi automata do not form a Trinity

DBANBA

ω-RE

ω-Regular
languages

Co-Büchi automata

• An accepting condition 훼: 2 → {0,1} is a
co-Büchi condition if there is a set 퐹 of accepting states
such that 훼 푄 = 1 iff 푄 ∩ 퐹 = ∅.

– {푞 } ↦ 0, {푞 } ↦ 1, {푞 , 푞 } ↦ 0 is co-Büchi 퐹 = {푞 }

– {푞 } ↦ 0, {푞 } ↦ 1, {푞 , 푞 } ↦ 1 is not co-Büchi

• Equivalently: 휌 is accepting iff inf 휌 ∩ 퐹 = ∅
iff (in words) 휌 visits 퐹 finitely often.

• A co-Büchi condition 훼 is completely determined by 퐹.
We write 퐴 = 푆,퐹 = 푄,Σ, 훿,푄 ,퐹 (danger!)

Co-Büchi automata

• Let 퐴 be a Büchi automaton, let 퐵 be the same co-
Büchi automaton (with the same set 퐹), and let 휌 be
a run:
– 휌 is accepting in 퐴 if it visits 퐹 infinitely often
– 휌 is accepting in 퐵 if it visits 퐹 finitely often

• So an accepting run of 퐴 is a rejecting run of 퐵 and
vice versa.

• Therefore: If 퐴 is a DBA recognizing an 휔-language 퐿,
then 퐵 is a DCA recognizing 퐿.

• Not necessarily true for NBA !

Which are the languages?

Determinizing co-Büchi automata

• Given a NCA 퐴 we construct a DCA 퐵 such that
퐿 퐴 = 퐿 퐵 .

• We proceed in three steps:
– We assign to every ω-word 푤 a directed acyclic graph
푑푎푔(푤) that ``contains´´ all runs of 퐴 on 푤.

– We prove that 푤 is accepted by 퐴 iff 푑푎푔(푤) is infinite
but contains only finitely many breakpoints.

– We construct a DCA 퐵 such that 푤 is accepted by 퐵 iff
푑푎푔(푤) is infinite but contains only finitely many
breakpoints.

• Running example:

푑푎푔(푎푏푎)

푑푎푔 푎푏

• 퐴 accepts 푤 iff some infinite path of 푑푎푔 푤
only visits accepting states finitely often

Levels of a 푑푎푔

Level 0 Level 1 Level 2 Level 3 Level 4

Breakpoints of a 푑푎푔

• We define inductively the set of levels that are
breakpoints:
– Level 0 is always a breakpoint
– If level 푙 is a breakpoint, then the next level 푙′ such

that every path from 푙 to 푙 visits an accepting
state at some level between 푙+1 and 푙 is also a
breakpoint.

Only two breakpoints

Infinitely many breakpoints

Lemma: 퐴 accepts 푤 iff 푑푎푔 푤 is infinite and
has only finitely many breakpoints.

Proof:
(⇒) If 퐴 accepts w, then it has at least one run
on 푤, and so 푑푎푔 푤 is infinite.
Moreover, the run visits accepting states only
finitely often, and so after it stops visiting
accepting states there are no further
breakpoints.

Proof:
(⇐) Assume 푑푎푔 푤 is infinite and has only finitely many
breakpoints. Let 푙 be the last breakpoint.

Since 푑푎푔 푤 is infinite, for every 푙 > 푙 there is a path
from 푙 to 푙 that visits no accepting states.

The subdag containing all these paths is infinite and has
finite degree.

By König‘s Lemma the dag contains an infinite path.

Lemma: 퐴 accepts 푤 iff 푑푎푔 푤 is infinite and
has only finitely many breakpoints.

Constructing the DCA

If we could tell if a level is a breakpoint by looking at it
and to no other level, then we could take the set of all
levels/ breakpoints as the set of states/accepting states
of the DCA.

Level 0 Level 1 Level 2 Level 3 Level 4

Constructing the DCA

However, in oder to decide if a level is a breakpoint we
need information about its ``history´´.
Solution: add that information to the level.

Level 0 Level 1 Level 2 Level 3 Level 4

Constructing the DCA

• States: pairs [푃,푂] where:
– 푃 is the set of states of a level, and
– 푂 ⊆ 푃 is the set of states

``that owe a visit to the set of accepting states‘‘.

• Formally: 푞 ∈ 푂 if 푞 is the endpoint of a path
starting at the last breakpoint that has not yet
visited any accepting state.

Constructing the DCA

• States: pairs [푃,푂]
• Initial state: pair [푄 ,∅].
• Transitions: 훿 푃,푂 ,푎 = [푃 ,푂] where
푃 = 훿(푃, 푎) and 푂 is given by:
– 푂 = 훿 푂,푎 ∖ 퐹 if 푂 ≠ ∅
(automaton updates set of owing states)
– 푂 = 훿 푃,푎 ∖ 퐹 if 푂 = ∅
(automaton starts search for next breakpoint)

• Accepting states: pairs [푃,∅] (no owing states)

• Complexity: at most 3 states

Running example

Co-Büchi Automata do not form a Trinity

Lemma: No DCA (and so no NCA) recognizes the
휔-language 푏∗푎 .

Proof: Assume the contrary. Then the same automaton
seen as a DBA recognizes the complement 휔-language
푎 + 푏 ∗푏 . Contradiction.

It can be proven that all 휔-languages accepted
by NCA are 휔-regular (exercise!).
So NCA are strictly less expressive than NBA.

Co-Büchi Automata do not form a Trinity

DCANCA

ω-RE

ω-Regular
languages

• Recall: No DBA for 푎 + 푏 ∗푏

Generalizing NBAs

• Can be „repaired“ by combining Büchi and
co-Büchi conditions:

Runs that visit 푞 finitely often and moreover visit
푟 infinitely often recognize 푎 + 푏 ∗푏

Rabin automata

• A Rabin pair is a pair 〈퐹,퐺〉 of sets of states.

• An accepting condition 훼: 2 → {0,1} is a Rabin condition
if there is a set 퓡 of Rabin pairs such that

훼 푄 = 1 iff 푄 ∩ 퐹 ≠ ∅ and 푄 ∩ 퐺 = ∅
for some pair 퐹,퐺 ∈ 퓡.

휌 is accepting
iff inf 휌 ∩ 퐹 ≠ ∅ and inf 휌 ∩ 퐺 = ∅ for some 퐹,퐺 ∈퓡
iff (in words) 휌 visits 퐹 infinitely often and G finitely often

for some 퐹,퐺 ∈ 퓡.

Rabin automata

• The accepting condition
{푞 } ↦ 1, {푞 } ↦ 1, {푞 , 푞 } ↦ 0

is neither Büchi nor co-Büchi, but it is the Rabin condition
{ 푞 , 푞 , 푞 , 푞 } (two Rabin pairs)

• Büchi condition 퐹 ≡ Rabin condition { 퐹,∅ }

• Co-Büchi condition 퐺 ≡ Rabin condition { 푄,퐺 }

• Theorem (Safra): Any NRA with 푛 states can be effectively
transformed into a DRA with 푛 states.

From Rabin to Büchi automata

• Let 퐴 be a NRA with condition 〈퐹 ,퐺 〉, … , 〈퐹 ,퐺 〉 .

• Let 퐴 , … ,퐴 be NRAs with the same semi-automaton
as 퐴 but Rabin conditions 〈퐹 ,퐺 〉 , … , 〈퐹 ,퐺 〉
respectively.

• We have: 퐿 퐴 = 퐿 퐴 ∪ ⋯∪ 퐿 퐴

• We proceed in two steps:
1. we construct for each NRA 퐴 an NBA 퐴 such that

퐿 퐴 = 퐿(퐴)
2. we (easily) construct an NBA 퐴′ such that

퐿 퐴′ = 퐿 퐴′ ∪ …∪ 퐿 퐴′

푄\퐺 NRA

NBA with accepting
condition

 푄 ∖ 퐺 ∩ 퐹 ′

Transitions leaving
푄\퐺 are duplicated
and redirected to
the copy of 푄\퐺

푞

푞

푞

푞

Beyond Trinities

• Can we find a class X of 휔-automata such that
• RE, NXA, DXA form a Trinity, and
• Boolean operations for DXAs can be implemented „as for

DFAs“ ?

1) For every DXA 퐴 = (푆,훼) there is a DXA 퐴 = (푆,훼)
recognizing 퐿 퐴

2) For every two DXAs 퐴 = (푆 ,훼) and 퐴 = (푆 ,훼) there is
a DXA 퐴∪ = ([푆 , 푆],훼∪) recognizing 퐿 퐴 ∪ 퐿 (퐴)

3) For every two DXAs 퐴 = (푆 ,훼) and 퐴 = (푆 ,훼) there is
a DXA 퐴∪ = ([푆 , 푆],훼∩) recognizing 퐿 퐴 ∩ 퐿 (퐴)

Beyond Trinities

• Rabin automata: 1): No. 2): Yes. 3): No.

• Given two DRAs 퐴 = (푆 ,훼) and 퐴 = (푆 ,훼),
the DRA 퐴∪ = ([푆 , 푆],훼) where

훼 =
{ 퐹 × 푄 ,퐺 × 푄 ∶ 퐹 ,퐺 ∈ 훼 }

∪
{ 푄 × 퐹 ,푄 × 퐺 ∶ 퐹 ,퐺 ∈ 훼 }

recognizes 퐿 퐴 ∪ 퐿 (퐴)

Beyond Trinities

• Two further Trinities (see notes):
– Street automata: 1): Yes. 2): No. 3): No.
– Parity automata: 1): No. 2): No. 3): Yes.

• A final Trinity:
– Muller automata: 1): Yes. 2): Yes. 3): Yes.

Muller automata

• Automata with arbitrary acceptance conditions.

• A Muller automaton (NMA) is an automaton 퐴 = (푆,훼)
where 훼: 2 → {0,1} is an arbitrary acceptance
condition.

• We represent 훼 by the set 퓕 of all sets of states 푄′ ⊆ 푄
such that 훼 푄′ = 1.

• A run is accepting if the set of states it visits infinitely
often is equal to one of the sets in 퓕.

• Theorem: RE, NMA, and DMA form a Trinity.

Muller automata

• Infinitely many 푎

{ 푞 , 푞 ,푞 , 푞 ,푞 , 푞 ,푞 ,푞 }

• Infinitely many 푎 or infinitely many 푏
{ 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 }

• Infinitely many 푎 and infinitely many 푏

{ 푞 ,푞 , 푞 ,푞 , 푞 }

• Finitely many 푎 or finitely many 푏

{ 푞 , 푞 , 푞 , 푞 ,푞 , 푞 , 푞 }

Muller automata

• Infinitely many 푎

{ 푞 , 푞 ,푞 , 푞 ,푞 , 푞 ,푞 ,푞 }

• Infinitely many 푎 or infinitely many 푏

Muller automata

• Infinitely many 푎

{ 푞 , 푞 ,푞 , 푞 ,푞 , 푞 ,푞 ,푞 }

• Infinitely many 푎 or infinitely many 푏
{ 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 }

Muller automata

• Infinitely many 푎

{ 푞 , 푞 ,푞 , 푞 ,푞 , 푞 ,푞 ,푞 }

• Infinitely many 푎 or infinitely many 푏
{ 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 }

• Infinitely many 푎 and infinitely many 푏

Muller automata

• Infinitely many 푎

{ 푞 , 푞 ,푞 , 푞 ,푞 , 푞 ,푞 ,푞 }

• Infinitely many 푎 or infinitely many 푏
{ 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 }

• Infinitely many 푎 and infinitely many 푏

{ 푞 ,푞 , 푞 ,푞 , 푞 }

Muller automata

• Infinitely many 푎

{ 푞 , 푞 ,푞 , 푞 ,푞 , 푞 ,푞 ,푞 }

• Infinitely many 푎 or infinitely many 푏
{ 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 }

• Infinitely many 푎 and infinitely many 푏

{ 푞 ,푞 , 푞 ,푞 , 푞 }

• Finitely many 푎 or finitely many 푏

Muller automata

• Infinitely many 푎

{ 푞 , 푞 ,푞 , 푞 ,푞 , 푞 ,푞 ,푞 }

• Infinitely many 푎 or infinitely many 푏
{ 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 , 푞 }

• Infinitely many 푎 and infinitely many 푏

{ 푞 ,푞 , 푞 ,푞 , 푞 }

• Finitely many 푎 or finitely many 푏

{ 푞 , 푞 , 푞 , 푞 ,푞 , 푞 , 푞 }

Boolean operations on DMAs

• Let 퐴 = (푆,퓕) be a DMA. The DRA 퐴̅ = (푆,퓕), where

퓕 = {푅 ⊆ 푄 ∶ 푅 ∉ 퓕}

recognizes 퐿 퐴 .

Boolean operations on DMAs

• Let 퐴 = (푆,퓕) be a DMA. The DRA 퐴̅ = (푆,퓕), where

퓕 = {푅 ⊆ 푄 ∶ 푅 ∉ 퓕}

recognizes 퐿 퐴 .

Problem: 퓕 can be exponentially larger than 퓕 !!

Boolean operations on DMAs

• Let 퐴 = (푆 ,퓕) and 퐴 = 푆 ,퓕 be DMAs

• Given 푅 ⊆ 푄 × 푄 , let 푅| and 푅| denote the projections of
푅 on 푄 and 푄 .

• The DRAs 퐴∪ = ([푆 ,푆],퓕∪) and 퐴∩ = ([푆 ,푆],퓕∩) , where

퓕∪ = {푅 ⊆ 푄 × 푄 ∶ 푅| ∈ 퓕 or 푅| ∈ 퓕 }

퓕∩ = 푅 ⊆ 푄 × 푄 ∶ 푅| ∈ 퓕 and 푅| ∈ 퓕

recognize 퐿 퐴 ∪ 퐿 (퐴) and 퐿 퐴 ∩ 퐿 (퐴) .

• Same problem as for complementation: 퓕∪ and 퓕∩ can be
exponentially larger than퓕.

Summary

Y: the underlying conversion or operation has polynomial blow-up

Expr: Is there a conversion from RE to NXA?
Det: Is there a conversion from NXA to DXA?
Union: Does pairing work for DXA and union?
Inters: Does pairing work for DXA and intersection?
Comp: Can DXA be complemented without changing

the semi-automaton?

