
Expressive Power of Broadcast Consensus
Protocols
Michael Blondin
Département d’informatique, Université de Sherbrooke, Sherbrooke, Canada
michael.blondin@usherbrooke.ca

Javier Esparza
Fakultät für Informatik, Technische Universität München, Garching bei München, Germany
esparza@in.tum.de

Stefan Jaax
Fakultät für Informatik, Technische Universität München, Garching bei München, Germany
jaax@in.tum.de

Abstract
Population protocols are a formal model of computation by identical, anonymous mobile agents
interacting in pairs. Their computational power is rather limited: Angluin et al. have shown
that they can only compute the predicates over Nk expressible in Presburger arithmetic. For this
reason, several extensions of the model have been proposed, including the addition of devices called
cover-time services, absence detectors, and clocks. All these extensions increase the expressive power
to the class of predicates over Nk lying in the complexity class NL when the input is given in unary.
However, these devices are difficult to implement, since they require that an agent atomically receives
messages from all other agents in a population of unknown size; moreover, the agent must know that
they have all been received. Inspired by the work of the verification community on Emerson and
Namjoshi’s broadcast protocols, we show that NL-power is also achieved by extending population
protocols with reliable broadcasts, a simpler, standard communication primitive.

2012 ACM Subject Classification Theory of computation→ Distributed computing models; Theory
of computation → Complexity classes; Theory of computation → Automata over infinite objects

Keywords and phrases population protocols, complexity theory, counter machines, distributed
computing

Related Version https://arxiv.org/abs/1902.01668

Funding Michael Blondin: Supported by the Fonds de recherche du Québec – Nature et technologies
(FRQNT), by a Quebec–Bavaria project funded by the Fonds de recherche du Québec (FRQ), and
by the Natural Sciences and Engineering Research Council of Canada (NSERC)
Javier Esparza: Supported by an ERC Advanced Grant (787367: PaVeS)
Stefan Jaax: Supported by an ERC Advanced Grant (787367: PaVeS)

Acknowledgements Part of this work was realized while Stefan Jaax was visiting the Université de
Sherbrooke. We warmly thank the anonymous reviewers for their helpful comments and suggestions.

1 Introduction

Population protocols are a theoretical model for the study of ad hoc networks of tiny
computing devices without any infrastructure [5, 6], intensely investigated in recent years
(see e.g. [2, 3, 4, 14]). The model postulates a “soup” of indistinguishable agents that behave
identically, and only have a fixed number of bits of memory, i.e., a finite number of local states.
Agents repeatedly interact in pairs, changing their states according to a joint transition
function. A global fairness condition ensures that every finite sequence of interactions that
becomes enabled infinitely often is also executed infinitely often. The purpose of a population
protocol is to allow agents to collectively compute some information about their initial

mailto:michael.blondin@usherbrooke.ca
mailto:esparza@in.tum.de
mailto:jaax@in.tum.de

2 Expressive Power of Broadcast Consensus Protocols

configuration, defined as the function that assigns to each local state the number of agents
that initially occupy it. For example, assume that initially each agent picks a boolean value
by choosing, say, q0 or q1 as its initial state. The many majority protocols described in
the literature allow the agents to eventually reach a stable consensus on the value chosen
by a majority of the agents. More formally, let x0 and x1 denote the initial numbers of
agents in states q0 and q1; majority protocols compute the predicate ϕ : N × N → {0, 1}
given by ϕ(x0, x1) = (x1 ≥ x0). Throughout the paper, we use the term “predicate” as an
abbreviation for “function from Nk to {0, 1} for some k”.

In a seminal paper, Angluin et al. proved that population protocols compute exactly the
predicates expressible in Presburger arithmetic [6, 7]. Thus, for example, agents can decide
if they are at least a certain number, if at least 2/3 of them voted the same way, or, more
generally, if the vector (x1, x2, . . . , xn) representing the number of agents that picked option
1, 2, . . . , n in an election with n choices is a solution of a system of linear inequalities. On
the other hand, they cannot decide if they are a square or a prime number, or if the product
of the number of votes for options 1 and 2 exceeds the number of votes for option 3. Much
work has been devoted to designing more powerful formalisms and analyzing their expressive
power. In particular, population protocols have recently been extended with capabilities
allowing an agent to obtain global information about the current configuration, which we
proceed to describe.

In [22], Michail and Spirakis extend the population protocol model with absence detectors,
by means of which an agent knows, for every state, whether the state is currently populated or
not. Further, they implement absence detectors by a weaker object called a cover-time service,
which allows an agent to deduce if it has interacted with every other agent in the system.
They prove that protocols with cover-time can compute all predicates in DSPACE(logn) and
can only compute predicates in NSPACE(logn) = NL, where n is the number of agents1.

In [8], Aspnes observes that cover-time services are a kind of internal clock mechanism,
and introduces clocked population protocols. Clocked protocols have a clock oracle that
signals to one or more agents that the population has reached a bottom strongly connected
component of the configuration graph, again an item of global information. Aspnes shows
that clocked protocols can compute exactly the predicates in NL.

Absence detectors, cover-time services, and clocked protocols are difficult to implement,
since they require that an agent reliably receives information from all other agents; moreover,
the agent needs to know that it has already received messages from all other agents before
making a move, which is particularly difficult because agents are assumed to have no identities
and to ignore the size of the population. In this paper, we propose a much simpler extension
(from an implementation point of view): We allow agents to perform reliable broadcasts,
a standard operation in concurrency and distributed computing. We are inspired by the
broadcast protocol model introduced by Emerson and Namjoshi in [15] to describe bus-based
hardware protocols. The model has been used and further studied in many other contributions,
e.g. [16, 18, 12, 24, 9]. In broadcast protocols, agents can perform binary interactions, as in
the population protocol model, but, additionally, an agent can also broadcast a signal to all
other agents, which are guaranteed to react to it. Broadcast protocols are rather simple to
implement with current technology on mobile agents moving in a limited area. Broadcasts
also appear in biological systems. For example, Uhlendorf et al. describe a system in which

1 Observe that, for example, n agents can decide whether n is prime. Indeed, a Turing machine can
decide if n is a prime number in Θ(log n) space by going through all numbers from 2 to n − 1, and
checking for each of them if they divide n.

M. Blondin, J. Esparza and S. Jaax 3

a controller adds a sugar or saline solution to a population of yeasts, to which all the yeasts
react [27]. An idealized model of the system, which is essentially a broadcast protocol, has
been analyzed by Bertrand et al. in [9].

In this paper, we show that population protocols with reliable broadcasts also compute
precisely the predicates in NL, and are therefore as powerful as absence detectors or clocks.
To prove this result, we first define the notion of silent semi-computation, a weaker notion
than standard computation, and prove that broadcast protocols silently semi-compute all
protocols in NL. This result makes crucial use of the ability of broadcast protocols to “restart”
the whole population nondeterministically whenever something bad or unexpected is detected.
We then prove that silent semi-computability and computability coincide for the class NL.

In a second contribution, we explore in more detail the minimal requirements for achieving
NL power. On the one hand, we show that it is enough to allow a single agent to broadcast
a single signal. On the other hand, we prove that the addition of a reset, which causes all
agents to return to their initial states, does not increase the power of population protocols.

2 Preliminaries

Multisets. A multiset over a finite set E is a mapping M : E → N. The set of all multisets
over E is denoted NE . For every e ∈ E, M(e) denotes the number of occurrences of e in
M . We sometimes denote multisets using a set-like notation, e.g. Hf, g, gI is the multiset
M such that M(f) = 1, M(g) = 2 and M(e) = 0 for every e ∈ E \ {f, g}. Addition and
comparison are extended to multisets componentwise, i.e. (M + M ′)(e) def= M(e) + M ′(e)
for every e ∈ E, and M ≤ M ′

def⇐⇒ M(e) ≤ M ′(e) for every e ∈ E. We define multiset
difference as (M �M ′)(e) def= max(M(e)−M ′(e), 0) for every e ∈ E. The empty multiset is
denoted 0 and, for every e ∈ E, we write e def= HeI. Finally, we define the support and size of
M ∈ NE respectively as JMK def= {e ∈ E : M(e) > 0} and |M | def=

∑
e∈EM(e).

Population protocols. A population over a finite set E is a multiset P ∈ NE such that
|P | ≥ 2. The set of all populations over E is denoted by Pop(E). A population protocol with
leaders (population protocol for short) is a tuple P = (Q,R,Σ, L, I, O) where:

Q is a non-empty finite set of states,
R ⊆ (Q×Q)× (Q×Q) is a set of rendez-vous transitions,
Σ is a non-empty finite input alphabet,
I : Σ→ Q is the input function mapping input symbols to states,
L ∈ NQ is the multiset of leaders, and
O : Q→ {0, 1} is the output function mapping states to boolean values.

Following the standard convention, we call elements of Pop(Q) configurations. Intuitively,
a configuration C describes a collection of identical finite-state agents with Q as set of states,
containing C(q) agents in state q for every q ∈ Q, and at least two agents in total.

We write (p, q) 7→ (p′, q′) to denote that (p, q, p′, q′) ∈ R. The relation Step: Pop(Q)→
Pop(Q) is defined by: (C,C ′) ∈ Step iff there exists (p, q, p′, q′) ∈ R such that C ≥ Hp, qI and
C ′ = C�Hp, qI+ Hp′, q′I. We write C −→ C ′ if (C,C ′) ∈ Step, and C ∗−→ C ′ if (C,C ′) ∈ Step∗,
the reflexive and transitive closure of Step. If C ∗−→ C ′, then we say that C ′ is reachable from
C. An execution is an infinite sequence of configurations C0C1 · · · such that Ci −→ Ci+1 for
every i ∈ N. An execution C0C1 · · · is fair if for every step C −→ C ′ the following holds: if
Ci = C for infinitely many indices i ∈ N, then Cj = C ′ for infinitely many indices j ∈ N.

We now explain the roles of the input function I and the multiset L of leaders. The
elements of Pop(Σ) are called inputs. For every input X ∈ Pop(Σ), let I(X) ∈ Pop(Q)

4 Expressive Power of Broadcast Consensus Protocols

denote the configuration defined by

I(X)(q) def=
∑

{σ∈Σ:I(σ)=q}

X(σ) for every q ∈ Q.

A configuration C is initial if C = I(X) + L for some input X. Intuitively, the agents of
I(X) encode the input, while those of L are a fixed number of agents, traditionally called
leaders, that perform the computation together with the agents of I(X).

Predicate computed by a protocol. If O(p) = O(q) for every p, q ∈ JCK, then C is
a consensus configuration, and O(C) denotes the unique output of the states in JCK. We
say that a consensus configuration C is a b-consensus if O(C) = b. An execution C0C1 · · ·
stabilizes to b ∈ {0, 1} if there exists n ∈ N such that Ci is a b-consensus for every i ≥ n.

A protocol P over an input alphabet Σ computes a predicate ϕ : Pop(Σ) → {0, 1} if
for every input X ∈ Pop(Σ), every fair execution of P starting at the initial configuration
I(X) + L stabilizes to ϕ(X).

Throughout the paper, we assume Σ = {A1, . . . , Ak} for some k > 0. Abusing language,
we identify population M ∈ Pop(Σ) to vector α = (M(A1), . . . ,M(Ak)), and say that P
computes a predicate ϕ : Nk → {0, 1} of arity k. In the rest of the paper, the term “predicate”
is used with the meaning “function from Nk to {0, 1}”. It is known that:

I Theorem 1 ([7]). Population protocols compute exactly the predicates expressible in
Presburger arithmetic, i.e. the first-order theory of the natural numbers with addition.

3 Broadcast consensus protocols

Broadcast protocols were introduced by Emerson and Namjoshi in [15] as a formal model of
bus-based hardware protocols, such as those for cache coherency. The model has also been
applied to the verification of multithreaded programs [12], and to idealized modeling of control
problems for living organisms [27, 9]. Its theory has been further studied in [16, 18, 24].

Agents of broadcast protocols can communicate in pairs, as in population protocols, and,
additionally, they can also communicate by means of a reliable broadcast. An agent can
broadcast a signal to all other agents, which after receiving the signal move to a new state.
Broadcasts are routinely used in wireless ad-hoc and sensor networks (see e.g. [1, 28]), and
so they are easy to implement on the same kind of systems targeted by population protocols.
They can also model idealized versions of communication in natural computing. For example,
in [9] they are used to model “communication” in which an experimenter “broadcasts” a
signal to a colony of yeasts by increasing the concentration of a nutrient in a solution.

We introduce broadcast consensus protocols, i.e., broadcast protocols whose goal is to
compute a predicate in the computation-by-consensus paradigm.

I Definition 2. A broadcast consensus protocol is a tuple P = (Q,R,B,Σ, L, I, O), where
all components but B are defined as for population protocols, and B is a set of broadcast
transitions. A broadcast transition is a triple (q, r, f) where q, r ∈ Q and f : Q → Q is a
transfer function.

The relation Step ⊆ Pop(Q) × Pop(Q) of P is defined as follows. A pair (C,C ′) of
configurations belongs to Step iff

there exists (p, q) 7→ (p′, q′) ∈ R such that C ≥ Hp, qI and C ′ = C � Hp, qI + Hp′, q′I; or

M. Blondin, J. Esparza and S. Jaax 5

there exists a transition (q, r, f) ∈ B such that C(q) ≥ 1 and C ′ is the configuration
computed from C in the following three steps:

C1 = C � HqI, (1)

C2(q′) =
∑

r′∈f−1(q′)

C1(r′) for every q′ ∈ Q, (2)

C ′ = C2 + HrI. (3)

Intuitively, (1)–(3) is interpreted as follows: (1) an agent at state q broadcasts a signal and
leaves q, yielding C1; (2) all other agents receive the signal and move to the states indicated
by the function f , yielding C2; and (3) the broadcasting agent enters state r, yielding C ′.
Correspondingly, instead of (q, r, f) we use q 7→ r; f as notation for a broadcast transition.

Beyond Presburger arithmetic. As a first illustration of the power of broadcast protocols,
we show that their expressive power goes beyond Presburger arithmetic, and so beyond the
power of population protocols. We present a broadcast consensus protocol for the predicate
ϕ, defined as ϕ(x) = 1 iff x > 1 and x is a power of two. For readability, we use the
notation q 7→ q′; [q1 7→ q′1, . . . , qn 7→ q′n] for a broadcast transition, where f(qi) = q′i and
where transfers of the form qi 7→ qi may be omitted.

Let P = (Q,R,B,Σ, L, I, O) be the broadcast consensus protocol where
Q

def= {x, x, x̃, 0, 1,⊥}, Σ def= {x}, I def= x 7→ x, L def= 0, O(q) = 1 def⇐⇒ q = 1, and R and B are
defined as follows:

R contains the rendez-vous transition s : (x, x) 7→ (x, 0);
B contains the broadcast transitions r : ⊥ 7→ x; [q 7→ x : q ∈ Q] and

s : x 7→ x;

 x 7→ ⊥
x 7→ x

0 7→ 1

 t0 : x 7→ x;
[

1 7→ 0
]

t0 : x 7→ 0;

 x 7→ ⊥
x 7→ 0
1 7→ ⊥

 t1 : x 7→ 1;

 x 7→ ⊥
x 7→ ⊥
0 7→ ⊥

 .

Intuitively, P repeatedly halves the number of agents in state x, and it accepts iff it never
obtains an odd remainder. More precisely, the transitions of P are intended to be fired as
follows, where C denotes the current configuration:

while C(x) 6= 1:
while C(x) ≥ 2: fire s /* split agents equally from x to x and 0 */
if C(x) = 0: fire s /* move agents from x to x if no remainder */

if C(x) = 0: fire t1 /* if no remainder, then accept */
else: fire t0 t0 /* otherwise, reject */

It is easy to show that P produces a (lasting) consensus, and the right one, if transitions are
executed as above. However, an arbitrary execution may not follow the above procedure.
Firing transition t0 when not intended has no incidence on the outcome. Moreover, if another
transition is fired when it should not be, then s, t0 or t1 will detect this error by moving an
agent to state ⊥. In this case, by fairness, r eventually resets the agents back to the initial
configuration and, again by fairness, transitions are eventually fired as intended.

I Proposition 3. The broadcast consensus protocol P described above computes the predicate
ϕ, defined as ϕ(x) = 1 iff x > 1 and x is a power of two.

Leaderless broadcast protocols. A broadcast protocol P = (Q,R,B,Σ, L, I, O) is lead-
erless if L = 0. It can be shown that leaderless broadcast consensus protocols compute
the same predicates as the general class. We only sketch the argument. First, a broadcast

6 Expressive Power of Broadcast Consensus Protocols

protocol with leader multiset L can be simulated by a protocol with a single leader. Indeed,
the protocol can be designed so that the first task of the leader is to “recruit” the other
leaders of L from among the agents. Second, a protocol with one leader can be simulated by
a leaderless protocol because, loosely speaking, a broadcast protocol can elect a leader in a
single computation step2. Indeed, if initially all agents are in a state, say q, then a broadcast
q 7→ `; f , where f(q) = q′, sends exactly one agent to leader state `, and all other agents to
state q′. It is simple to construct P ′ using this feature, and the details are omitted.

In the rest of the paper, we use protocols with leaders to simplify the constructions, but
all results (except Proposition 17) remain valid for leaderless protocols.

4 Broadcast consensus protocols compute exactly NL

In this section, we prove our main theorem: a predicate is computable by a broadcast
consensus protocol iff it is in NL. We follow the convention and say that a predicate ϕ
belongs to NL if there is a nondeterministic Turing machine that accepts in O(logn)-space
exactly the tuples (x1, x2, . . . , xk) ∈ Nk, encoded in unary, such that ϕ(x1, x2, . . . , xk) holds.

The proof is divided in two parts. Section 4.1 proves the easier direction: predicates
computable by broadcast consensus protocols are in NL. Section 4.2 proves the converse,
which is more involved.

4.1 Predicates computable by broadcast consensus protocols are in NL
We prove the result in more generality. We define a generic computational model in which
the possible steps between configurations are given by an arbitrary relation preserving the
number of agents. Formally, a generic consensus protocol is a tuple P = (Q,Step,Σ, L, I, O)
where Q,Σ, L, I, O are defined as for population protocols, and Step ⊆ Pop(Q)× Pop(Q) is
the step relation between populations, satisfying |C| = |C ′| for every (C,C ′) ∈ Step.

Clearly, broadcast consensus protocols are generic consensus protocols. Further, it is easy
to see that if Step is the one-step relation of a broadcast protocol, then Step ∈ NL. Indeed,
Step ∈ NL if there is a nondeterministic Turing machine that given a pair of configurations
(C,C ′) with n agents, uses O(logn) space and accepts iff (C,C ′) ∈ Step. A quick inspection
of the two conditions in the definition of Step (Definition 2) shows that this is the case.

Thus, it suffices to prove that generic consensus protocols satisfying Step ∈ NL can only
compute predicates in NL. We sketch the proof, more details can be found in the full version
of the paper.

I Proposition 4. Let P = (Q,Step,Σ, L, I, O) be a generic consensus protocol computing a
predicate ϕ. If Step ∈ NL, then ϕ ∈ NL. In particular, predicates computable by broadcast
consensus protocols are in NL.

Proof. We show that there is a nondeterministic Turing machine that decides whether
ϕ(x) = 1 holds, and uses O(log |x|) space. Let G = (V,E) be the graph where V is the set
of all configurations of P of size |x|, and (C,C ′) ∈ E iff C −→ C ′.

It is easy to see that ϕ(x) = 1 iff G contains a configuration C of size |C| = |I(x)| = |x|
satisfying (1) C0

∗−→ C; and (2) every configuration reachable from C, including C itself, is
a 1-consensus. Therefore, we can decide ϕ(x) = 1 by guessing C, and checking (1) and (2)
in O(log |I(x)|) space. For (1), this follows from the fact that graph reachability is in NL.

2 Unlike population protocols, where efficient leader election is non-trivial and much studied; see e.g. [14].

M. Blondin, J. Esparza and S. Jaax 7

For (2), we observe that determining whether some configuration reachable from C is not a
1-consensus can be done in NL, and we use the fact that NL = coNL [20]. J

I Remark 5. Protocols with absence detector [22] are a class of generic consensus protocols,
and hence Proposition 4 can be used to give an alternative proof of the fact that these
protocols only compute predicates in NL.

4.2 Predicates in NL are computable by broadcast consensus protocols
The proof is involved, and we start by describing its structure. In Section 4.2.1, we show
that it suffices to prove that every predicate in NL is silently semi-computable. In the rest of
the section, we proceed to prove this in three steps. Loosely speaking, we show that:

predicates computable by nondeterministic Turing machines in O(n) space can also be
computed by counter machines with counters polynomially bounded in n (Section 4.2.2);
predicates computed by polynomially bounded counter machines can also be computed
by n-bounded counter machines, i.e. in which the sum of the values of all counters never
exceeds their initial sum (Section 4.2.3);
predicates computed by n-bounded counter machines can be silently semi-computed by
broadcast protocols. (Section 4.2.4).

Finally, Section 4.2.5 puts all parts of the proof together.

4.2.1 Silent semi-computation
Recall that, loosely speaking, a protocol computes ϕ if it converges to 1 for inputs that satisfy
ϕ, and it converges to 0 for inputs that do not satisfy ϕ. Additionally, a protocol silently
computes ϕ if convergence to b ∈ {0, 1} happens by reaching a terminal b-consensus, i.e., a
configuration C that is a b-consensus and from which one can only reach C itself. (Intuitively,
the protocol eventually becomes “silent” because no agent changes state anymore, and hence
communication “stops”.) We say that a protocol silently semi-computes ϕ if it reaches a
terminal 1-consensus for inputs that satisfy ϕ, and no terminal configuration for other inputs.

I Definition 6. A broadcast consensus protocol P silently semi-computes a k-ary predicate
ϕ if for every α ∈ Nk the following properties hold:
1. if ϕ(α) = 1, then every fair execution of P starting at I(α) eventually reaches a terminal

1-consensus configuration;
2. if ϕ(α) = 0, then no fair execution of P starting at I(α) eventually reaches a terminal

configuration.3

We show that if a predicate and its complement are both silently semi-computable by
broadcast consensus protocols, say P1 and P0, then the predicate is also computable by a
broadcast consensus protocol P which, intuitively, behaves as follows under input α. At
every moment in time, P is simulating either P1 or P0. Initially, P simulates P0. Assume
P is simulating Pi and the current configuration is C. If C is a terminal configuration of
Pi, then P terminates too. Otherwise, P nondeterministically chooses one of three options:
continue thesimulation of Pi, “reset” the computation to I0(α), i.e., start simulating P0, or
“reset” the computation to I1(α). Conditions 1 and 2 ensure that exactly one of P0 and P1
can reach a terminal configuration, namely Pϕ(α). Fairness ensures that P will eventually

3 Since every finite execution can be extended to a fair one, this condition is actually equivalent to “no
terminal configuration is reachable from I(α)”.

8 Expressive Power of Broadcast Consensus Protocols

reach a terminal configuration of Pϕ(α), and so, by condition 1, that it will always reach the
right consensus. Hence, P silently computes ϕ.

The “reset” is implemented by means of a broadcast that sends every agent to its initial
state in the configuration Ij(α); for this, the states of P are partitioned into classes, one for
each input symbol x ∈ X. Every agent moves only within the states of one of the classes,
and so every agent “remembers” its initial state in both P0 and P1.

I Lemma 7. Let ϕ be an m-ary predicate, and let ϕ be the predicate defined by ϕ(α) def=
1 − ϕ(α) for every α ∈ Nm. Further let P1 and P0 be broadcast consensus protocols that
silently semi-compute ϕ and ϕ, respectively. The following holds: there exists a broadcast
consensus protocol P that silently computes ϕ.

Proof. Let P1 = (Q1, R1, B1,Σ, I1, O1) and P0 = (Q0, R0, B0,Σ, I0, O0) be protocols that
silently semi-compute ϕ and ϕ, respectively. Assume w.l.o.g. that Q1 and Q0 are disjoint.
We construct a protocol P = (Q,R,B,Σ, I, O) that computes ϕ.

For the sake of clarity we refrain from giving a fully formal description, but we provide
enough details to show that the design idea above can indeed be implemented.
States and mappings. The set of states of P is defined as:

Q
def= Σ× (Q1 ∪Q0 ∪ {reset})

If an agent is in state (x, q), we say that x is its origin and that q is its position. The
initial position of an agent is its initial state in P0, i.e. I(x) def= (x, I0(x)). Transitions will
be designed so that agents may update their position, but not their origin. Alternatively,
instead of applying a transition, agents can nondeterministically choose to transition from
(x, q) ∈ X × (Q1 ∪ Q0) to (x, reset). An agent in state (x, reset) eventually resets the
simulation to either P0 or P1.
Simulation transitions. We define transitions that proceed with the simulation of P0
and P1 as follows. For every i ∈ {1, 0}, every x, y ∈ Σ, and every non-silent rendez-vous
transition (q, r) 7→ (q′, r′) of Ri, we add the following rendez-vous transitions to R:

(x, q), (y, r) 7→ (x, q′), (y, r′) and (x, q), (y, r) 7→ (x, reset), (y, reset).

The first transition implements the simulation, while the second transition enables resets
when the simulation has not reached a terminal configuration. For every broadcast transition
q 7→ q′; f of Bi and every x ∈ Σ, we add the following broadcast transitions to B:

(x, q) 7→ (x, q′); f ′

(x, q) 7→ (x, reset); f ′

where f ′ only acts on Qi by f ′(y, r)
def= (y, f(r)) for every (y, r) ∈ Σ×Qi. The first transition

implements the simulation of a broadcast in the original protocols, while the second transition
enables a reset.
Reset transitions. We define transitions that trigger a new simulation of either P0 or P1.
For every i ∈ {1, 0}, let fi : Q→ Q be the function defined as fi(x, q)

def= (x, Ii(x)) for every
(x, q) ∈ Q. For every i ∈ {1, 0} and every x ∈ Σ, we add the following broadcast transition
to B: (x, reset) 7→ (x, Ii(x)); fi. J

Using Lemma 7, we may now prove the following:

M. Blondin, J. Esparza and S. Jaax 9

I Proposition 8. If every predicate in NL is silently semi-computable by broadcast consensus
protocols, then every predicate in NL is silently computable (and so computable) by broadcast
consensus protocols.

Proof. Assume every predicate in NL is silently semi-computable by broadcast consensus
protocols, and let ϕ be a predicate in NL. We resort to the powerful result stating that
predicates in coNL and NL coincide. This is an immediate corollary of the coNL = NL
theorem for languages [20, 26, 23], and the fact that one can check in constant space whether
a given word encodes a vector of natural numbers of fixed arity. Thus, both ϕ and ϕ are
predicates in NL, and so, by assumption, silently semi-computable by broadcast consensus
protocols. By Lemma 7, they are silently computable by broadcast consensus protocols. J

4.2.2 Simulation of Turing machines by counter machines
We recall that nondeterministic Turing machines working in O(n) space can be simulated by
counter machines whose counters are polynomially bounded in n, and so that both models
compute the same predicates.

Let X = {x1, x2, . . . , xk} and Ins = {inc(x), dec(x), zro(x), nzr(x), nop | x ∈ X}. A
k-counter machine M over counters X is a tuple (Q,X,∆,m, q0, qa, qr), where Q is a finite
set of control states; ∆ ⊆ Q × Ins × Q is the transition relation; m ≤ k is the number of
input counters; and q0, qa, qr are the initial, accepting, and rejecting states, respectively.

A configuration ofM is a pair C = (q,v) ∈ Q× Nk consisting of a control state q and
counter values v. For every i ∈ [k], we denote the value of counter xi in C by C(xi)

def= vi.
The size of C is |C| def=

∑k
i=1 C(xi).

Let ei be the i-th row of the k × k identity matrix. Given ins ∈ Ins, we define the
relation ins−−→ over configurations as follows: (q,v) ins−−→ (q′,v′) iff (q, ins, q′) ∈ ∆ and one of
the following holds: ins = inc(xi) and v′ = v + ei; ins = dec(xi), vi > 0, and v′ = v − ei;
ins = zro(xi), vi = 0, and v′ = v; ins = nzr(xi), vi > 0, and v′ = v; ins = nop and v′ = v.

For every α ∈ Nm, the initial configuration ofM with input α is defined as:

Cα
def= (q0, (α1,α2, . . . ,αm, 0, . . . , 0︸ ︷︷ ︸

k−m times

)).

We sayM accepts α if there exist counter values v ∈ Nk satisfying Cα
∗−→ (qa,v). We say

M rejects α if M does not accept α and for all configurations C ′ with Cα
∗−→ C ′, there

exists v ∈ Nk satisfying C ′ ∗−→ (qr,v). We sayM computes a predicate ϕ : Nm → {0, 1} if
M accepts all inputs α such that ϕ(α) = 1, and rejects all α such that ϕ(α) = 0.

A counter machineM is f(n)-bounded if |C| ≤ f(|Cα|) holds for every initial configuration
Cα and every configuration C reachable from Cα. It is well-known that counter machines
can simulate Turing machines:

I Theorem 9 ([19, Theorem 3.1]). A predicate is computable by an s(n)-space-bounded
Turing machine iff it is computable by a 2s(n)-bounded counter machine.

In [19], a weaker version of Theorem 9 is proven that applies to deterministic Turing and
counter machines only. However, the proof can be easily adapted to the nondeterministic
setting we consider here.

I Corollary 10. A predicate is in NL iff it is computable by a polynomially bounded counter
machine.

10 Expressive Power of Broadcast Consensus Protocols

4.2.3 Simulation of polynomially bounded counter machines by
n-bounded counter machines

I Lemma 11. For every polynomially bounded counter machine that computes some predicate
ϕ, there exists an n-bounded counter machine that computes ϕ.

Proof. We sketch the main idea of the proof; details can be found in the full version of the
paper. Let c ∈ N>0 and let M be an nc-bounded counter machine with k counters. To
simulateM by an n-bounded counter machineM, we need some way to represent any value
` ∈ [0, nc] by means of counters with values in [0, n]. We encode such a value ` by its base
n+ 1 representation over c counters. Zero-tests are performed by zero-testing all c counters
sequentially. Nonzero-tests are implemented similarly with parallel tests. Incrementation
and decrementation are implemented with gadgets to (a) assign 0 to a counter; (b) assign n
to a counter; (c) test whether a counter value equals n.

This construction is only weakly n-bounded, in the sense that all counters are indeed
bounded by n, but the overall sum can reach k ·n. To circumvent this issue, we simulateM by
another counter machineM′ whose counters symbolically hold values from multiple counters
of M. In more details, the counters are defined as {yS : S ⊆ X}. Intuitively, if counter
yS has value a, then it contributes by a to the value of each counter of S. For example,
if X = {x1, x2, x3} and the input size is n = 6, then counter values (x1, x2, x3) = (6, 1, 4)
ofM can be represented inM′ as y{x1,x2,x3} = 1, y{x1,x3} = 3, y{x1} = 2, and yS = 0 for
every other S. Under such a representation, the sum of all counters equals n. Moreover, all
instructions can be implemented quite easily. J

4.2.4 Simulation of n-bounded counter machines by broadcast
consensus protocols

Let M = (Q,X,∆,m, q0, qa, qr) be an n-bounded counter machine that computes some
predicate ϕ : Nm → {0, 1}. We construct a broadcast protocol P = (Q′, R,B,Σ, L, I, O) that
silently semi-computes ϕ.
States and mappings. Let X ′ def= X ∪ {idle, err}. The states of P are defined as

Q′
def= Q× {0, 1}︸ ︷︷ ︸

leader states

∪ X ′ ×X × {0, 1}︸ ︷︷ ︸
nonleader states

.

The protocol will be designed in such a way that there is always exactly one agent, called the
leader, in states Q× {0, 1}. Whenever the leader is in state (q, b), we say that its position
is q, and its opinion is b. Every other agent will remain in a state from X ′ ×X × {0, 1}.
Whenever a nonleader agent is in state (x, y, b), we say that its position is x, its origin is y,
and its opinion is b. Intuitively, the leader is in charge of storing the control state ofM, and
the nonleaders are in charge of storing the counter values ofM.

The protocol has a single leader whose initial position is the initial control state ofM,
i.e. L def= H(q0, 0)I. Moreover, every nonleader agent initially has its origin set to its initial
position, which will remain unchanged by definition of the forthcoming transition relation:
I(x) def= (x, x, 0) for every x ∈ X. The output of each agent is its opinion:

O(q, b) def= b for every q ∈ Q, x ∈ X ′, y ∈ X, b ∈ {0, 1}.
O(x, y, b) def= b

We now describe how P simulates the instructions ofM.

M. Blondin, J. Esparza and S. Jaax 11

Decrementation/incrementation. For every transition q dec(x)−−−−→ r ∈ ∆, every y ∈ X and
every b, b′ ∈ {0, 1}, we add to R the rendez-vous transition:

(q, b), (x, y, b′) 7→ (r, b), (idle, y, b′).

These transitions change the position of one agent from x to idle, and thus decrement the
number of agents in position x.

Similarly, for every transition q inc(x)−−−−→ r, every y ∈ X and every b, b′ ∈ {0, 1}, we add to
R the rendez-vous transition:

(q, b), (idle, y, b′) 7→ (r, b), (x, y, b′).

These transitions change the position of an idle agent to x, and thus increment the number
of agents in position x. If no agent is in position err, then at least one idle agent is available
when a counter needs to be incremented, sinceM is n-bounded.

Nonzero-tests. For every q nzr(x)−−−−→ r ∈ ∆, every y ∈ X and every b, b′ ∈ {0, 1}, we add to
R the rendez-vous transition:

(q, b), (x, y, b′) 7→ (r, b), (x, y, b′).

These transitions can only be executed if there is at least one agent in position x, and thus
only if the value of x is nonzero.
Zero-tests. For a given x ∈ X, let fxerr : Q′ → Q′ be the function that maps every nonleader
in position x to the error position, i.e. fxerr(x, y, b)

def= (err, y, b) for every y ∈ X, b ∈ {0, 1},
and fx is the identity for all other states.

For every transition q
zro(x)−−−−→ r ∈ ∆ and every b ∈ {0, 1}, we add to B the broadcast

transition (q, b) 7→ (r, b); fxerr. If such a transition occurs, then nonleaders in position x move
to err. Thus, an error is detected iff the value of x is nonzero.

To recover from errors, P can be reset to its initial configuration as follows. Let frst : Q′ →
Q′ be the function that sends every state back to its origin, i.e.

frst(q, b)
def= (q0, 0) for every q ∈ Q, b ∈ {0, 1},

frst(x, y, b)
def= (y, y, 0) for every x ∈ X ′, y ∈ X, b ∈ {0, 1}.

For every y ∈ X and every b ∈ {0, 1}, we add the following broadcast transition to B to
reset P to its initial configuration:

(err, y, b) 7→ (y, y, 0); frst.

Acceptance. For every q ∈ Q \ {qa} and b ∈ {0, 1}, we add to B the broadcast transition
(q, b) 7→ (q0, 0); frst. Intuitively, as long as the leader’s position differs from the accepting
control state qa, it can reset P to its initial configuration. This ensures that P can try all
computations.

Let ferr : Q′ → Q′ be the function that changes the opinion of each state to 1, i.e.

ferr(q, b) def= (q, 1) for every q ∈ Q, b ∈ {0, 1},

ferr(x, y, b) def= (x, y, 1) for every x ∈ X ′, y ∈ X, b ∈ {0, 1}.

For every b ∈ {0, 1}, we add the following transition to B:

tone,b : (qa, b)→ (qa, 1); fone.

12 Expressive Power of Broadcast Consensus Protocols

Intuitively, these transitions change the opinion of every agent to 1. If such a transition
occurs in a configuration with no agent in err, then no agent can change its state anymore,
and the stable consensus 1 has been reached.
Correctness. Let us fix some some input α ∈ Nm. Let C0 and D0 be respectively the
initial configurations ofM and P on input α. Abusing notation, for every D ∈ Pop(Q′), let

D(x) def=
∑

(x,y,b)∈Q′
D(x, y, b).

The two following propositions state that every execution of M has a corresponding
execution in P and vice versa. The proofs are routine.

I Proposition 12. Let C be a configuration of M such that C is in control state q and
C0

∗−→ C. There exists a configuration D ∈ Pop(Q′) such that (i) D0
∗−→ D; (ii) D(x) = C(x)

for every x ∈ X; (iii) D(err) = 0; and (iv) D(q, b) = 1 for some b ∈ {0, 1}.

I Proposition 13. Let D ∈ Pop(Q′) be such that D0
∗−→ D. If D(err) = 0, then there is a

configuration C ofM such that (i) C0
∗−→ C; (ii) C(x) = D(x) for every x ∈ X; and (iii) if

D(q, b) = 1 for some (q, b) ∈ Q′, then C is in control state q.

We may now prove that P silently semi-computes ϕ.

I Proposition 14. For every n-bounded counter machineM that computes some predicate
ϕ, there exists a broadcast consensus protocol that silently semi-computes ϕ.

Proof. We show that P silently semi-computes ϕ by proving the two properties of Definition 6.
Let α be an input.
1. Assume ϕ(α) = 1. Then M accepts α, and so there is a configuration C such that

C0
∗−→ C and C is in control state qa. By Proposition 12, there exists some configuration

D ∈ Pop(Q′) satisfying D0
∗−→ D, D(err) = 0 and D(qa, b) = 1. Since M halts when

reaching qa, the only transition enabled at D is tone,b, and its application yields a terminal
configuration D′ of consensus 1. Further, every configuration reachable from D0, where
the leader is not in position qa or where some nonleader is in position err, can be set
back to D0 via some reset transition. Therefore, every fair execution of P starting at
I(α) = C0 will eventually reach D′.

2. Assume ϕ(α) = 0. We prove by contradiction that no configuration D reachable from D0
is terminal. Assume the contrary. We must have D(qa, 1) = 1, D(err) = 0 and O(D) = 1,
for otherwise some broadcast transition with frst or fone would be enabled. From this
and by Proposition 13, there exists some configuration C ofM in control state qa and
satisfying C0

∗−→ C. Thus,M accepts α, contradicting ϕ(α) = 0. J

4.2.5 Main theorem
We prove our main result, namely that broadcast consensus protocols precisely compute the
predicates in NL.

I Theorem 15. Broadcast consensus protocols compute exactly the predicates in NL.

Proof. Proposition 4 shows that every predicate computable by broadcast consensus protocols
is in NL. For the other direction, let ϕ be a predicate in NL. Since NL = coNL by Immerman-
Stelepcsényi’s theorem, the complement predicate ϕ is also in NL. Thus, ϕ and ϕ are
computable by O(logn)-space-bounded nondeterministic Turing machines. By Theorem 9

M. Blondin, J. Esparza and S. Jaax 13

and Proposition 11, ϕ and ϕ are computable by polynomially bounded counter machines,
and thus by n-bounded counter machines. Therefore, by Proposition 14, ϕ and ϕ are silently
semi-computable by broadcast consensus protocols. By Proposition 8, this implies that ϕ is
silently computable by a broadcast consensus protocol. J

Actually, the proof shows this slightly stronger result:

I Corollary 16. A predicate is computable by a broadcast consensus protocol iff it is silently
computable by a broadcast consensus protocol. In particular, broadcast consensus protocols
silently compute all predicates in NL.

5 Subclasses of broadcast consensus protocols

While broadcasting is a natural, well understood, and much used communication mechanism,
it also consumes far more energy than rendez-vous communication. In particular, agents
able to broadcast are more expensive to implement. In this section, we briefly analyze which
restrictions can be imposed on the broadcast model without reducing its computational
power. We show that all predicates in NL can be computed by protocols satisfying two
properties:
1. only one agent broadcasts; all other agents only use rendez-vous communication.
2. the broadcasting agent only needs to send one signal, meaning that the receivers’ response

is independent of the broadcast signal.

Finally, we show that a third restriction does decrease the computational power. In
simulations of the previous section, broadcasts are often used to “reset” the system. Since
computational models with resets have been devoted quite some attention [21, 25, 13, 11],
we investigate the computational power of protocols with resets.

Protocols with only one broadcasting agent. Loosely speaking, a broadcast protocol
with one broadcasting agent is a broadcast protocol P = (Q,R,B,Σ, L, I, O) with a set Q`
of leader states such that L = HqI for some q ∈ Q` (i.e., there is exactly one leader), and
whose transitions ensure that the leader always remains within Q`, that no other agent enters
Q`, and that only agents in Q` can trigger broadcast transitions. Protocols with multiple
broadcasting agents can be simulated by protocols with one broadcasting agent, say b. Instead
of directly broadcasting, an agent communicates with b by rendez-vous, and delegates to
b the task of executing the broadcast. More precisely, a broadcast transition q 7→ q′; f is
simulated by a rendez-vous transition (q, q`) 7→ (qaux, q`,f), followed by a broadcast transition
q`,f 7→ q`; (f ∪ {qaux 7→ q′}).
Single-signal broadcast protocols. In single-signal protocols the receivers’ response is
independent of the broadcast signal. Formally, a broadcast protocol (Q,R,B,Σ, I, O) is a
single-signal protocol if there exists a function f : Q→ Q such that B ⊆ Q2 × {f}.

I Proposition 17. Predicates computable by broadcast consensus protocols are also computable
by single-signal broadcast protocols.

Proof. We give a proof sketch; details can be found in the full version of the paper. We
simulate a broadcast protocol P by a single-signal protocol P ′. The main point is to simulate
a broadcast step C1

q1 7→q2;g−−−−−→ C2 of P by a sequence of steps of P ′.
In P, an agent at state q1, say a, moves to q2, and broadcasts the signal with meaning

“react according to g”. Intuitively, in P ′, agent a broadcasts the unique signal of P ′, which
has the meaning “freeze”. An agent that receives the signal, say b, becomes “frozen”. Frozen

14 Expressive Power of Broadcast Consensus Protocols

agents can only be “awoken” by a rendez-vous with a. When the rendez-vous happens, a
tells b which state it has to move to according to g.

The problem with this procedure is that a has no way to know if it has already performed
a rendez-vous with all frozen agents. Thus, frozen agents can spontaneously move to a state
err indicating “I am tired of waiting”. If an agent is in this state, then eventually all agents
go back to their initial states, reinitializing the computation. This is achieved by letting
agents in state err move to their initial states while broadcasting the “freeze” signal. J

Protocols with reset. In protocols with reset, all broadcasts transitions reset the protocol to
its initial configuration. Formally, a population protocol with reset is a broadcast protocol P =
(Q,R,B,Σ, I, O) such that for every finite execution C0C1 · · ·Ck from an initial configuration
C0, the following holds: Ck

b−→ C ′ implies C ′ = C0 for every b ∈ B and every C ′ ∈ Pop(Q).

I Proposition 18. Every predicate computable by a population protocol with reset is
Presburger-definable, and thus computable by a standard population protocol.

Proof. We give a proof sketch; details can be found in the full version of the paper. Let
P = (Q,R,B,Σ, I, O) be a population protocol with reset that computes some predicate. We
show that the set of accepting initial configurations of P , denoted I1, is Presburger-definable
as follows. Let:
P ′ be the population protocol obtained from P by eliminating the resets;
N be the set of configurations C of P ′ from which no reset can occur, i.e., no configuration
reachable from C enables a reset of P;
S1 be the set of configurations C of P ′ that are stable 1-consensuses, i.e., O(C ′) = 1 for
every C ′ reachable from C;
B be the set of configurations C of P ′ that belong to a bottom strongly connected
component of the configuration graph, i.e., C can reach C ′ iff C ′ can reach C.

We show that an initial configuration C belongs to I1 iff it belongs to S1 or it can reach
a configuration from S1 ∩ B ∩ N . Using results from [17], showing in particular that B is
Presburger-definable, we show that I1 is Presburger-definable. J

6 Conclusion

We have studied the expressive power of broadcast consensus protocols: an extension
of population protocols with reliable broadcasts, a standard communication primitive in
concurrency and distributed computing. We have shown that, despite their simplicity, they
precisely compute predicates from the complexity class NL, and are thus as expressive
as several other proposals from the literature which require a primitive more difficult to
implement: receiving messages from all agents, instead of sending messages to all agents.

As future work, we wish to study properties beyond expressiveness, such as state com-
plexity and space vs. speed trade-offs. It would also be interesting to tackle the formal
verification of broadcast consensus protocols. Although this is challenging as it goes beyond
Presburger arithmetic and the decidability frontier, it has recently been shown that models
with broadcasts admit more tractable approximations [10].

References
1 Mehran Abolhasan, Tadeusz A. Wysocki, and Eryk Dutkiewicz. A review of routing protocols

for mobile ad hoc networks. Ad Hoc Networks, 2(1):1–22, 2004. doi:10.1016/S1570-8705(03)
00043-X.

http://dx.doi.org/10.1016/S1570-8705(03)00043-X
http://dx.doi.org/10.1016/S1570-8705(03)00043-X

M. Blondin, J. Esparza and S. Jaax 15

2 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest. Time-
space trade-offs in population protocols. In Proc. Twenty-Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 2560–2579, 2017. doi:10.1137/1.9781611974782.
169.

3 Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in population
protocols. In Proc. Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2221–2239, 2018. doi:10.1137/1.9781611975031.144.

4 Dan Alistarh and Rati Gelashvili. Recent algorithmic advances in population protocols.
SIGACT News, 49(3):63–73, 2018. doi:10.1145/3289137.3289150.

5 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. In Proc. 23rd Annual ACM Symposium on
Principles of Distributed Computing (PODC), pages 290–299, 2004. doi:10.1145/1011767.
1011810.

6 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing, 18(4):235–253,
2006.

7 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Computing, 20(4):279–304, 2007. doi:10.1007/
s00446-007-0040-2.

8 James Aspnes. Clocked population protocols. In Proc. ACM Symposium on Principles of
Distributed Computing (PODC), pages 431–440, 2017.

9 Nathalie Bertrand, Miheer Dewaskar, Blaise Genest, and Hugo Gimbert. Controlling a
population. In Proc. 28th International Conference on Concurrency Theory (CONCUR),
volume 85, pages 12:1–12:16, 2017. doi:10.4230/LIPIcs.CONCUR.2017.12.

10 Michael Blondin, Christoph Haase, and Filip Mazowiecki. Affine extensions of integer vector
addition systems with states. In Proc. 29th International Conference on Concurrency Theory
(CONCUR), pages 14:1–14:17, 2018. doi:10.4230/LIPIcs.CONCUR.2018.14.

11 Dmitry Chistikov, Christoph Haase, and Simon Halfon. Context-free commutative grammars
with integer counters and resets. Theoretical Computer Science, 735:147–161, 2018. doi:
10.1016/j.tcs.2016.06.017.

12 Giorgio Delzanno, Jean-François Raskin, and Laurent Van Begin. Towards the automated
verification of multithreaded Java programs. In Proc. 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), pages 173–187, 2002.
doi:10.1007/3-540-46002-0_13.

13 Catherine Dufourd, Alain Finkel, and Philippe Schnoebelen. Reset nets between decidability
and undecidability. In Proc. 25th International Colloquium on Automata, Languages and
Programming (ICALP), pages 103–115, 1998. doi:10.1007/BFb0055044.

14 Robert Elsässer and Tomasz Radzik. Recent results in population protocols for exact majority
and leader election. Bulletin of the EATCS, 126, 2018.

15 E. Allen Emerson and Kedar S. Namjoshi. On model checking for non-deterministic infinite-
state systems. In Proc. Thirteenth Annual IEEE Symposium on Logic in Computer Science
(LICS), pages 70–80, 1998. doi:10.1109/LICS.1998.705644.

16 Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast protocols.
In Proc. 14th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 352–359,
1999. doi:10.1109/LICS.1999.782630.

17 Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. Verification of population
protocols. Acta Informatica, 54(2):191–215, 2017. doi:10.1007/s00236-016-0272-3.

18 Alain Finkel and Jérôme Leroux. How to compose Presburger-accelerations: Applications to
broadcast protocols. In Proc. 22nd Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), pages 145–156, 2002. doi:10.1007/3-540-36206-1_
14.

http://dx.doi.org/10.1137/1.9781611974782.169
http://dx.doi.org/10.1137/1.9781611974782.169
http://dx.doi.org/10.1137/1.9781611975031.144
http://dx.doi.org/10.1145/3289137.3289150
http://dx.doi.org/10.1145/1011767.1011810
http://dx.doi.org/10.1145/1011767.1011810
http://dx.doi.org/10.1007/s00446-007-0040-2
http://dx.doi.org/10.1007/s00446-007-0040-2
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.12
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.14
http://dx.doi.org/10.1016/j.tcs.2016.06.017
http://dx.doi.org/10.1016/j.tcs.2016.06.017
http://dx.doi.org/10.1007/3-540-46002-0_13
http://dx.doi.org/10.1007/BFb0055044
http://dx.doi.org/10.1109/LICS.1998.705644
http://dx.doi.org/10.1109/LICS.1999.782630
http://dx.doi.org/10.1007/s00236-016-0272-3
http://dx.doi.org/10.1007/3-540-36206-1_14
http://dx.doi.org/10.1007/3-540-36206-1_14

16 Expressive Power of Broadcast Consensus Protocols

19 Patrick C. Fischer, Albert R. Meyer, and Arnold L. Rosenberg. Counter machines and counter
languages. Mathematical Systems Theory, 2(3):265–283, 1968.

20 Neil Immerman. Nondeterministic space is closed under complementation. SIAM Journal on
Computing, 17(5):935–938, 1988. doi:10.1137/0217058.

21 David Lee and Mihalis Yannakakis. Testing finite-state machines: State identification and
verification. IEEE Transactions on Computers, 43(3):306–320, 1994. doi:10.1109/12.272431.

22 Othon Michail and Paul G. Spirakis. Terminating population protocols via some minimal
global knowledge assumptions. Journal of Parallel and Distributed Computing, 81-82:1–10,
2015.

23 Christos H. Papadimitriou. Computational complexity. Academic Internet Publ., 2007.
24 Sylvain Schmitz and Philippe Schnoebelen. The power of well-structured systems. In Proc.

24th International Conference on Concurrency Theory (CONCUR), pages 5–24, 2013. doi:
10.1007/978-3-642-40184-8_2.

25 Philippe Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines and reset
Petri nets. In Proc. 35th International Symposium on Mathematical Foundations of Computer
Science (MFCS), pages 616–628, 2010. doi:10.1007/978-3-642-15155-2_54.

26 Róbert Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta
Informatica, 26(3):279–284, 1988. doi:10.1007/BF00299636.

27 Jannis Uhlendorf, Agnès Miermont, Thierry Delaveau, Gilles Charvin, François Fages, Samuel
Bottani, Pascal Hersen, and Gregory Batt. In silico control of biomolecular processes. In
Computational Methods in Synthetic Biology, pages 277–285. Marchisio, Mario Andrea, 2015.
doi:10.1007/978-1-4939-1878-2_13.

28 Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor network survey.
Computer Networks, 52(12):2292–2330, 2008. doi:10.1016/j.comnet.2008.04.002.

http://dx.doi.org/10.1137/0217058
http://dx.doi.org/10.1109/12.272431
http://dx.doi.org/10.1007/978-3-642-40184-8_2
http://dx.doi.org/10.1007/978-3-642-40184-8_2
http://dx.doi.org/10.1007/978-3-642-15155-2_54
http://dx.doi.org/10.1007/BF00299636
http://dx.doi.org/10.1007/978-1-4939-1878-2_13
http://dx.doi.org/10.1016/j.comnet.2008.04.002

	Introduction
	Preliminaries
	Broadcast consensus protocols
	Broadcast consensus protocols compute exactly NL
	Predicates computable by broadcast consensus protocols are in NL
	Predicates in NL are computable by broadcast consensus protocols
	Silent semi-computation
	Simulation of Turing machines by counter machines
	Simulation of polynomially bounded counter machines by n-bounded counter machines
	Simulation of n-bounded counter machines by broadcast consensus protocols
	Main theorem

	Subclasses of broadcast consensus protocols
	Conclusion

