2 pts

IGL502/752 – Techniques de vérification et de validation Université de Sherbrooke

Examen final

Enseignant: Michael Blondin

Date: vendredi 16 décembre 2022

Durée: 3 heures

Directives:

- Vous devez répondre aux questions dans le **cahier de réponses**, et non sur ce questionnaire;
- Une seule feuille de notes au format $8^{1/2}$ " × 11" est permise;
- Aucun matériel additionnel (notes de cours, fiches récapitulatives, etc.) n'est permis;
- Aucun appareil électronique (calculatrice, téléphone, montre intelligente, etc.) n'est permis;
- Vous devez donner **une seule réponse** par sous-question;
- L'examen comporte **6 questions** sur **3 pages** valant un total de **50 points**;
- La correction se base notamment sur la **clarté**, l'**exactitude** et la **concision** de vos réponses, ainsi que sur la **justification** pour les questions qui en requièrent une.

Question 1: logique temporelle linéaire (LTL)

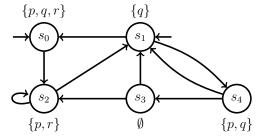
Soit $AP := \{p, q, r\}$ et les formules LTL suivantes sur AP:

$$\varphi_1 \coloneqq (p \land r) \ \mathsf{U} \ (\mathsf{X} q) \qquad \qquad \varphi_2 \coloneqq (\mathsf{G} \mathsf{F} q) \land (\mathsf{G} \mathsf{F} r) \qquad \qquad \varphi_3 \coloneqq \mathsf{F} (q \land \mathsf{G} (\neg p))$$

(a) Pour chaque formule φ_i , donnez un mot σ_i qui la satisfait et qui ne satisfait pas les deux autres, c.-à-d.

$$\sigma_1 \models \varphi_1 \qquad \sigma_1 \not\models \varphi_2 \qquad \sigma_1 \not\models \varphi_3,
\sigma_2 \not\models \varphi_1 \qquad \sigma_2 \models \varphi_2 \qquad \sigma_2 \not\models \varphi_3,
\sigma_3 \not\models \varphi_1 \qquad \sigma_3 \not\models \varphi_2 \qquad \sigma_3 \models \varphi_3.$$

- (b) Donnez un mot σ qui satisfait à la fois φ_1 , φ_2 et φ_3 , c.-à-d. tel que $\sigma \models \varphi_1$, $\sigma \models \varphi_2$ et $\sigma \models \varphi_3$.
- (c) Pour chaque formule φ_i , dites si la structure de Kripke $\mathcal T$ ci-dessous satisfait φ_i . Justifiez.



Question 2: automates de Büchi

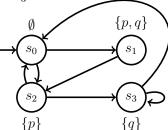
- (a) Donnez un automate de Büchi \mathcal{B} tel que $\mathcal{L}(\mathcal{B}) = \llbracket \mathsf{F}((p \ \mathsf{U} \ q) \land (\mathsf{F}p)) \rrbracket$ sur alphabet $\Sigma \coloneqq \{\emptyset, \{p\}, \{q\}, \{p, q\}\}.$
- (b) Rappelons que selon la construction vue en classe, les états de l'automate, résultant de l'intersection de deux automates de Büchi \mathcal{A} et \mathcal{B} , sont de la forme (p,q,I) où p est un état de \mathcal{A} , q est un état de \mathcal{B} , et $I \in \{\mathcal{A},\mathcal{B}\}$. Expliquez pourquoi la troisième composante est nécessaire dans cette construction.

Question 3: logique temporelle arborescente (CTL) et vérification symbolique

Rappel: l'abbréviation « BDD » réfère à « diagramme de décision binaire (ordonné et réduit) ».

Supposons que chaque état de la structure de Kripke $\mathcal T$ ci-dessous soient codés par la représentation binaire de

son indice: $s_0 = 00$, $s_1 = 01$, $s_2 = 10$ et $s_3 = 11$.

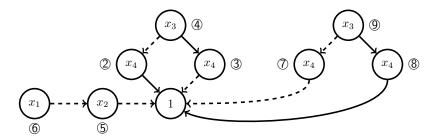


(a) Pour chaque formule Φ ci-dessous, donnez l'ensemble $\llbracket \Phi \rrbracket$ des états de \mathcal{T} qui satisfont Φ .

(i) $\forall \mathsf{F} \exists \mathsf{G} \neg q$

(ii) $\exists (p \cup q)$

- (iii) $\forall X \exists (p \cup q)$
- (b) Considérons le BDD ci-dessous sur variables $x_1 < x_2 < x_3 < x_4$. Le sommet 6 représente $I = \{s_0\}$ codé sur variables x_1x_2 . Le sommet 4 représente $[p] = \{s_1, s_2\}$ codé sur variables x_3x_4 . Complétez le BDD afin d'obtenir un sommet qui représente l'ensemble des transitions $\rightarrow = \{s_0s_1, s_0s_2, \ldots\}$ sur variables $x_1x_2x_3x_4$.



Remarques: omettez le sommet 0; et il n'est pas obligatoire d'appliquer un algorithme.

(c) Expliquez comment vérifier algorithmiquement $\mathcal{T} \models \exists Xp$ à partir du BDD construit en (b) et ces opérations: 2 pts

Opération	Entrées	Sortie
$\operatorname{apply}_{\bigcirc}(u,v)$	sommets u et v	sommet w qui représente $f_u \circ f_v$
exists(u,i)	$sommet\; u \; et \; indice\; i$	sommet w qui représente $\exists x_i \in \{0,1\}: f_u$

Question 4: systèmes à pile

Considérons ce programme constitué de deux fonctions et d'une variable entière globale x qui n'excède jamais 2:

$$ext{var } x \in \{0, 1, 2\}$$
 $ext{foo():}$ $ext{bar():}$ $ext{bar():}$ $ext{bo:}$ $ext{bo:}$

- (a) Modélisez le programme avec un système à pile \mathcal{P} .
- (b) Construisez partiellement un \mathcal{P} -automate \mathcal{B} qui accepte $\operatorname{Pre}^*(Conf(\mathcal{A}))$, où \mathcal{A} est ce \mathcal{P} -automate:

3 pts

3 pts

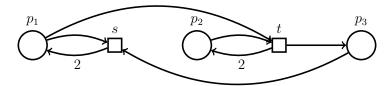
6 pts

Plus précisément, ajoutez trois transitions en exécutant l'algorithme de saturation vu en classe.

(c) Supposons que l'on ait complété \mathcal{B} en (b). Comment peut-on déterminer les valeurs de x à partir desquelles le programme termine?

Question 5: réseaux de Petri

Soit le réseau de Petri $\mathcal{N} = (P, T, F)$ suivant:



(a) Dessinez un graphe de couverture qui débute en m := (1, 1, 1).

3 pts 1,5 pts

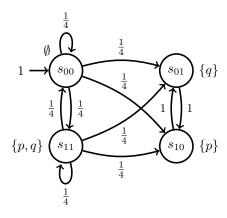
2,5 pts

(b) Dites lesquels de ces marquages peuvent être couverts à partir de m := (1, 1, 1). Justifiez brièvement.

- $m_0 := (1,1,2), \qquad m_1 := (0,3,2), \qquad m_2 := (4,2,0).$
- (c) L'ensemble des marquages qui peuvent couvrir m' := (1, 1, 0) est $\uparrow m'$. Pourquoi?

Question 6: chaînes de Markov

Considérons un système constitué de deux processus. Chaque processus i possède une variable booléenne x_i . On aimerait qu'à partir d'un certain moment, ce soit toujours le cas que $x_2 = \neg x_1$. Afin d'accomplir cette tâche, les processus modifient leurs variables de façon probabiliste, comme suit (où s_{ab} désigne $x_1 = a$ et $x_2 = b$):



Remarque: il n'est pas obligatoire d'appliquer des algorithmes pour répondre aux questions.

(a) Dites si la chaîne de Markov \mathcal{M} ci-dessus satisfait $\mathcal{P}_{>3/4}((\neg p)\ \mathsf{U}^{\leq 2}\ q)$. Justifiez.

2 pts

(b) Dites si la chaîne de Markov $\mathcal M$ ci-dessus satisfait $\mathcal P_{=1}(\mathsf F\,\mathcal P_{=1}(\mathsf G\,(p\to\mathcal P_{=1}(\mathsf X\,q))))$. Justifiez.

3 pts

Rappel: $\mathcal{P}_{=1}(\mathsf{G}\Phi) \equiv \mathcal{P}_{=0}(\mathsf{F}\neg\Phi).$

(c) Spécifiez cette propriété en PCTL: « à partir d'un certain moment, ceci demeure vrai: $x_2 = \neg x_1$ ».

2 pts