1. Analyse des algorithmes

Temps d'exécution

- ▶ Opérations élémentaires: dépend du contexte, souvent comparaisons, affectations, arithmétique, accès, etc.
- ightharpoonup Pire cas $t_{max}(n)$: nombre maximum d'opérations élémentaires exécutées parmi les entrées de taille n
- ▶ Meilleur cas $t_{\min}(n)$: même chose avec « minimum »
- $ightharpoonup t_{\max}(m,n)$, $t_{\min}(m,n)$: même chose par rapport à m et n

Notation asymptotique

- \blacktriangleright Déf.: $f \in \mathcal{O}(q)$ si $n > n_0 \to f(n) < c \cdot q(n)$ pour certains c, n_0
- ▶ Signifie: f croît moins ou aussi rapid. que g pour $n \to \infty$
- ▶ Transitivité: $f \in \mathcal{O}(g)$ et $g \in \mathcal{O}(h) \to f \in \mathcal{O}(h)$
- ▶ Règle des coeff.: $f_1 + \ldots + f_k \in \mathcal{O}(c_1 \cdot f_1 + \ldots + c_k \cdot f_k)$
- ▶ Règle du max.: $f_1 + \ldots + f_k \in \mathcal{O}(\max(f_1, \ldots, f_k))$
- ▶ $D\acute{e}f$: $f \in \Omega(g) \leftrightarrow g \in \mathcal{O}(f)$; $f \in \Theta(g) \leftrightarrow f \in \mathcal{O}(g) \cap \Omega(g)$
- ▶ Règle des poly.: f polynôme de degré $d \to f \in \Theta(n^d)$

Notation asymptotique (suite)

- ► Simplification: lignes élem. comptées comme une seule opér.
- ► Règle de la limite:

$$\lim_{n \to +\infty} \frac{f(n)}{g(n)} = \begin{cases} 0 & f \in \mathcal{O}(g) \text{ et } g \notin \mathcal{O}(f) \\ +\infty & f \notin \mathcal{O}(g) \text{ et } g \in \mathcal{O}(f) \\ \text{const.} & \Theta(f) = \Theta(g) \end{cases}$$

▶ *Multi-params*.: $\mathcal{O}, \Omega, \Theta$ étendues avec plusieurs seuils

Correction et terminaison

- ightharpoonup Correct: sur toute entrée x qui satisfait la pré-condition, x et sa sortie y satisfont la post-condition
- ► Termine: atteint instruction retourner sur toute entrée
- ► *Invariant*: propriété qui demeure vraie à chaque fois qu'une ou certaines lignes de code sont atteintes

Exemples de complexité

$$\mathcal{O}(1) \subset \mathcal{O}(\log n) \subset \mathcal{O}(n) \subset \mathcal{O}(n\log n) \subset \mathcal{O}(n^2) \subset \mathcal{O}(n^2\log n)$$
$$\subset \mathcal{O}(n^3) \subset \mathcal{O}(n^d) \subset \mathcal{O}(2^n) \subset \mathcal{O}(3^n) \subset \mathcal{O}(b^n) \subset \mathcal{O}(n!)$$

2. Tri

Approche générique

- ▶ *Inversion*: indices (i, j) t.q. i < j et s[i] > s[j]
- ▶ Progrès: corriger une inversion en diminue la quantité
- ▶ Procédure: sélectionner et corriger une inversion, jusqu'à ce qu'il n'en reste plus

Algorithmes (par comparaison)

- ▶ Insertion: considérer s[1:i-1] triée et insérer s[i] dans s[1:i]
- ▶ Monceau: transformer s en monceau et retirer ses éléments
- Fusion: découper s en deux, trier chaque côté et fusionner
- ► *Rapide*: réordonner autour d'un pivot et trier chaque côté

Propriétés

- ► Sur place: n'utilise pas de séquence auxiliaire
- ► Stable: l'ordre relatif des éléments égaux est préservé

Sommaire

Algorithme	Con	ıplexité (par	Sur place	Stable		
Augoriumic	meilleur	moyen	pire	our place	Stabic	
insertion	$\Theta(n)$	$\Theta(n^2)$	$\Theta(n^2)$	✓	√	
monceau	$\Theta(n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	√	Х	
fusion	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	Х	√	
rapide	$\Theta(n)$	$\Theta(n \log n)$	$\Theta(n^2)$	✓	Х	

Usage

- ▶ Petite taille: tri par insertion
- ► Grande taille: tri par monceau ou tri rapide
- ► *Grande taille* + *stabilité*: tri par fusion

Tri sans compraison

- ▶ Par comparaison: barrière théorique de $\Omega(n \log n)$
- ► Sans comparaison: possible de faire mieux pour certains cas
- ► Représentation binaire: trier (de façon stable) en ordonnant du bit de poids faible vers le bit de poids fort
- ► Complexité: $\Theta(mn)$ où m = nombre de bits et n = |s|

3. Graphes

Graphes

- ▶ Graphe: $\mathcal{G} = (V, E)$ où V = sommets et E = arêtes
- ▶ Dirigé vs. non dirigé: $\{u, v\} \in E$ vs. $(u, v) \in E$
- ▶ *Degré (cas non dirigé)*: deg(u) = # de voisins
- ▶ Degré (cas dirigé): $deg^-(u) = \# préd., deg^+(u) = \# succ.$
- ▶ *Taille*: $|E| \in \Theta$ (somme des degrés) et $|E| \in \mathcal{O}(|V|^2)$
- ▶ *Chemin*: séq. $u_0 \rightarrow \cdots \rightarrow u_k$ (taille = k, simple si sans rép.)
- ightharpoonup Cycle: chemin de u vers u (simple si sans rép. sauf début/fin)
- ► Sous-graphe: obtenu en retirant sommets et/ou arêtes
- ► Composante: sous-graphe max. où sommets access. entre eux

Parcours

- ► *Profondeur*: explorer le plus loin possible, puis retour (pile)
- ► Largeur: explorer successeurs, puis leurs succ., etc. (file)
- ▶ Temps d'exécution: $\mathcal{O}(|V| + |E|)$

Représentation

		b		г . г
a	/ 0	1	1\	$[a \mapsto [b,c]$
b	1	0	0	$b \mapsto [a],$
c	0	1	0/	$[a \mapsto [b, c]$ $b \mapsto [a],$ $c \mapsto [b]]$

	_
[b,c],	-
[a],	Ξ
[b]]	N

$$\begin{array}{c|ccccc} u \rightarrow v? & \Theta(1) & \mathcal{O}(\min(\deg(u),\deg(v))) & \mathcal{O}(\deg^+(u)) \\ \{v: u \rightarrow v\} & \Theta(|V|) & \mathcal{O}(\deg(u)) & \mathcal{O}(\deg^+(u)) \\ \{u: u \rightarrow v\} & \Theta(|V|) & \mathcal{O}(\deg(v)) & \mathcal{O}(V|+|E|) \\ \mathcal{M} \text{odif. } u \rightarrow v & \Theta(1) & \mathcal{O}(\deg(u)+\deg(v)) & \mathcal{O}(\deg^+(u)) \\ \text{Mémoire} & \Theta(|V|^2) & \Theta(|V|+|E|) \\ \end{array}$$

$\mathcal{O}(|V| + |E|)$

Liste (non dirigé)

Propriétés et algorithmes

- ▶ Plus court chemin: parcours en largeur + stocker préd.
- ▶ Ordre topologique: $u_1 \leq \cdots \leq u_n$ où $i < j \implies (u_j, u_i) \notin E$
- ► Tri topologique: mettre sommets de degré 0 en file, retirer en mettant les degrés à jour, répéter tant que possible
- ▶ Détec. de cycle: tri topo. + vérifier si contient tous sommets
- ► Temps d'exécution: tous linéaires

Arbres

- ► *Arbre*: graphe connexe et acyclique (ou prop. équivalentes)
- ► Forêt: graphe constitué de plusieurs arbres
- ► Arbre couv.: arbre qui contient tous les sommets d'un graphe

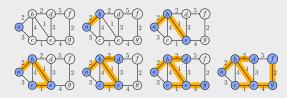
4. Algorithmes gloutons

Arbres couvrants minimaux

- lacktriangle Graphe pondéré: $\mathcal{G}=(V,E)$ où p[e] est le poids de l'arête e
- ▶ Poids d'un graphe: $p(\mathcal{G}) = \sum_{e \in E} p[e]$
- ightharpoonup Arbre couv. min.: arbre couvrant de $\mathcal G$ de poids minimal

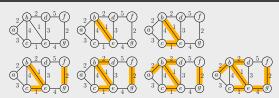
Algorithme de Prim-Jarník

- ▶ *Approche*: faire grandir un arbre en prenant l'arête min.
- ► Complexité: $\mathcal{O}(|E|\log|V|)$ avec monceau



Algorithme de Kruskal

- ► Approche: connecter forêt avec l'arête min. jusqu'à un arbre
- ► Complexité: $\mathcal{O}(|E|\log|V|)$ avec ensembles disjoints



Ensembles disjoints

- ▶ But: manipuler une partition d'un ensemble V
- ► Représentation: chaque ensemble sous une arborescence

$\{a$	$\} \{b, c, d, e\} \{f$	$\{,g\}$	init(V)	$\Theta(V)$
(a)	(b)	(f)	trouver(v)	$\mathcal{O}(\log V)$
_		Ţ	union(u,v)	$\mathcal{O}(\log V)$
	(c) (d) (e)	(g)		

Algorithme glouton

- 1) Choisir un candidat c itérativement (sans reconsidérer)
- 2) Ajouter c à solution partielle S si admissible
- 3) Retourner S si solution (complète), « impossible » sinon

5. Algorithmes récursifs et approche diviser-pour-régner

Diviser-pour-régner

- ► A) découper en sous-problèmes disjoints
- ▶ *B*) obtenir solutions récursivement
- ► *C*) s'arrêter aux cas de base (souvent triviaux)
- ▶ *D*) combiner solutions pour obtenir solution globale
- ► Exemple: tri par fusion $O(n \log n)$

Récurrences linéaires

- ► Cas homogène: $\sum_{i=0}^{d} a_i \cdot t(n-i) = 0$
- ▶ Polynôme caractéristique: $\sum_{i=0}^{d} a_i \cdot x^{d-i}$
- ► Forme close: $t(n) = \sum_{i=1}^{d} c_i \cdot \lambda_i^n$ où les λ_i sont les racines
- ightharpoonup Constantes c_i : obtenues en résolvant un sys. d'éq. lin.
- ► Cas non homo.: $si = c \cdot b^n$, on multiplie poly. par (x b)
- Exemple: Récurrence: $t(n) = 3 \cdot t(n-1) + 4 \cdot t(n-2)$
 - Poly. carac.: $x^2 3x 4 = (x 4)(x + 1)$
 - Forme close: $t(n) = c_1 \cdot 4^n + c_2 \cdot (-1)^n$

Autres méthodes

- ► Substitution: remplacer $t(n), t(n-1), t(n-2), \ldots$ par sa déf. jusqu'à deviner la forme close
- ► *Arbres*: construire un arbre représentant la récursion et identifier le coût de chaque niveau

Quelques algorithmes

- ► Hanoï: $src[1:n-1] \rightarrow tmp, src[n] \rightarrow dst, tmp[1:n-1] \rightarrow dst$ $\mathcal{O}(2^n)$
- ► Exp. rapide: exploiter $b^n = (b^{n+2})^2 \cdot b^{n \mod 2}$ $\mathcal{O}(\log n)$
- ► Mult. rapide: calculer (a+b)(c+d) en 3 mult. $\mathcal{O}(n^{\log 3})$
- ► *Horizon*: découper blocs comme tri par fusion $O(n \log n)$

Théorème maître (allégé)

- ▶ $t(n) = c \cdot t(n \div b) + f(n)$ où $f \in \mathcal{O}(n^d)$:
 - $-\mathcal{O}(n^d)$ si $c < b^d$
 - $\mathcal{O}(n^d \cdot \log n) \text{ si } c = \frac{b^d}{a^d}$
 - $\mathcal{O}(n^{\log_b c}) \quad \text{si } c > b^d$

6. Force brute

Approche

- ► Exhaustif: essayer toutes les sol. ou candidats récursivement
- ▶ Explosion combinatoire: souvent # solutions $\geq b^n, n!, n^n$
- ► Avantage: simple, algo. de test, parfois seule option
- ► Désavantage: généralement très lent et/ou avare en mémoire

Techniques pour surmonter explosion

- ► Élagage: ne pas développer branches inutiles
- ► Contraintes: élaguer si contraintes enfreintes
- ▶ Bornes: élaguer si impossible de faire mieux
- ► *Approximations*: débuter avec approx. comme meilleure sol.
- ► Si tout échoue: solveurs SAT ou d'optimisation

Problème des n dames

- \blacktriangleright But: placer n dames sur échiquier sans attaques
- ► *Algo*.: placer une dame par ligne en essayant colonnes dispo.

Sac à dos

- ▶ But: maximiser valeur sans excéder capacité
- ► Algo.: essayer sans et avec chaque objet
- ► Mieux: élaguer dès qu'il y a excès de capacité
- ► Mieux++: élaguer si aucune amélioration avec somme valeurs

Retour de monnaie

- ▶ But: rendre montant avec le moins de pièces
- ► Algo.: pour chaque pièce, essayer d'en prendre 0 à # max.

7. Programmation dynamique

Approche

- ► Principe d'optimalité: solution optimale obtenue en combinant solutions de sous-problèmes qui se chevauchent
- ► Descendante: algo. récursif + mémoïsation (ex. Fibonacci)
- ► *Ascendante*: remplir tableau itér. avec solutions sous-prob.

Retour de monnaie

- ▶ Sous-question: # pièces pour rendre j avec pièces 1 à i?
- ► Identité: $T[i, j] = \min(T[i-1, j], T[i, j-s[i]] + 1)$
- ▶ Exemple: montant m = 10 et pièces s = [1, 5, 7]

	0	1	2	3	4	5	6	7	8	9	10
0	0	∞	∞	∞		∞		∞	∞	∞	∞
1	0	1	2	3	4	5	6	7	8	9	10
2	0	1	2	3	4	1	2	3	4	5	2
3	0	1	2	3	4	1	2	1	2	3	2

Sac à dos

- ► Sous-question: val. max. avec capacité *i* et les objets 1 à *i*?
- ► Identité: $T[i, j] = \max(T[i-1, j], T[i-1, j-p[i]] + v[i])$

Plus courts chemins

- ► *Déf.*: chemin simple de poids minimal
- ► Bien défini: si aucun cycle négatif
- ► Approche générale: raffiner distances partielles itérativement
- ▶ Dijkstra: raffiner en marquant sommet avec dist. min.
- ightharpoonup Floyd-Warshall: raffiner via sommet intermédiaire v_k
- ▶ Bellman-Ford: raffiner avec $\geq 1, 2, ..., |V| 1$ arêtes
- ➤ Sommaire:

	Dijkstra	Bellman-Ford	Floyd-Warshall	
Types de chemins	d'un sommet vers les autres		paires de sommets	
Poids négatifs?	X	✓	✓	
Temps d'exécution	$\mathcal{O}(V \log V + E)$	$\Theta(V \cdot E)$	$\Theta(V ^3)$	
Temps $(E \in \Theta(1))$	$\mathcal{O}(V \log V)$	$\Theta(V)$	$\Theta(V ^3)$	
Temps $(E \in \Theta(V))$	$\mathcal{O}(V \log V)$	$\Theta(V ^2)$	$\Theta(V ^3)$	
Temps $(E \in \Theta(V ^2))$	$\mathcal{O}(V ^2)$	$\Theta(V ^3)$	$\Theta(V ^3)$	

8. Algorithmes et analyse probabilistes

Modèle probabiliste

- ► Modèle: on peut tirer à pile ou face (non déterministe)
- ► *Aléa*: on peut obtenir une loi uniforme avec une pièce
- ► *Idéalisé*: on suppose avoir accès à une source d'aléa parfaite (en pratique: source plutôt pseudo-aléatoire)

Algorithmes de Las Vegas

- ► *Temps*: varie selon les choix probabilistes
- ► Valeur de retour: toujours correcte
- ► *Exemple*: tri rapide avec pivot aléatoire
- ightharpoonup Temps espéré: dépend de $\mathbb{E}[Y_x]$ où $Y_x=\#$ opér. sur entrée x

Algorithmes de Monte Carlo

- ► *Temps*: borne ne varie *pas* selon les choix probabilistes
- ▶ Valeur de retour: pas toujours correcte
- ► *Exemple*: algorithme de Karger
- ▶ *Prob. d'erreur*: dépend de $Pr(Y_x \neq bonne sortie sur x)$

Coupe minimum: algorithme de Karger

- ightharpoonup Coupe: partition (X,Y) des sommets d'un graphe non dirigé
- ightharpoonup Taille: # d'arêtes qui traversent X et Y
- ► Coupe min.: identifier la taille minimale d'une coupe
- ► *Algorithme*: contracter itérativement une arête aléatoire en gardant les multi-arêtes, mais pas les boucles

- ▶ *Prob. d'erreur*: $\leq 1 1/|V|^2$ (Monte Carlo)
- ► Amplification: on peut réduire (augmenter) la prob. d'erreur (de succès) arbitrairement (en général: avec min., maj., etc.)

Temps moyen

- ▶ Temps moyen: \sum (temps instances de taille n) / # instances
- ► Attention: pas la même chose que le temps espéré
- \blacktriangleright Hypothèse: entrées distribuées uniformément (\pm réaliste)
- ► Exemple: $\Theta(n^2)$ pour le tri par insertion