Verification with ω-automata
Recall: a full execution of a program is an execution that cannot be extended (either infinite or ending at a configuration without successors).

We consider programs that may have \(\omega\)-executions.

We assume w.l.o.g. that every full execution of the program is infinite (see next slide).

Therefore: full executions = \(\omega\)-executions
Handling finite full executions

1 while $x = 1$ do
2 if $y = 1$ then
3 $x \leftarrow 0$
4 $y \leftarrow 1 - x$
5 end

We artificially ensure that every full execution is infinite by adding a self-loop to every state without successors.
Verifying a program

• **Goal**: automatically check if some ω-execution violates a property.

• **Safety property**: “nothing bad happens”
 – No configuration satisfies $x = 1$.
 – No configuration is a deadlock.
 – Along an execution the value of x cannot decrease.

• **Liveness property**: “something good eventually happens”
 – Eventually x has value 1.
 – Every message sent during the execution is eventually received.
Safety and liveness: more precisely

- A finite execution w is bad for a given property if every potential ω-execution of the form $w \cdot w'$ violates the property.
- A property is a safety property if every ω-execution that violates the property has a bad prefix. (Intuitively: after finite time we can already say that the property does not hold)
- A property is a liveness property if some ω-execution that violates the property has no bad prefix. (We can only tell that the property is a violation ``after seeing the complete ω-execution'').
Approach to automatic verification

- Represent the set of ω-executions of the program as a NBA. (The **system NBA**).
- Represent the set of possible ω-executions that violate the property as a NBA (or an ω-regular expression). (The **property NBA**).
- Check emptiness of the intersection of the two NBAs.
Problem: Fairness

• We may want to exclude some ω-executions because they are “unfair”.
• Example: finite waiting property in Lamport’s mutex algorithm.
Lamport’s algorithm

\[
\begin{align*}
&b_0 \leftarrow 0, & b_0 \leftarrow 1, \\
&b_0 = 0 & b_0 = 1 \\
&b_0 \leftarrow 1 & b_0 \leftarrow 0 \\
&b_0 \leftarrow 0 & b_0 \leftarrow 0
\end{align*}
\]
Asynchronous product
Finite waiting property

- **Finite waiting**: If a process is trying to access the critical section, it eventually will.

- **Formalization**: Let NC_i, T_i, C_i be atomic propositions mapped to the sets of configurations where process i is in the non-critical section, trying to access it, and in the critical section, respectively. The full executions that violate finite waiting for process i are

 $$\Sigma^* T_i (\Sigma \setminus C_i)\omega$$

- **Observe**: all states of the system NBA are final, and so we can intersect NBAs using the algorithm for NFAs
Finite waiting property

• The finite waiting property does not hold because of

\[[0,0,nc_0,nc_1] \ [1,0,t_0,nc_1] \ [1,1,t_0,t_1]^\omega \]

• Is this a real problem of the algorithm? No! We have not specified correctly.

• Fairness assumption: both processes execute infinitely many actions.
(Usually a weaker assumption is used: if a process can execute actions infinitely often, it executes infinitely many actions.)

• Reformulation: in every fair \(\omega\)-execution, if a process is trying to access the critical section, it will eventually access it.
Finite waiting property

• The violations of the property under fairness are the intersection of $\Sigma^* T_i (\Sigma \setminus C_i)^\omega$ and the ω-executions in which both processes make a move infinitely often.

• **Problem:** how do we represent this condition as an ω-regular language?

• **Solution:** enrich the alphabet of the NBA
 Letter: pair (c, i) where c is a configuration and i is the index of the process making the move.
Finite waiting property

- Denote by M_0 and M_1 the set of letters with index 0 and 1, respectively.
- The possible ω-executions where both processes move infinitely often is given by

$$\left((M_0 + M_1)^* M_0 M_1\right)^\omega$$

- Finite waiting holds under fairness for process 0 but not for process 1 because of

$$\left([0,0,nc_0,nc_1][0,1,nc_0,t_1][1,1,t_0,t_1][1,1,t_0,q_1] [1,0,t_0,q'_1][1,0,c_0,q'_1][0,0,nc_0,q'_1] \right)^\omega$$
Temporal logic

- Writing property NBAs or ω-regular expressions requires training in automata theory.
- We search for a more intuitive (but still formal) description language: Temporal Logic.
- Temporal logic extends propositional logic with temporal operators like always and eventually.
- Linear Temporal Logic (LTL) is a temporal logic interpreted over linear structures.
Linear Temporal Logic (LTL)

We are given:

- A set \(AP \) of atomic propositions (names for basic properties)
- A valuation assigning to each atomic proposition a set of configurations (intended meaning: the set of configurations that satisfy the property).
Example

1. while $x = 1$ do
2. if $y = 1$ then
3. $x \leftarrow 0$
4. $y \leftarrow 1 - x$
5. end

- $AP : at_1, at_2, \ldots, at_5, x=0, x=1, y=0, y=1$
- $V(at_i) = \{[\ell, x, y] \in C \mid \ell = i\}$ for every $i \in \{1, \ldots, 5\}$
- $V(x=0) = \{[\ell, x, y] \in C \mid x = 0\}$
Computations

- A computation is an infinite sequence of subsets of AP.
- Examples for $AP = \{p, q\}$
 \[
 \emptyset^\omega \quad (\{p\}\{p, q\})^\omega \quad \{p\} \{p, q\} \emptyset \emptyset \{p\}^\omega
 \]
- We map every possible execution to a computation by mapping each configuration to the set of atomic propositions it satisfies.
- A computation is executable if some ω-execution maps to it.
Example

ω-executions:

\[e_1 = [1,0,0] \ [5,0,0]^{\omega} \]
\[e_2 = ([1,1,0] \ [2,1,0] \ [4,1,0])^{\omega} \]
\[e_3 = [1,0,1] \ [5,0,1]^{\omega} \]
\[e_4 = [1,1,1] \ [2,1,1] \ [3,1,1] \ [4,0,1] \ [1,0,1] \ [5,0,1]^{\omega} \]
From executions to computations

\[e_1 = [1,0,0] [5,0,0]^{\omega} \]

\[e_2 = ([1,1,0] [2,1,0] [4,1,0])^{\omega} \]

\[\sigma_1 = \{\text{at}1, x=0, y=0\} \{\text{at}5, x=0, y=0\}^{\omega} \]

\[\sigma_2 = (\{\text{at}1, x=0, y=0\} \{\text{at}2, x=1, y=0\} \{\text{at}4, x=1, y=0\})^{\omega} \]
Syntax of LTL

• Given: set AP of atomic propositions, valuation assigning to each atomic proposition a set configurations.

• The formulas of LTL are given by the syntax:

$$\varphi ::= \text{true} \mid p \mid \neg \varphi_1 \mid \varphi_1 \land \varphi_2 \mid X\varphi_1 \mid \varphi_1 U \varphi_2$$

where $p \in AP$
Semantics of LTL

- Formulas are interpreted on computations (executable or not).
- The satisfaction relation $\sigma \models \varphi$ is given by:

 $\sigma \models true$

 $\sigma \models p$ iff $p \in \sigma(0)$

 $\sigma \models \neg \varphi$ iff not $\sigma \models \varphi$

 $\sigma \models \varphi_1 \land \varphi_2$ iff $\sigma \models \varphi_1$ and $\sigma \models \varphi_2$

 $\sigma \models X\varphi$ iff $\sigma^1 \models \varphi$

 $\sigma \models \varphi_1 U \varphi_2$ iff there is $k \geq 0$ s.t. $\sigma^k \models \varphi_2$ and $\sigma^i \models \varphi_1$ for all $0 \leq i < k$
Abbreviations

• The boolean abbreviations false, ∨, →, ↔ etc. are defined as usual.

• $F\varphi := \text{true} \cup \varphi$ (eventually φ).

 According to the semantics:

 $\sigma \models F\varphi$ iff there is $k \geq 0$ s.t. $\sigma^k \models \varphi$

• $G\varphi := \neg F\neg \varphi$ (always φ or globally φ).

 According to the semantics:

 $\sigma \models G\varphi$ iff $\sigma^k \models \varphi$ for every $k \geq 0$
Getting used to LTL

• Express in natural language FGp, GFp

• Are these pairs of formulas equivalent?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$FFp</td>
<td>$Fp</td>
<td>$GGp</td>
<td>$Gp</td>
</tr>
<tr>
<td>$FGp</td>
<td>$Gfp</td>
<td>$FGfp</td>
<td>$Gfp</td>
</tr>
<tr>
<td>$p \ U \ q$</td>
<td>$p \ U \ (p \land q)$</td>
<td>$p \ U \ q$</td>
<td>$p \ U \ (p \land q)$</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$Fp</td>
<td>$p \lor XFp$</td>
<td>$Fp</td>
<td>$p \land XFp$</td>
</tr>
<tr>
<td>$Gp</td>
<td>$p \lor XGp$</td>
<td>$Gp</td>
<td>$p \land XGp$</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$p \ U \ q$</td>
<td>$p \lor X(p \ U \ q)$</td>
<td>$p \ U \ q$</td>
<td>$p \land X(p \ U \ q)$</td>
</tr>
<tr>
<td>$p \ U \ q$</td>
<td>$q \lor X(p \ U \ q)$</td>
<td>$p \ U \ q$</td>
<td>$q \land X(p \ U \ q)$</td>
</tr>
<tr>
<td>$p \ U \ q$</td>
<td>$q \lor (p \land X (p \ U \ q))$</td>
<td>$p \ U \ q$</td>
<td>$q \land (p \lor X (p \ U \ q))$</td>
</tr>
</tbody>
</table>
Expressing properties of a program

- \(AP : at_1, at_2, \ldots, at_5, x=0, x=1, y=0, y=1 \)

- \(V(at_i) = \{[\ell, x, y] \in C \mid \ell = i\} \) for every \(i \in \{1, \ldots, 5\} \)

- \(V(x=0) = \{[\ell, x, y] \in C \mid x=0\} \)

- \(\phi_0 = x=1 \land Xy=1 \land XXat3 \)

- \(\phi_1 = Fx=0 \)

- \(\phi_2 = x=0 \cup at5 \)

- \(\phi_3 = y=1 \land F(x=0 \land at5) \land \neg (F(y=0 \land Xy=1)) \)
Expressing properties of Lamport´s algorithm

- \(AP = \{NC_0, T_0, C_0, NC_1, T_1, C_1, M_0, M_1\} \)

Valuation as expected.

- Mutual exclusion: \(G(\neg C_0 \lor \neg C_1) \)

- Finite waiting: \(G(T_0 \rightarrow FC_0) \land G(T_1 \rightarrow FC_1) \)

- Fair finite waiting:
 \[
 (GF M_0 \land GF M_1) \rightarrow (G(T_0 \rightarrow FC_0) \land G(T_1 \rightarrow FC_1))
 \]
Expressing properties of Lamport´s algorithm

• Bounded overtaking:

\[G \left(T_0 \rightarrow \left(\neg C_1 \cup \left(C_1 \cup \left(\neg C_1 \cup C_0 \right) \right) \right) \right) \]

Whenever \(T_0 \) holds, the computation continues with a (possibly empty) interval at which \(\neg C_1 \) holds, followed by a (possibly empty) interval at which \(C_1 \) holds, followed by a point at which \(C_0 \) holds.
From formulas to NBAs

- Given: set AP of atomic propositions
- Language $L(\varphi)$ of a formula φ: set of computations satisfying φ.
- Examples for $AP = \{p, q\}$
 - $L(Fp) = \text{computations } s_1s_2s_3 \ldots \text{ such that } p \in s_i \text{ for some } i \geq 1$
 - $L(G(p \land q)) = \{ \{p, q\}^\omega \}$
- $L(\varphi)$ is an ω-language over the alphabet 2^{AP}
- For $AP = \{p, q\}$ we get $2^{AP} = \{\emptyset, \{p\}, \{q\}, \{p, q\}\}$
NBAs for some formulas

\[AP = \{ p, q \} \]

- \(Fp \)
- \(Gp \)
- \(p \cup q \)
- \(GFp \)
We present an algorithm that takes a formula φ over a fixed set AP of atomic propositions as input and returns a NGA A_φ such that $L(A_\varphi) = L(\varphi)$.
Closure of a formula

- Define $\text{neg}(\varphi) = \begin{cases} \psi & \text{if } \varphi = \neg \psi \\ \neg \varphi & \text{otherwise} \end{cases}$

- The closure $\text{cl}(\varphi)$ of φ is the set containing ψ and $\text{neg}(\psi)$ for every subformula ψ of φ

- Example:

$$\text{cl}(p \lor \neg q) = \{ p, \neg p, \neg q, q, p \lor \neg q, \neg (p \lor \neg q) \}$$
Satisfaction sequence

• The satisfaction sequence of a computation $s_0 s_1 s_2 \ldots$ with respect to φ is the sequence $\alpha_0 \alpha_1 \alpha_2 \ldots$ where α_i contains the formulas of $cl(\varphi)$ satisfied by $s_i s_{i+1} s_{i+2} \ldots$
Satisfaction sequence

• The satisfaction sequence of a computation $s_0s_1s_2 \ldots$ with respect to φ is the sequence $\alpha_0\alpha_1\alpha_2 \ldots$ where α_i contains the formulas of $cl(\varphi)$ satisfied by $s_is_{i+1}s_{i+2} \ldots$

• The satisfaction sequence of $\{p\}^\omega$ w.r.t. $p \cup q$ is:
The satisfaction sequence of a computation $s_0s_1s_2 \ldots$ with respect to φ is the sequence $\alpha_0\alpha_1\alpha_2 \ldots$ where α_i contains the formulas of $cl(\varphi)$ satisfied by $s_is_{i+1}s_{i+2} \ldots$

The satisfaction sequence of $\{p\}^\omega$ w.r.t. $p \cup q$ is:

$$\{p, \neg q, \neg (p \cup q)\}^\omega$$
The satisfaction sequence of a computation $s_0s_1s_2 \ldots$ with respect to φ is the sequence $\alpha_0\alpha_1\alpha_2 \ldots$ where α_i contains the formulas of $cl(\varphi)$ satisfied by $s_is_{i+1}s_{i+2} \ldots$

The satisfaction sequence of $\{p\}^\omega$ w.r.t. $p \cup q$ is:

$$\{p, \neg q, \neg (p \cup q)\}^\omega$$

The satisfaction sequence of $({\{p\}{q}})^\omega$ w.r.t. $p \cup q$ is:
Satisfaction sequence

- The satisfaction sequence of a computation $s_0s_1s_2 \ldots$ with respect to φ is the sequence $\alpha_0\alpha_1\alpha_2 \ldots$ where α_i contains the formulas of $cl(\varphi)$ satisfied by $s_is_{i+1}s_{i+2} \ldots$

- The satisfaction sequence of $\{p\}^\omega$ w.r.t. $p \cup q$ is:

 \[\{p, \neg q, \neg (p \cup q)\}^\omega \]

- The satisfaction sequence of $(\{p\}\{q\})^\omega$ w.r.t. $p \cup q$ is:

 \[(\{p, \neg q, p \cup q\} \{\neg p, q, p \cup q\})^\omega \]

- Goal for the next slides: give a syntactic characterization of the satisfaction sequence
Atoms

- Intuition: an atom is a “maximal set of formulas of $cl(\varphi)$ that can be simultaneously true if one only knows the meaning of \neg and \land”

- A set $\alpha \subseteq \mathcal{L}(\varphi)$ is an atom if it satisfies the following conditions:
 - If $\varphi \in \mathcal{L}(\varphi)$, then $\varphi \in \alpha$.
 - For every $\varphi \in \mathcal{L}(\varphi)$, exactly one of φ and $\neg \varphi$ belong to α.
 - For every $\varphi_1 \land \varphi_2 \in \mathcal{L}(\varphi)$, $\varphi_1 \land \varphi_2 \in \alpha$ iff $\varphi_1 \in \alpha$ and $\varphi_2 \in \alpha$.

- Examples of atoms for $\varphi = \neg (\varphi \land \psi) \cup \varphi$:
 - $\neg \varphi$, $\neg \psi$, $\neg \varphi \land \psi$, φ, $\varphi \land \psi$, ψ.

- Examples of non-atoms for $\varphi = \neg (\varphi \land \psi) \cup \varphi$:
 - φ, ψ, $\varphi \land \psi$, $\neg \varphi$, $\neg \psi$, $\neg \varphi \land \psi$, $\varphi \land \neg \psi$.

- We have: all elements of a satisfaction sequence are atoms.
Atoms

• Intuition: an atom is a “maximal set of formulas of $cl(\varphi)$ that can be simultaneously true if one only knows the meaning of \neg and \wedge”

• A set $\alpha \subseteq cl(\varphi)$ is an atom if it satisfies the following conditions:
 – If $\text{true} \in cl(\varphi)$, then $\text{true} \in \alpha$
 – For every $\psi \in cl(\varphi)$, exactly one of ψ and $\text{neg}(\psi)$ belong to α
 – For every $\psi_1 \land \psi_2 \in cl(\varphi)$, $\psi_1 \land \psi_2 \in \alpha$ iff $\psi_1 \in \alpha$ and $\psi_2 \in \alpha$
Atoms

- Intuition: an atom is a “maximal set of formulas of $cl(\varphi)$ that can be simultaneously true if one only knows the meaning of \neg and \land”

- A set $\alpha \subseteq cl(\varphi)$ is an atom if it satisfies the following conditions:
 - If $\text{true} \in cl(\varphi)$, then $\text{true} \in \alpha$
 - For every $\psi \in cl(\varphi)$, exactly one of ψ and $\neg(\psi)$ belong to α
 - For every $\psi_1 \land \psi_2 \in cl(\varphi)$, $\psi_1 \land \psi_2 \in \alpha$ iff $\psi_1 \in \alpha$ and $\psi_2 \in \alpha$

- Examples of atoms for $\varphi = \neg(p \land q) \cup \neg p$:
 - $\{\neg p, \neg q, \neg (p \land q), \neg p, \varphi\}$
 - $\{p, q, (p \land q), \neg \neg p, \neg \varphi\}$
Atoms

- Intuition: an atom is a “maximal set of formulas of $cl(\varphi)$ that can be simultaneously true if one only knows the meaning of \neg and \land”

- A set $\alpha \subseteq cl(\varphi)$ is an atom if it satisfies the following conditions:
 - If $\text{true} \in cl(\varphi)$, then $\text{true} \in \alpha$
 - For every $\psi \in cl(\varphi)$, exactly one of ψ and $\text{neg}(\psi)$ belong to α
 - For every $\psi_1 \land \psi_2 \in cl(\varphi)$, $\psi_1 \land \psi_2 \in \alpha$ iff $\psi_1 \in \alpha$ and $\psi_2 \in \alpha$

- Examples of atoms for $\varphi = \neg(p \land q) \cup Fp$:
 \[
 \{-p, -q, \neg(p \land q), Fp, \varphi\} \quad \{p, q, (p \land q), \neg Fp, \neg \varphi\}
 \]

- Examples of non-atoms for $\varphi = \neg(p \land q) \cup Fp$:
 \[
 \{p, q, p \land q, Fp\} \quad \{-p, q, p \land q, Fp, \varphi\}
 \]
Atoms

- Intuition: an atom is a “maximal set of formulas of \(cl(\varphi) \) that can be simultaneously true if one only knows the meaning of \(\neg \) and \(\land \)”
- A set \(\alpha \subseteq cl(\varphi) \) is an atom if it satisfies the following conditions:
 - If \(\text{true} \in cl(\varphi) \), then \(\text{true} \in \alpha \)
 - For every \(\psi \in cl(\varphi) \), exactly one of \(\psi \) and \(\neg(\psi) \) belong to \(\alpha \)
 - For every \(\psi_1 \land \psi_2 \in cl(\varphi) \), \(\psi_1 \land \psi_2 \in \alpha \) iff \(\psi_1 \in \alpha \) and \(\psi_2 \in \alpha \)
- Examples of atoms for \(\varphi = \neg(p \land q) \cup Fp \):
 \{\neg p, \neg q, \neg (p \land q), Fp, \varphi\} \ \{p, q, (p \land q), \neg Fp, \neg \varphi\}
- Examples of non-atoms for \(\varphi = \neg(p \land q) \cup Fp \):
 \{p, q, p \land q, Fp\} \ \{\neg p, q, p \land q, Fp, \varphi\}
- We have: all elements of a satisfaction sequence are atoms
Pre-Hintikka sequences

- A pre-Hinttika sequence for φ is a sequence $\alpha_0 \alpha_1 \alpha_2 \ldots$ of atoms satisfying the following conditions for every $i \geq 0$:
 - For every $X\psi \in cl(\varphi)$:
 $X\psi \in \alpha_i$ iff $\psi \in \alpha_{i+1}$
 - For every $\psi_1 U \psi_2 \in cl(\varphi)$:
 $\psi_1 U \psi_2 \in \alpha_i$ iff $\psi_2 \in \alpha_i$ or $\psi_1 \in \alpha_i$ and $\psi_1 U \psi_2 \in \alpha_{i+1}$
Pre-Hintikka sequences

• A pre-Hinttika sequence for φ is a sequence $\alpha_0\alpha_1\alpha_2 \ldots$ of atoms satisfying the following conditions for every $i \geq 0$:
 – For every $X\psi \in cl(\varphi)$:
 $X\psi \in \alpha_i$ iff $\psi \in \alpha_{i+1}$
 – For every $\psi_1 \cup \psi_2 \in cl(\varphi)$:
 $\psi_1 \cup \psi_2 \in \alpha_i$ iff $\psi_2 \in \alpha_i$ or $\psi_1 \in \alpha_i$ and $\psi_1 \cup \psi_2 \in \alpha_{i+1}$
• We have: every satisfaction sequence is a pre-Hintikka sequence.
Hintikka sequences

• A pre-Hinttika sequence $\alpha_0 \alpha_1 \alpha_2 \ldots$ is a Hinttika sequence if it satisfies for every $i \geq 0$:
 – For every $\psi_1 \cup \psi_2 \in cl(\varphi)$: if $\psi_1 \cup \psi_2 \in \alpha_i$ then there exists $j \geq i$ such that $\psi_2 \in \alpha_j$

• We have: every satisfaction sequence is a Hintikka sequence.
Hintikka sequences: An example

- Let $\varphi = \neg (p \land q) \lor (r \land s)$. Which of the following are pre-Hintikka and Hintikka sequences?
Hintikka sequences: An example

Let $\varphi = \neg (p \land q) \cup (r \land s)$. Which of the following are pre-Hintikka and Hintikka sequences?

1. $\{p, \neg q, r, s, \varphi\}^\omega$
Hintikka sequences: An example

• Let $\varphi = \neg(p \land q) \cup (r \land s)$. Which of the following are pre-Hintikka and Hintikka sequences?

1. $\{p, \neg q, r, s, \varphi\}^\omega$
2. $\{\neg p, r, \neg \varphi\}^\omega$
Hintikka sequences: An example

• Let $\varphi = \neg(p \land q) \cup (r \land s)$. Which of the following are pre-Hintikka and Hintikka sequences?

1. $\{p, \neg q, r, s, \varphi\}^\omega$
2. $\{\neg p, r, \neg \varphi\}^\omega$
3. $\{\neg p, q, \neg r, (r \land s), \neg \varphi\}^\omega$
Hintikka sequences: An example

- Let $\varphi = \neg (p \land q) \lor (r \land s)$. Which of the following are pre-Hintikka and Hintikka sequences?

1. $\{p, \neg q, r, s, \varphi\}^\omega$
2. $\{\neg p, r, \neg \varphi\}^\omega$
3. $\{\neg p, q, \neg r, (r \land s), \neg \varphi\}^\omega$
4. $\{p, q, (p \land q), r, s, (r \land s), \neg \varphi\}^\omega$
Hintikka sequences: An example

Let $\varphi = \neg (p \land q) \cup (r \land s)$. Which of the following are pre-Hintikka and Hintikka sequences?

1. $\{p, \neg q, r, s, \varphi\}^\omega$
2. $\{\neg p, r, \neg \varphi\}^\omega$
3. $\{\neg p, q, \neg r, (r \land s), \neg \varphi\}^\omega$
4. $\{p, q, (p \land q), r, s, (r \land s), \neg \varphi\}^\omega$
5. $\{p, \neg q, \neg (p \land q), \neg r, s, \neg (r \land s), \varphi\}^\omega$
Hintikka sequences: An example

• Let $\varphi = \neg(p \land q) \cup (r \land s)$. Which of the following are pre-Hintikka and Hintikka sequences?

1. $\{p, \neg q, r, s, \varphi\}^\omega$
2. $\{\neg p, r, \neg \varphi\}^\omega$
3. $\{\neg p, q, \neg r, (r \land s), \neg \varphi\}^\omega$
4. $\{p, q, (p \land q), r, s, (r \land s), \neg \varphi\}^\omega$
5. $\{p, \neg q, \neg (p \land q), \neg r, s, \neg (r \land s), \varphi\}^\omega$
6. $\{p, q, (p \land q), r, s, (r \land s), \varphi\}^\omega$
Main theorem

• **Definition:** A Hintikka sequence \(\alpha_0 \alpha_1 \alpha_2 \ldots \) extends a computation \(s_0 s_1 s_2 \ldots \) if \(s_i \cap \text{cl}(\varphi) = \alpha_i \cap AP \) for every \(i \geq 0 \).

• **Theorem:** Every computation \(s_0 s_1 s_2 \ldots \) can be extended to a unique Hintikka sequence, and this extension is the satisfaction sequence.
Strategy for the NGA of a formula

• Let σ be a computation over AP.
Strategy for the NGA of a formula

• Let σ be a computation over AP.

• We have: $\sigma \models \varphi$

 iff φ belongs to the first set of the satisfaction sequence for σ

 iff φ belongs to the first set of the Hintikka sequence for σ
Strategy for the NGA of a formula

- Let σ be a computation over AP.
- We have: $\sigma \models \varphi$
 - iff φ belongs to the first set of the satisfaction sequence for σ
 - iff φ belongs to the first set of the Hintikka sequence for σ
- Strategy: design the NGA so that for every σ
 - The runs on σ correspond to the pre-Hintikka sequences $\alpha_0 \alpha_1 \alpha_2 \ldots$ that extend σ and satisfy $\varphi \in \alpha_0$
 - A run is accepting iff its corresponding pre-Hintikka sequence is also a Hintikka sequence.
The NGA A_φ
The NGA A_φ

- **Alphabet:** 2^{AP}
The NGA A_φ

- **Alphabet:** 2^{AP}
- **States:** atoms of φ.
The NGA A_φ

- **Alphabet:** 2^{AP}
- **States:** atoms of φ.
- **Initial states:** atoms containing φ.
The NGA A_φ

- **Alphabet:** 2^{AP}
- **States:** atoms of φ.
- **Initial states:** atoms containing φ.
- **Transitions:** triples $\alpha \rightarrow \beta$ such that $\alpha \cap AP = s$ and $\alpha \beta$ satisfies the conditions of a pre-Hintikka sequence.
The NGA A_φ

- **Alphabet:** 2^{AP}
- **States:** atoms of φ.
- **Initial states:** atoms containing φ.
- **Transitions:** triples $\alpha \xrightarrow{s} \beta$ such that $\alpha \cap AP = s$ and $\alpha \beta$ satisfies the conditions of a pre-Hintikka sequence.
- **Sets of accepting states:** A set $F_{\psi_1 \cup \psi_2}$ for every until-subformula $\psi_1 \cup \psi_2$ of φ.

$F_{\psi_1 \cup \psi_2}$ contains the atoms α such that $\psi_1 \cup \psi_2 \notin \alpha$ or $\psi_2 \in \alpha$.
Example: The NGA $A_{\rho \cup q}$

(Labels of transitions omitted. The label of a transition from atom α is the set $\{p \in AP \mid p \in \alpha\}$. There is only one set of accepting states.)
Some observations

- All transitions leaving a state carry the same label.
- For every computation $s_0 s_1 s_2 \ldots$ satisfying φ there is a unique accepting run $\alpha_0 \rightarrow \alpha_1 \rightarrow \alpha_2 \rightarrow \ldots$, namely the one such that $\alpha_0 \alpha_1 \alpha_2 \ldots$ is the satisfaction sequence for $s_0 s_1 s_2 \ldots$.
- The sets of computations accepted from each initial state are pairwise disjoint.
- The number of states is bounded by $2^{\|\varphi\|}$.