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ABSTRACT
Workflow nets are a well-established variant of Petri nets for the

modeling of process activities such as business processes. The stan-

dard correctness notion of workflownets is soundness, which comes

in several variants. Their decidability was shown decades ago, but

their complexity was only identified recently. In this work, we

are primarily interested in two popular variants: 1-soundness and

generalised soundness.

Workflow nets have been extended with resets to model work-

flows that can, e.g., cancel actions. It has been known for a while

that, for this extension, all variants of soundness, except possibly

generalised soundness, are undecidable.

We complete the picture by showing that generalised soundness

is also undecidable for reset workflow nets. We then blur this unde-

cidability landscape by identifying a property, coined “1-in-between

soundness”, which lies between 1-soundness and generalised sound-

ness. It reveals an unusual non-monotonic complexity behaviour: a

decidable soundness property is in between two undecidable ones.

This can be valuable in the algorithmic analysis of reset workflow

nets, as our procedure yields an output of the form “1-sound” or

“not generalised sound” which is always correct.
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1 INTRODUCTION
Workflow nets are a well-established formalism for the modeling of

process activities such as business processes [30]. For example, they

can be used as the formal representation of workflow procedures

in business process management systems (see e.g. [31, Section 4]

and [30, Section 3] for details on modeling procedures). Workflow

nets enable the algorithmic formal analysis of their behaviour. This

is relevant, e.g., for organizations that seek to manage complex

business processes. For example, according to a survey [33], over

20% instances from the SAP reference model have been detected to

be flawed (due to deadlocks, livelocks, etc.)

A workflow netW is essentially a Petri net — a prominent model

of concurrency — that satisfies extra properties. In particular,W
has two designated places 𝑖 and 𝑓 respectively called initial and final.
Initially,W starts with 𝑘 tokens in place 𝑖 that can evolve according

to the transitions of W, which can consume and create tokens.

Informally, a token that reaches 𝑓 indicates that some activity has

been completed.

1.1 Soundness
The standard correctness notion of workflow nets is soundness.

Various definitions have been considered in the literature. Most

prominently, 𝑘-soundness requires that, starting from 𝑘 tokens in

the initial place, no matter what transitions are taken, it is always

possible to complete properly, i.e. to end up with 𝑘 tokens in the

final place, and no token elsewhere.Generalised soundness requires a
net to be 𝑘-sound for all 𝑘 > 0, while structural soundness requires 𝑘-
soundness for some 𝑘 > 0. Classical soundness requires 1-soundness
and each transition to be fireable in at least one execution.

The decidability of soundness was established some two decades

ago [5, 30, 35, 36] (see [33] for a survey). The underlying algorithms

relied on Petri net reachability, which was recently shown to be non-

primitive recursive [7, 20, 21]. Until recently, no better bound was

known. At LICS’22 [3], the computational complexity of all variants

of soundness was established: generalised soundness is PSPACE-

complete, while the other variants are EXPSPACE-complete.
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One shortcoming of workflow nets is that they lack useful fea-

tures like cancellation. As mentioned in [29], “[m]any practical

languages have a cancelation feature, e.g., Staffware has a with-

draw construct, YAWL has a cancelation region, BPMN has cancel,

compensate, and error events, etc.” Thus, workflow nets have been

extended with resets that instantly remove all tokens from a region

of the net upon taking a transition (e.g. see [32]). Around fifteen

years ago, it was shown that, for reset workflow nets,

[... of] the many soundness notions described in [the]
literature only generalised soundness may be decidable
(this is still an open problem). All other notions are
shown to be undecidable. [29]

So, while all studied variants such as 1-soundness, 𝑘-soundness,

structural soundness and classical soundness are undecidable for

reset workflow nets, the decidability of generalised soundness has

remained open.

The recent results of [3] shows that in the absence of resets, gen-

eralised soundness is computationally easier than other soundness

variants. This was an indication that generalised soundness could

remain decidable in the presence of resets.

1.2 Our contribution
In this work, we first show that such a conjecture is false: gener-

alised soundness for reset workflow nets is undecidable.

The undecidability of the various types of soundness in reset

workflow nets indicates the necessity for a new approach. Conse-

quently, we embarked on the journey of exploring potential meth-

ods for “approximating” soundness. We propose a precise definition

of an acceptable approximation.

More precisely, we say that a property P of reset workflow

nets is a 1-in-between soundness property if it meets the following

criteria: all generalised sound reset workflow nets satisfy P, and

every reset workflow net satisfying P is 1-sound. Remarkably, we

have discovered such a property, denoted as P1, which is decidable.

Thus, we have

Generalised sound nets ⊆ P1 nets ⊆ 1-sound nets,

where generalised soundness and 1-soundness are undecidable, but

P1 is decidable.

This reveals a non-monotonic complexity behaviour. By this, we

mean three properties 𝐴, 𝐵 and 𝐶 such that

𝐴 (hard) ⊆ 𝐵 (easy) ⊆ 𝐶 (hard).

This phenomenon can be regarded as unnatural and is rarely ac-

tively exploited. We present two other such examples.

First, consider the setting where we are given two graphs, each

with a designated initial node and with directed edges labelled from

a common finite alphabet (so, finite automata whose states are all

accepting). These inclusions hold:

Isomorphism ⊆ Bisimilarity ⊆ Trace(-language) equivalence,

The first property is known to be checkable in quasi-polynomial

time (a survey on current advances can be found in [14]), the second

is checkable in polynomial time [25], and the third one is well

known to be PSPACE-complete.

Now, consider the setting where we are given two one-counter

nets (OCN), where an OCN is an automaton with a single counter

over the naturals that can be incremented and decremented (but

not zero-tested). These inclusions hold:

Weak bisimulation [24] ⊆
Weak simulation in both directions [16] ⊆
Language equivalence [28],

The first and the last properties are undecidable, while the middle

one is PSPACE-complete.

Our propertyP1 can be valuable in the analysis of reset workflow

nets. For example, we provide an algorithm that, on any reset work-

flow net which is not 1-sound, classifies it as not generalised sound,

and on any generalised sound reset workflow net, guarantees at

least 1-soundness. For reset workflow nets that are 1-sound but not

generalised sound, the algorithm provides the correct description

of either not being generalised sound or being 1-sound. It is worth

noting that all these answers accurately characterize the given reset

workflow net.

However, the computational complexity of verifying P1 is non-

primitive recursive in the worst case, which hinders immediate

applications. Nevertheless, we cannot rule out the existence of

similar predicates with better computational complexity, or of im-

plementations performing faster on real-world instances. This area

requires further investigation.

The definition of P1 is exceedingly technical, making it chal-

lenging to convey basic intuitions concisely. We actually define

a decidable family of properties {P𝑘 }𝑘>0. In our final result, we

prove a connection with another notion of soundness found in the

literature, namely up-to-𝑘 soundness [34]. Specifically, we demon-

strate that for every reset workflow netW, there is a computable

but substantially large value 𝐾 such that, for every 𝑘 > 𝐾 , W is

up-to-𝑘 sound if and only if it satisfies the property P𝑘 .

1.3 Further related work
A significant portion of the work that relates to reset workflow nets

consists of results on reset Petri nets, in particular, on

• The theory of well-structured transition systems and results

for the general class of reset Petri nets [8, 12];

• Results on restricted subclasses, such as those with a limited

number of places that can be reset [11], acyclic reset Petri

nets and workflow nets [4], or Petri nets with hierarchical

reset arcs [1];

• More practically oriented results on relaxations of the reach-

ability relation like the integer relaxation [15].

An important branch of soundness-related research includes

work on reduction rules that preserve (un)soundnesswhile reducing

the size and structure of the workflow net. Rules specific to reset

workflow nets are explored in [37, 38].

Another line of research lies in the field of process discovery,

e.g. the discovery of cancellation regions within process mining

techniques [17].

1.4 Paper organization
The paper is organized as follows. In Section 2, we introduce pre-

liminary definitions such as Petri nets, workflow nets and notions

of soundness. In Section 3, we establish the undecidability of gen-

eralised soundness for reset workflow nets. Section 4 shows the
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existence of the 𝑘-in-between soundness property P𝑘 , and relates

it with another notion of soundness. In particular, Section 4.1 intro-

duces the intermediate notion of “nonredundancy”, and Section 4.2

introduces the intermediate notion of “skeleton” workflow nets.

2 PRELIMINARIES
Let N B {0, 1, . . .} and N>0 B N \ {0}. For every 𝑎, 𝑏 ∈ N such

that 𝑎 ≤ 𝑏, we define [𝑎..𝑏] B {𝑎, 𝑎 + 1, . . . , 𝑏}. Given a set 𝑋 , we

denote its cardinality by |𝑋 |.
Let 𝒎,𝒎′

: 𝑃 → N where 𝑃 is a finite set. We see 𝒎 and 𝒎′
as

both unordered vectors and multisets. For example, we have 𝒎 = 0
if 𝒎(𝑝) = 0 for every 𝑝 ∈ 𝑃 , and we have 𝒎′ = {𝑝 : 1, 𝑞 : 3} if

𝒎′ (𝑝) = 1, 𝒎′ (𝑞) = 3 and 𝒎′ (𝑟 ) = 0 for every 𝑟 ∈ 𝑃 \ {𝑝, 𝑞}. We

write 𝒎 ≤ 𝒎′
iff 𝒎(𝑝) ≤ 𝒎′ (𝑝) for every 𝑝 ∈ 𝑃 . We write 𝒎 < 𝒎′

if𝒎 ≤ 𝒎′
and𝒎 ≠ 𝒎′

. We define𝒎+𝒎′
as the mapping satisfying

(𝒎 +𝒎′) (𝑝) = 𝒎(𝑝) +𝒎′ (𝑝) for every 𝑝 ∈ 𝑃 . The mapping𝒎−𝒎′

is defined similarly, provided that 𝒎 ≥ 𝒎′
. For every 𝑄 ⊆ 𝑃 , we

define 𝒎(𝑄) B ∑
𝑞∈𝑄 𝒎(𝑞).

2.1 Ackermannian complexity
In the upcoming sections, we prove theorems about the existence

of some numbers bounded by functions on the size of the input.

To do this rigorously, we should refer to these individual bounds

and precisely track dependencies between them. However, some of

the bounds we use are based on the Ackermann function (which

is non-primitive recursive), and tracking them precisely is tedious.

Moreover, keeping all the constants in mind would be troublesome

for the reader. That is why we choose to simply state that some

number is of “Ackermannian size” or”Ackermannianly bounded”.

In our reasoning, we use the following rules:

• Themaximum, sum and product of Ackermannianly bounded

constants yields Ackermannianly bounded constants;

• The application of a function within the Ackermannian class

of functions to a bound of Ackermannian size yields an

Ackermannianly bounded constant.

Since we will make a constant number of such manipulations, the

Ackermannian bounds will be preserved.

For an introduction to high computational complexity classes

(from the fast-growing hierarchy), we refer the reader to [23, 27].

2.2 Petri nets
A reset Petri net N is a tuple (𝑃,𝑇 , 𝐹, 𝑅) where

• 𝑃 is a finite set of elements called places,
• 𝑇 is a finite set, disjoint from 𝑃 , of elements called transitions,
• 𝐹 ⊆ (𝑃 ×𝑇 ) ∪ (𝑇 × 𝑃) is a set of elements called arcs,
• 𝑅 ⊆ (𝑃 ×𝑇 ) is a set of elements called reset arcs.

A (standard) Petri net is a reset Petri net with no reset arc (𝑅 = ∅).

Example 2.1. Figure 1 depicts a reset Petri net N = (𝑃,𝑇 , 𝐹, 𝑅)
where 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4} (circles), 𝑇 = {𝑡1, 𝑡2, 𝑡3} (boxes), each arc

(𝑢, 𝑣) ∈ 𝐹 is depicted by a directed edge, and the only reset arc is

depicted by a dotted directed edge. □

Given a transition 𝑡 ∈ 𝑇 , we define •𝑡 B {𝑝 ∈ 𝑃 : (𝑝, 𝑡) ∈ 𝐹 }
and 𝑡• B {𝑝 ∈ 𝑃 : (𝑡, 𝑝) ∈ 𝐹 }. Both of these sets will often be

interpreted implicitly as mappings from 𝑃 to {0, 1}. For example,

we can write either “𝑝 ∈ 𝑡•” or “𝑡• (𝑝) = 1”. In Figure 1, we have,

e.g.,
•𝑡1 = {𝑝1}, 𝑡1• = {𝑝2, 𝑝3} and •𝑡3 = {𝑝2}. Given a place 𝑝 ∈ 𝑃 ,

we define
•𝑝 B {𝑡 ∈ 𝑇 : (𝑡, 𝑝) ∈ 𝐹 } and 𝑝• B {𝑡 ∈ 𝑇 : (𝑝, 𝑡) ∈ 𝐹 }.

A marking is a mapping 𝒎 : 𝑃 → N that indicates the number

of tokens in each place. Given a marking 𝒎 and a transition 𝑡 , we

let 𝑅𝑒𝑠𝑒𝑡𝑡 (𝒎) denote the marking obtained from 𝒎 by emptying

all places that are reset by 𝑡 . Formally, 𝑅𝑒𝑠𝑒𝑡𝑡 (𝒎) B 0 if (𝑝, 𝑡) ∈ 𝑅,
and 𝒎(𝑝) otherwise.

We say that a transition 𝑡 ∈ 𝑇 is enabled in marking𝒎 if𝒎 ≥ •𝑡 ,
i.e. if each place of

•𝑡 contains at least one token. If 𝑡 is enabled in

𝒎, then it can be fired. In words, upon firing 𝑡 , a token is consumed

from each place of
•𝑡 ; then, all places of {𝑝 : (𝑝, 𝑡) ∈ 𝑅} are emptied;

and, finally, a token is produced in each place of 𝑡•. More formally,

firing 𝑡 leads to the marking 𝒎′
defined as follows, for every 𝑝 ∈ 𝑃 :

𝒎′ (𝑝) =
{
𝒎(𝑝) − •𝑡 (𝑝) + 𝑡• (𝑝) if (𝑝, 𝑡) ∉ 𝑅,
𝑡• (𝑝) otherwise.

Equivalently, and more succinctly, 𝒎′ = 𝑅𝑒𝑠𝑒𝑡𝑡 (𝒎 − •𝑡) + 𝑡•.
We write 𝒎 −→𝑡 𝒎′

whenever 𝑡 is enabled in 𝒎 and firing 𝑡 from

𝒎 leads to 𝒎′
. We write 𝒎 −→ 𝒎′

if 𝒎 −→𝑡 𝒎′
holds for some 𝑡 ∈ 𝑇 .

We write −→∗
to denote the reflexive-transitive closure of −→. Given

a subset 𝑋 of markings, we write 𝒎 −→∗ 𝑋 to denote that there

exists 𝒎′ ∈ 𝑋 such that 𝒎 −→∗ 𝒎′
.

Given a sequence of transitions 𝜋 = 𝑡1𝑡2 · · · 𝑡𝑛 and a transition 𝑠 ,

we define |𝜋 | B 𝑛 and |𝜋 |𝑠 = |{𝑖 ∈ [1..𝑛] : 𝑡𝑖 = 𝑠}|.

Example 2.2. Reconsider the reset Petri net of Figure 1. For the
sake of brevity, let us write a marking {𝑝1 : 𝑎, 𝑝2 : 𝑏, 𝑝3 : 𝑐, 𝑝4 : 𝑑} as
(𝑎, 𝑏, 𝑐, 𝑑). From marking (1, 0, 0, 0), we can only fire 𝑡1. Firing 𝑡1
leads to (0, 1, 1, 0). From the latter, we can fire either 𝑡2 or 𝑡3. Firing

𝑡2 leads to (1, 0, 1, 0). From there, we can only fire 𝑡1, which leads to

(0, 1, 2, 0). From the latter, we can fire either 𝑡2 or 𝑡3. Firing 𝑡3 leads

to (0, 0, 0, 1), from which no transition is enabled. The described

sequence can be written as

(1, 0, 0, 0) −→𝑡1 (0, 1, 1, 0) −→𝑡2 (1, 0, 1, 0)
−→𝑡1 (0, 1, 2, 0) −→𝑡3 (0, 0, 0, 1).

Thus, we have (1, 0, 0, 0) −→𝑡1 𝑡2 𝑡1 𝑡3 (0, 0, 0, 1), or more succinctly

(1, 0, 0, 0) −→∗ (0, 0, 0, 1). □

𝑝1 𝑡1

𝑝2𝑡2

𝑝3

𝑡3
𝑝4

Figure 1: Example of a reset Petri net where circles are places,
boxes are transitions, solid edges are arcs, and dotted edges
are reset arcs. The small filled circle depicts a token.
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2.3 Upward and downward closed sets
The set of markings N𝑃 is partially ordered by ≤. The latter is

a well-quasi-order, which means that it neither contains infinite

antichains nor infinite (strictly) decreasing sequences.

A set of markings 𝑋 ⊆ N𝑃 is upward closed if for every 𝒎 ∈ 𝑋
and every other marking 𝒎′ ∈ N𝑃 , it is the case that 𝒎 ≤ 𝒎′

implies 𝒎′ ∈ 𝑋 . The upward closure of 𝑌 ⊆ N𝑃 is defined as the

smallest upward closed set, denoted ↑𝑌 , such that 𝑌 ⊆ ↑𝑌 .
Similarly, a subset𝑋 ⊆ N𝑃 is downward closed if for every𝒎 ∈ 𝑋

and every other marking 𝒎′ ∈ N𝑃 , we have 𝒎′ ≤ 𝒎 =⇒ 𝒎′ ∈ 𝑋 .
The downward closure of 𝑌 ⊆ N𝑃 , denoted ↓𝑌 , is the smallest

downward closed set such that 𝑌 ⊆ ↓𝑌 .
We extend upward and downward closures to individual mark-

ings, i.e. ↑𝒎 B ↑{𝒎} and ↓𝒎 B ↓{𝒎}.
It is worth noting that every upward closed set is characterized

by the set of its minimal elements. Since such a set is an antichain, it

must be finite, resulting in a finite representation for each upward

closed set. Similarly, every downward closed set can be finitely

represented by a finite representation of its complement, which is

an upward closed set.

Given a reset Petri net N , we say that from a marking 𝒎, it is

possible to cover a marking 𝒎′
if there exists a marking 𝒎′′ ≥ 𝒎′

such that 𝒎 −→∗ 𝒎′′
holds in N . Let 𝐶𝒎′ be the set of all markings

𝒎 from which it is possible to cover a marking 𝒎′
. Observe that

𝐶𝒎′ is upward closed. An important result is that, for any given

marking 𝒎′
, it is possible to compute the minimal elements of

the set 𝐶𝒎′ . This computation can be achieved using the so-called

“backward coverability algorithm” [13].

Additionally, it is crucial to note the following lemma.

Lemma 2.3 ([9]). If it is possible to cover 𝒎′ from 𝒎, then it can
be done with a run whose length is Ackermannianly bounded in the
size of the Petri net and 𝒎′.

Throughout the paper we will often use Lemma 2.3 without

referring to it. We will even use a stronger property that the set

of minimal elements of 𝐶𝒎′ can be computed in Ackermannian

time. This follows from [19], where it is proved that the backward

coverability algorithm works in Ackermannian time.

2.4 Workflow nets and soundness
A reset workflow net is a tuple (𝑃,𝑇 , 𝐹, 𝑅, 𝑖, 𝑓 ) where

• N = (𝑃,𝑇 , 𝐹, 𝑅) is a reset Petri net,
• 𝑖 ∈ 𝑃 is a place called initial that satisfies •𝑖 = ∅,
• 𝑓 ∈ 𝑃 is a place called final that satisfies 𝑓 • = ∅, and (𝑓 , 𝑡) ∉
𝑅 for all 𝑡 ∈ 𝑇 (no transition resets 𝑓 ),

• each element of 𝑃 ∪ 𝑇 is on some path from 𝑖 to 𝑓 in the

underlying graph ofN without considering reset arcs, i.e. in

the graph 𝐺 B (𝑉 , 𝐸) with vertices 𝑉 B 𝑃 ∪𝑇 and directed

edges 𝐸 B {(𝑢, 𝑣) ∈ 𝑉 ×𝑉 : (𝑢, 𝑣) ∈ 𝐹 }.
A (standard) workflow net is a reset workflow net with no reset arc,

i.e. with 𝑅 = ∅. For example, Figure 2 depicts a reset workflow net.

Given 𝑘 ∈ N>0, we say that a reset workflow net W is 𝑘-sound
if for every marking 𝒎 such that {𝑖 : 𝑘} −→∗ 𝒎, it is the case that

𝒎 −→∗ {𝑓 : 𝑘}. In other words, W is 𝑘-sound if, from 𝑘 tokens in

the initial place, no matter what is fired, it is always possible to

end up with 𝑘 tokens in the final place (and no token elsewhere).

𝑖 𝑠

𝑝1

𝑝2

𝑡1

𝑡2

𝑞1

𝑞2

𝑞3

𝑢1

𝑢2

𝑓

Figure 2: Example of a reset workflow net. Reset arcs are
depicted implicitly by colored patterns, rather than explicitly
by dotted directed edges. In words, transition 𝑢1 resets place
𝑞2, and transition 𝑢2 resets all places from {𝑝1, 𝑝2, 𝑞1, 𝑞2, 𝑞3}.
Formally, 𝑅 = {(𝑞2, 𝑢1)} ∪ {(𝑟,𝑢2) : 𝑟 ∈ {𝑝1, 𝑝2, 𝑞1, 𝑞2, 𝑞3}}. The
two filled circles within place 𝑖 represent two tokens.

We say that a reset workflow net W is generalised sound if it is

𝑘-sound for all 𝑘 ∈ N>0.
A marking 𝒎 is a witness of 𝑘-unsoundness if {𝑖 : 𝑘} −→∗ 𝒎 and

𝒎 ̸−→∗ {𝑓 : 𝑘}. A marking 𝒎 is a witness of unsoundness if it is a
witness of 𝑘-unsoundness for some 𝑘 ∈ N>0.

Example 2.4. Reconsider the reset Petri net of Figure 1. Taking
𝑖 B 𝑝1 and 𝑓 B 𝑝4 does not yield a reset workflow net for the two

following reasons:

• we have:
•𝑝1 = {𝑡2} ≠ ∅, and

• there is no path from 𝑝3 to 𝑝4 (along solid edges).

Figure 2 depicts a reset workflow net W. The set of markings

reachable from {𝑖 : 1} in W is depicted in Figure 3. It is readily

seen that any reachable marking 𝒎 can reach {𝑓 : 1}. Thus,W is

1-sound. However, W is not 2-sound and hence not generalised

sound. Indeed, we have

{𝑖 : 2} −→𝑠𝑠 {𝑝1 : 2, 𝑝2 : 2} −→𝑡2

{𝑝1 : 2, 𝑝2 : 1, 𝑞2 : 1, 𝑞3 : 1} −→𝑢2 {𝑓 : 1}.
As {𝑓 : 1} cannot reach any other marking, it cannot reach {𝑓 : 2}
as required. So, {𝑓 : 1} is a witness of 2-unsoundness, and hence of

unsoundness. □

{𝑖 : 1}

{𝑝1 : 1, 𝑝2 : 1}

{𝑞1 : 1, 𝑝2 : 1} {𝑝1 : 1, 𝑞2 : 1, 𝑞3 : 1}

{𝑞1 : 1, 𝑞2 : 1, 𝑞3 : 1}

{𝑓 : 1}

𝑠

𝑡1 𝑡2

𝑡2 𝑡1

𝑢1, 𝑢2
𝑢2

Figure 3: The set of markings reachable from {𝑖 : 1} in the
reset workflow net of Figure 2. Each edge 𝒎 −→𝑡 𝒎′ indicates
that firing transition 𝑡 in marking 𝒎 leads to marking 𝒎′.
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2.5 Subnets
Let W = (𝑃,𝑇 , 𝐹, 𝑅, 𝑖, 𝑓 ) be a reset workflow net, let 𝑄 ⊆ 𝑃 and

let 𝑆 ⊆ 𝑇 . The reset Petri net obtained fromW by removing places
𝑄 and transitions 𝑆 is the reset Petri net (𝑃,𝑇 , 𝐹, 𝑅) from which

we remove 𝑄 , 𝑆 and any remaining isolated node (i.e. with no

incoming and outgoing arc.) More formally, it is the reset Petri net

N B (𝑃 ′,𝑇 ′, 𝐹 ′, 𝑅′) where
𝑃 ′ B {𝑝 ∈ 𝑃 \𝑄 : (•𝑝 ∪ 𝑝•) ⊈ 𝑆}
𝑇 ′ B {𝑡 ∈ 𝑇 \ 𝑆 : (•𝑡 ∪ 𝑡•) ⊈ 𝑄},
𝐹 ′ B {(𝑝, 𝑡) ∈ 𝐹 : 𝑝 ∈ 𝑃 ′, 𝑡 ∈ 𝑇 ′} ∪ {(𝑡, 𝑝) ∈ 𝐹 : 𝑝 ∈ 𝑃 ′, 𝑡 ∈ 𝑇 ′},
𝑅′ B {(𝑝, 𝑡) ∈ 𝑅 : 𝑝 ∈ 𝑃 ′, 𝑡 ∈ 𝑇 ′}.
By definition, N has no isolated node, i.e. with no incoming or

outgoing arc. This holds even if we only remove places (𝑆 = ∅)
or only remove transitions (𝑄 = ∅). Indeed, since W is a reset

workflow net, each place 𝑝 ∈ 𝑃 and each transition 𝑡 ∈ 𝑇 has at

least one incoming arc or one outgoing arc inW.

3 GENERALISED SOUNDNESS IS
UNDECIDABLE

In this section, we prove the following result.

Theorem 3.1. The generalised soundness problem for reset work-
flow nets is undecidable.

Wewill give a reduction from the reachability problem inMinksy

machines. A (two-counter) Minsky machine is a finite automaton

with two counters that can be incremented, decremented and zero-

tested. More formally, it is a pair (𝑄,Δ) where 𝑄 is a finite set of

elements called control states, and where Δ ⊆ 𝑄×{x𝑖 ++, x𝑖 --, x𝑖 = 0? :

𝑖 ∈ {1, 2}} ×𝑄 is a set of elements called transitions. A configuration
of such a machine is a triple (𝑝, 𝑎, 𝑏) ∈ 𝑄 × N × N which we will

write more concisely as 𝑝 (𝒗) where 𝒗 = (𝑎, 𝑏). For the following
definition, let ¬𝑖 denote 3 − 𝑖 , i.e. the index of the other counter.

A transition (𝑝, oper, 𝑞) allows to update a current configuration

in control state 𝑝 into a configuration in control state 𝑞 with the

expected semantic of oper:

𝑞(𝒗) −→(𝑞,x𝑖 ++,𝑞′ ) 𝑞′ (𝒗′) if 𝒗′ (𝑖) = 𝒗 (𝑖) + 1 and (∗),

𝑞(𝒗) −→(𝑞,x𝑖 --,𝑞′ ) 𝑞′ (𝒗′) if 𝒗′ (𝑖) = 𝒗 (𝑖) − 1 ≥ 0 and (∗),

𝑞(𝒗) −→(𝑞,x𝑖 = 0?,𝑞′ ) 𝑞′ (𝒗′) if 𝒗′ (𝑖) = 𝒗 (𝑖) = 0 and (∗),
where “(∗)” stands for “𝒗′ (¬𝑖) = 𝒗 (¬𝑖)”.

We write 𝑞(𝒗) −→ 𝑞′ (𝒗′) if 𝑞(𝒗) −→𝑡 𝑞′ (𝒗′) for some 𝑡 ∈ Δ.
We write −→∗

to denote the reflexive-transitive closure of −→. The

(control-state) reachability problem asks, given 𝑝, 𝑞 ∈ 𝑄 , whether
𝑝 (0) −→∗ 𝑞(0). It is well known that this problem is undecidable.

Let 𝑞(𝒗) −→
𝑘
𝑞′ (𝒗′) denote the fact that 𝑞(𝒗) −→ 𝑞′ (𝒗′) and

0 ≤ 𝒗 (𝑖), 𝒗′ (𝑖) ≤ 𝑘 for both 𝑖 ∈ {1, 2}. Let −→∗
𝑘
denote the reflexive-

transitive closure of −→
𝑘
. In words, −→∗

𝑘
is the reachability relation

where counters remain within [0..𝑘]. Clearly, 𝑝 (𝒖) −→∗ 𝑞(𝒗) holds
iff there exists 𝑘 ∈ N such that 𝑝 (𝒖) −→∗

𝑘
𝑞(𝒗) holds.

Proposition 3.2. Given a Minsky machine M = (𝑄,Δ) and
control states 𝑞src, 𝑞tgt ∈ 𝑄 , one can construct, in polynomial time, a
reset Petri net N with places 𝑃 B 𝑄 ∪ {𝑥1, 𝑥2, 𝑥1, 𝑥2} such that the
following holds for every 𝑝, 𝑞 ∈ 𝑄 and 𝑘 ∈ N:

• 𝑝 (0) −→∗
𝑘
𝑞(0) holds in M iff {𝑝 : 1, 𝑥1 : 𝑘, 𝑥2 : 𝑘} −→∗ {𝑞 : 1,

𝑥1 : 𝑘, 𝑥2 : 𝑘} holds in N ;
• {𝑝 : 1, 𝑥1 : 𝑘, 𝑥2 : 𝑘} −→∗ 𝒎 inN implies𝒎(𝑄) = 1 and𝒎(𝑥𝑖 )+
𝒎(𝑥𝑖 ) ≤ 𝑘 for all 𝑖 ∈ {1, 2};

• Each node of N is on some path from 𝑞src to 𝑞tgt.

Proof. We use classical notions: budget places and weak simu-

lation of zero-tests. More precisely, each counter 𝑥𝑖 ofM is repre-

sented by two places in N : 𝑥𝑖 and 𝑥𝑖 . Initially, 𝑥𝑖 is empty and 𝑥𝑖
contains 𝑘 tokens. Whenever 𝑥𝑖 is incremented, 𝑥𝑖 is decremented,

and vice versa. This forces 𝑥𝑖 to remain within [0..𝑘]. Each zero-test
ofM is simulated by a reset of 𝑥𝑖 . If a reset occurs whenver 𝑥𝑖 is

empty, then nothing happens. However, ifN “cheats” and resets 𝑥𝑖
whenever it is non empty, then {𝑥𝑖 , 𝑥𝑖 } now contains less than 𝑘

tokens and it will never be possible to increase that number back.

More formally, let us define N = (𝑃,𝑇 , 𝐹, 𝑅). We set 𝑃 B 𝑄 ∪
{𝑥1, 𝑥2, 𝑥1, 𝑥2} and 𝑇 B Δ. For each transition 𝑡 = (𝑝, oper, 𝑞) ∈ Δ,
we add the following arcs to N .

• Case oper = x𝑖 ++. We move the token from 𝑝 to 𝑞, increment

𝑥𝑖 and decrement its dual:

𝑝

𝑡

𝑞

𝑥𝑖 𝑥𝑖

• Case oper = x𝑖 --. We move the token from 𝑝 to 𝑞, decrement

𝑥𝑖 and increment its dual:

𝑝

𝑡

𝑞

𝑥𝑖 𝑥𝑖

• Case oper = x𝑖 = 0?. We move the token from 𝑝 to 𝑞, reset

𝑥𝑖 and leave 𝑥𝑖 unchanged:

𝑝

𝑡

𝑞

𝑥𝑖 𝑥𝑖

It is readily seen that starting frommarking {𝑞src : 1, 𝑥1 : 𝑘, 𝑥2 : 𝑘}
there is always exactly one token in𝑄 . Moreover, the two first types

of transitions leave the number of tokens in {𝑥𝑖 , 𝑥𝑖 } unchanged,
while the third type of transitions may decreases the number of

tokens in {𝑥𝑖 , 𝑥𝑖 }. So, the second item of the proposition holds.

Let us explain why the first item holds.

⇒) Assume 𝑝 (0) −→𝜋
𝑘
𝑞(0) holds in M. We claim that

{𝑝 : 1, 𝑥1 : 𝑘, 𝑥2 : 𝑘} −→𝜋 {𝑞 : 1, 𝑥1 : 𝑘, 𝑥2 : 𝑘} holds in N .

Indeed, (i) resets only occur on empty places, which maintains the

invariant that {𝑥𝑖 , 𝑥𝑖 } contains exactly 𝑘 tokens; (ii) no increment

or decrement is ever blocked in N since we know that counters

never exceed 𝑘 in M.

⇐) Assume that

{𝑝 : 1, 𝑥1 : 𝑘, 𝑥2 : 𝑘} −→𝜋 {𝑞 : 1, 𝑥1 : 𝑘, 𝑥2 : 𝑘} holds in N .



LICS ’24, July 8–11, 2024, Tallinn, Estonia Michael Blondin, Alain Finkel, Piotr Hofman, Filip Mazowiecki, and Philip Offtermatt

As each 𝑥𝑖 starts and ends with 𝑘 tokens, this means that each reset

that occured in 𝜋 did not consume any token. Thus, zero-tests were

simulated faithfully. Consequently, 𝑝 (0) −→𝜋
𝑘
𝑞(0) holds in M.

It remains to prove the last item of the proposition, namely that

each node of N is on some path from 𝑞src to 𝑞tgt. We preprocess

M as follows:

(1) each control state unreachable from 𝑞src in the underlying

graph is removed fromM;

(2) each control state that cannot reach 𝑞tgt in the underlying

graph is removed fromM;

(3) We add two new control states 𝑞′
src

and 𝑟 to M, and these

transitions:

𝑞′
src

𝑟 𝑞src

x1++

x1--

x2++

x2--

x1 = 0? x2 = 0?

The resulting machine M′
is clearly equivalent, i.e. 𝑞src (0) −→∗

𝑘
𝑞tgt (0) holds in M iff 𝑞′

src
(0) −→∗

𝑘
𝑞tgt (0) holds in M′

.

By the definition of the Petri net N ′
obtained from M′

, each

place of 𝑄 is on some path from 𝑞′
src

to 𝑞tgt due to (1) and (2), and

each place of {𝑥1, 𝑥2, 𝑥1, 𝑥2} as well since they can all reach 𝑞src in

this fragment of N ′
due to (3):

𝑞′
src 𝑟 𝑞src

𝑥2

𝑥2

𝑥1

𝑥1 □

The following proposition establishes Theorem 3.1.

Proposition 3.3. Given a Minsky machine M = (𝑄,Δ) and
control states 𝑞src, 𝑞tgt ∈ 𝑄 , one can construct, in polynomial time, a
reset workflow netW such thatW is generalised sound iff𝑞src (0) ̸−→∗

𝑞tgt (0) holds in M.

Proof. We first sketch the reset workflow net W, describe the

construction, and show that it is indeed a reset workflow net.

Let N be the reset Petri net given by Proposition 3.2 from M.

The reset workflow netW consists of N together with the extra

places {𝑖, 𝑟 , 𝑓 } and transitions {𝑡1, 𝑡2, 𝑡3}. Figure 4 depictsW where

the solid red part corresponds to N . Places 𝑖 and 𝑓 are respectively

the initial and final places of W. When either of 𝑡1, 𝑡2 or 𝑡3 is

fired, all places from the corresponding colored area is reset. By

Proposition 3.2, each node ofW is on some path from 𝑖 to 𝑓 .

Let us now show that there exists 𝑘 ∈ N such that 𝑞src (0) −→∗
𝑘

𝑞tgt (0) inM iff W is not generalised sound.

⇒) Let 𝑘 ∈ N be such that 𝑞src (0) −→∗
𝑘
𝑞tgt (0) in M. By Proposi-

tion 3.2, we have

{𝑞src : 1, 𝑥1 : 𝑘, 𝑥2 : 𝑘} −→𝜋 {𝑞tgt : 1, 𝑥1 : 𝑘, 𝑥2 : 𝑘} in N .

𝑖 𝑡1

𝑥1

𝑥2

𝑥1

𝑥2

𝑞src 𝑞tgt

𝑟

𝑡3

𝑡2

𝑓

(all other places of N in this area)

N

Figure 4: The reset workflow net W. The bidirectional arc
between 𝑞tgt and 𝑡3 represents two arcs: one in each direction.
Each transition 𝑡𝑖 resets the places within the part of the
corresponding pattern and color. More precisely, 𝑡1 resets all
places of N except for {𝑥1, 𝑥2}; 𝑡2 resets all places of N ; and
𝑡3 resets {𝑥1, 𝑥2}.

Thus, the following holds inW:

{𝑖 : 𝑘} −→𝑡𝑘
1 {𝑞src : 1, 𝑥1 : 𝑘, 𝑥2 : 𝑘, 𝑟 : 𝑘}

−→𝜋 {𝑞tgt : 1, 𝑥1 : 𝑘, 𝑥2 : 𝑘, 𝑟 : 𝑘}

−→𝑡𝑘
3 {𝑞tgt : 1, 𝑓 : 𝑘}.

The latter marking witnesses 𝑘-unsoundness of W. Indeed, by

Proposition 3.2, the subset 𝑄 of places of N , that corresponds to

the control states ofM, cannot be emptied.

⇐) Let {𝑖 : 𝑘} −→𝜋 𝒎 witness 𝑘-unsoundness of W, where 𝑘 ∈
N>0. First, we show that 𝒎(𝑓 ) = 𝑘 . Note that in any marking 𝒎′

reachable from {𝑖 : 𝑘}, we have 𝒎′ (𝑖) +𝒎′ (𝑟 ) +𝒎′ (𝑓 ) = 𝑘 . Thus,
𝒎(𝑓 ) ≤ 𝑘 . For the sake of contradiction, suppose that 𝒎(𝑓 ) < 𝑘 .

Let 𝑘𝑖 B 𝒎(𝑖) and 𝑘𝑟 B 𝒎(𝑟 ). By the previous equality, we have

𝑘𝑖 + 𝑘𝑟 > 0. The following holds inW:

𝒎 −→𝑡
𝑘𝑖
1

𝑡
𝑘𝑖+𝑘𝑟
2 {𝑓 : 𝑘}.

Indeed, as 𝑘𝑖 + 𝑘𝑟 > 0, transition 𝑡2 is fired at least once and hence

N is emptied (the solid red area of Figure 4). This contradicts the

assumption that 𝒎 witnesses 𝑘-unsoundness.

We have established that 𝒎(𝑓 ) = 𝑘 , which implies that 𝒎(𝑖) = 0

and 𝒎(𝑟 ) = 0. Without loss of generality we can assume that 𝑘 is

minimal i.e. W is ℓ-sound for every ℓ < 𝑘 .

Claim 1. Transition 𝑡2 does not appear in 𝜋 .
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For the sake of contradiction, suppose the claim does not hold.

We split run 𝜋 into 𝜋 = 𝜋1𝜋2 where 𝜋2 is a maximal suffix that does

not contain transition 𝑡2. We have {𝑖 : 𝑘} −→𝜋1 𝒎1 −→𝜋2 𝒎 for some

marking 𝒎1.

Let us compare the number of occurrences of 𝑡1 and 𝑡3 in 𝜋2.

As 𝑡2 is the last transition of 𝜋1, we have 𝒎1 (𝑝) = 0 for every

place 𝑝 of N . By Proposition 3.2, the number of tokens in {𝑥𝑖 , 𝑥𝑖 }
cannot increase by firing transitions of N . Thus, we must have

|𝜋2 |𝑡1 ≥ |𝜋2 |𝑡3 . Since 𝒎(𝑟 ) = 0, we must have |𝜋2 |𝑡1 ≤ |𝜋2 |𝑡3 .
Consequently, |𝜋2 |𝑡1 = |𝜋2 |𝑡3 . Moreover, |𝜋2 |𝑡1 > 0 as otherwise

𝒎 = {𝑓 : 𝑘}, which is obviously not a witness of 𝑘-unsoundness.

From this and 𝒎(𝑟 ) = 0, we conclude that 𝒎1 (𝑟 ) = 0. This

means that all places, except possibly 𝑖 and 𝑓 , are empty in 𝒎1.

Since 𝒎(𝑓 ) = 𝑘 and |𝜋2 |𝑡1 = |𝜋2 |𝑡3 > 0, the marking 𝒎1 is of the

form 𝒎1 = {𝑖 : 𝑘 − ℓ, 𝑓 : ℓ} where 0 < ℓ < 𝑘 .

As no transition consumes from 𝑓 , we have {𝑖 : 𝑘 − ℓ} −→𝜋2 𝒎′

where 𝒎′ B 𝒎 − {𝑓 : ℓ}. Since 𝒎′ (𝑓 ) = 𝒎(𝑓 ) − ℓ = 𝑘 − ℓ , we
conclude that W is not (𝑘 − ℓ)-sound as 𝒎′

is also a witness of

unsoundness. This contradicts the minimality of 𝑘 . So, Claim 1

holds as desired.

Claim 2. In run 𝜋 ,

(1) Every occurrence of 𝑡1 does not remove any token from places
{𝑥1, 𝑥2};

(2) Every occurrence of 𝑡3 consumes (exactly) two tokens from
places {𝑥1, 𝑥2, 𝑥1, 𝑥2}.

From Claim 1, we have |𝜋 |𝑡1 = |𝜋 |𝑡3 . Moreover, each occurrence

of transition 𝑡3 removes at least two tokens from {𝑥1, 𝑥2, 𝑥1, 𝑥2},
and each occurrence of transition 𝑡1 adds at most two tokens to

{𝑥1, 𝑥2, 𝑥1, 𝑥2}. Hence, Claim 2 holds as desired.

Now, let us split 𝜋 into 𝜋 = 𝜋3𝜋4𝜋5 where 𝜋3𝜋4 is the longest

prefix of 𝜋 without 𝑡3, and 𝜋4 is a maximal suffix of 𝜋3𝜋4 that does

not contain transition 𝑡1. Let 𝒎3 and 𝒎4 be the markings such

that {𝑖 : 𝑘} −→𝜋3 𝒎3 −→𝜋4 𝒎4. We have 𝒎4 (𝑥1) = 𝒎4 (𝑥2) = 0, as

otherwise the first occurrence of 𝑡3 removes at least three tokens

from places {𝑥1, 𝑥2, 𝑥1, 𝑥2}, which contradicts Claim 2. A similar

argument shows that 𝒎3 (𝑥1) = 𝒎3 (𝑥2) = 0.

Since the last transition of 𝜋3 is 𝑡1, since 𝜋3 contains no occur-

rence of {𝑡2, 𝑡3}, since 𝜋4 contains no occurrence of {𝑡1, 𝑡2, 𝑡3}, and
since the first transition of 𝜋5 is 𝑡3, there exists 𝑎 > 0 such that

• 𝒎3 = {𝑖 : 𝑘 − 𝑎, 𝑟 : 𝑎, 𝑞src : 1, 𝑥1 : 𝑎, 𝑥2 : 𝑎}, and
• 𝒎4 = {𝑖 : 𝑘 − 𝑎, 𝑟 : 𝑎, 𝑞tgt : 1, 𝑥1 : 𝑎, 𝑥2 : 𝑎}.

This implies that 𝒎3 −→𝜋4 𝒎4 induces a run 𝑞src (0) −→∗
𝑎 𝑞tgt (0) of

Minsky machineM. □

4 IN BETWEEN SOUNDNESS
We start this section by discussing properties that reset workflow

nets can satisfy. So far, we mostly discussed generalised soundness

and 1-soundness, or more generally, 𝑘-soundness for any 𝑘 ∈ N>0.
We say that a reset workflow net is up-to-𝑘-sound [34, Definition 24]
if it is 𝑗-sound for all 𝑗 ∈ [1..𝑘]. Observe that up-to-1-soundness is
equivalent to 1-soundness. By definition, a reset workflownetwhich

is generalised soundness is also up-to-𝑘 sound (for any 𝑘 ∈ N>0).
We say that a property P, of reset workflow nets, is 𝑘-in-between

sound if: all generalised sound workflow nets satisfy P; and every

All reset workflow nets

generalised sound
reset workflow nets

𝑘-in-between sound
reset workflow nets

up-to-𝑘-sound
reset workflow nets

Figure 5: Classes of reset workflow nets: generalised sound,
up-to-𝑘-sound, 𝑘-in-between sound and all reset workflow
nets. Properties with lighter colors also satisfy darker colored
properties. For example, the class of generalised sound reset
workflow nets is the most restrictive and it is contained in
all other classes. Note that “𝑘-in-between sound” is a class
of properties, not a single one. So, in the figure, one should
think of each horizontal line as one of these properties.

workflow net that satisfies P is up-to-𝑘-sound. Figure 5 depicts all

of the aforementioned classes.

Our first main result is as follows.

Theorem 4.1. For every 𝑘 ∈ N>0, there exists a decidable 𝑘-in-
between sound property P𝑘 of reset workflow nets. More precisely:
given as input 𝑘 ∈ N>0 and a reset workflow net, there is an algorithm
deciding P𝑘 running in Ackermannian time.

Remark 1. In particular, given a reset workflow netW and 𝑘 ∈
N>0, there is an algorithm that correctly outputs: either thatW is up-
to-𝑘-sound; or that W is not generalised sound. More precisely, if W
is not up-to-𝑘-sound, then it outputs thatW is not generalised sound;
if W is generalised sound, then it outputs that it is up-to-𝑘-sound;
otherwise, it can output either of the two properties (both hold).

We deliberately postpone the formal definition of property P𝑘

as it is technical. Instead, we give intuition on where it comes

from. First observe that soundness is a conjunction of three simpler

informal properties: (i) It is impossible to strictly cover the final

marking; (ii) It is impossible to reach markings with tokens only in

the final place, but with insufficiently many of them; and (iii) It is
impossible to reach a marking that has tokens in places other than

𝑓 and from which it is impossible to produce more tokens in 𝑓 .

Now, on the one hand, to decide 1-soundness for (i)we can check
if it is impossible to strictly cover {𝑓 : 1} as coverability is decidable.
Property (ii) holds as the workflow net cannot be emptied, indeed,

firing any transition always produces tokens. So, the reason for

undecidability of 1-soundness is the hardness of property (iii). On
the other hand, for generalised soundness, it can be proven that
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property (ii) is decidable, and, assuming that (i) holds (iii) is decid-
able, so the essential reason of the undecidability of the generalised

soundness is (i). The idea behind P𝑘 is to exploit the decidable parts,

which intuitively cover all three parts of soundness. A bit more

precisely, we combine the test for (ii) for generalised soundness,

the test for (i) for 𝑘-soundness, and (iii) for generalised soundness

assuming that (i) holds. This mixture of decidable properties gives

rise to a relation that is 𝑘-in-between.

Surprisingly, the property P𝑘 defined in this way for sufficiently

large 𝑘 coincides with to up-to-𝑘 soundness. More formally:

Theorem 4.2. Given a nonredundant reset workflow netW, there
is a computable number 𝑘′ ∈ N>0 (Ackermannian in the size of W)
such that, for all 𝑘 ≥ 𝑘′,W satisfies P𝑘 iffW is up-to-𝑘 sound.

The rest of the section is organized as follows. First, in Section 4.1,

we introduce the notion of “nonredundancy”, which allows us to

identify unimportant places and transitions. Next, in Section 4.2,

we define the “skeleton” of a reset workflow net, which is a cru-

cial object in deciding property (ii) for generalised soundness. In

Section 4.3, we show that the skeleton of a nonredundant reset

workflow net is a workflow net (without resets). In Section 4.4,

we show that if a nonredundant reset workflow net is generalised

sound, then its skeleton is also generalised sound. This last property

implies property (ii) for generalised soundness. Finally, Section 4.5

makes use of these results to prove Theorems 4.1 and 4.2; Here,

in particular, we show how property (iii) can be tested assum-

ing that (i) holds, although it is not given explicitly to keep the

argument shorter.

4.1 Nonredundancy
We provide a technical definition of redundancy, following similar

definitions for workflow nets (without resets) [36]. Intuitively, it

allows to ignore useless places and transitions from the net without

changing its set of reachable markings.

Formally, given a reset workflow netW, we say that

(1) a place 𝑝 is nonredundant if there exist 𝑘 ∈ N and a marking

𝒎 such that {𝑖 : 𝑘} −→∗ 𝒎 and 𝒎(𝑝) ≥ 1;

(2) a transition 𝑡 is nonredundant if there exist 𝑘 ∈ N and a

marking 𝒎 such that {𝑖 : 𝑘} −→∗ 𝒎 and 𝑡 is enabled in 𝒎.

If Item 1 does not hold for a place 𝑝 , then we say that 𝑝 is redundant,
and likewise for a transition 𝑡 .

Proposition 4.3. Given a reset workflow netW, one can compute
its set of redundant places and transitions. The procedure works in
Ackermannian time. Further, for every nonredundant transition 𝑡 and
place 𝑝 , there are numbers 𝑘𝑡 , 𝑘𝑝 ∈ N bounded Ackermannianly and
runs of length at most Ackermannian such that {𝑖 : 𝑘𝑡 } −→∗ ↑ (•𝑡)
and {𝑖 : 𝑘𝑝 } −→∗ ↑{𝑝 : 1}.

Proof. Let us show how to compute the set of nonredundant

places and transitions. Recall that𝐶𝒎′ is the upward closed set of all

markings 𝒎 from which it is possible to cover the marking 𝒎′
; one

may compute the set of minimal elements of𝐶𝒎′ with the backward

coverability algorithm. As mentioned in the preliminaries, every

upward closed subset of N𝑃 is equal to a finite union of elements

↑𝒙𝑖 with 𝒙𝑖 ∈ N𝑃 .

From the definition of nonredundancy, a place 𝑝 is nonredun-

dant iff there exists some 𝑘𝑝 such that {𝑖 : 𝑘𝑝 } is in 𝐶{𝑝 : 1} ; this
is decidable, using the backwards coverability algorithm [19], and

one may compute such a 𝑘𝑝 . Similarly, a transition 𝑡 is nonredun-

dant iff there exists 𝑘𝑡 such that {𝑖 : 𝑘𝑡 } is in 𝐶•𝑡 , and this is also

decidable and 𝑘𝑡 is still computable. Now, let 𝐾 be the sum of all

𝑘𝑝 and 𝑘𝑡 for 𝑝 ∈ 𝑃 and 𝑡 ∈ 𝑇 . Observe that, for all markings

𝒎 ∈ ⋃
𝑝∈𝑃,𝑡 ∈𝑇 {{𝑝 : 1} + •𝑡}, there is a run, from the initial marking

{𝑖 : 𝐾}, that covers 𝒎. The Ackermannian bounds follow from the

bounds on the coverability problem [9]. □

Wemake the following observation on nonredundant transitions.

Claim 3. LetW be a reset workflow net which is generalised sound.
Nonredundant transitions cannot reset either 𝑖 or 𝑓 . Moreover, this
claim still holds if we relax the requirement of W being generalised
sound to a weaker one, namely to “W is up-to-𝐾 sound”, where
number 𝐾 is at most Ackermannian.

Proof: For the final place 𝑓 , the claim follows by definition. Let us

consider the case of the initial place 𝑖 . Towards a contradiction,

suppose that W has a nonredundant transition 𝑡 such that 𝑡 resets

place 𝑖 . By Proposition 4.3, there exists a number 𝑘 ∈ N>0 which is

at most Ackermannian such that

{𝑖 : 𝑘} −→𝜋 𝒎′ −→𝑡 𝒎,

for some run 𝜋 that does not use transition 𝑡 , and some markings

𝒎′
and𝒎. As 𝑘 is Ackermannian, we can safely assume that 𝑘 < 𝐾 .

Thus, the following holds for 𝐾 > 𝑘 :

{𝑖 : 𝐾} −→𝜋 𝒎′ + {𝑖 : 𝑥} −→𝑡 𝒎,

for 𝑥 ≥ 𝐾 −𝑘 > 0. Note that 𝑡 resets place 𝑖 , and that 𝑘 is defined in

such a way that at least one token is lost. By generalised soundness,

or up-to-𝐾 soundness of W, we have 𝒎 −→∗ {𝑓 : 𝑘} and 𝒎 −→∗

{𝑓 : 𝐾}. This contradicts generalised soundness of W and up-to-𝐾

soundness. ■

4.2 Skeletons of reset workflow nets
In this subsection, we consider a relaxation of generalised sound-

ness. Given a reset workflow net W, we will define a workflow

net W𝑠
obtained by removing redundancy and resetable places.

Intuitively, generalised soundness of W should imply generalised

soundness of W𝑠
. As we shall see, this requires some work. We

start by introducing the notation.

Let W = (𝑃,𝑇 , 𝐹, 𝑅, 𝑖, 𝑓 ) be a reset workflow net. We say that

place 𝑝 ∈ 𝑃 is resetable if there exists a nonredundant transition
𝑡 ∈ 𝑇 such that (𝑝, 𝑡) ∈ 𝑅. The skeleton of a reset workflow net

W is the Petri net obtained by removing redundant places, redun-

dant transitions and resetable places, and next removing isolated

transitions (as defined in Section 2.5 of the preliminaries).

We denote this Petri net by W𝑠 = (𝑃𝑠 ,𝑇 𝑠 , 𝐹𝑠 ). If there are well-
defined initial and final places 𝑖𝑠 , 𝑓 𝑠 such that (𝑃𝑠 ,𝑇 𝑠 , 𝐹𝑠 , 𝑖𝑠 , 𝑓 𝑠 )
is a workflow net, then, slightly abusing the notation, we write

that W𝑠 = (𝑃𝑠 ,𝑇 𝑠 , 𝐹𝑠 , 𝑖𝑠 , 𝑓 𝑠 ) is a workflow net. We will devote the

forthcoming Sections 4.3 and 4.4 to proving the following.

Proposition 4.4. LetW be a reset workflow net which is gener-
alised sound. It is the case that

(1) the skeletonW𝑠 is a workflow net;
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(2) W𝑠 is also generalised sound.
Moreover, this claim still holds if we relax the requirement ofW being
generalised sound to a weaker one, namely to “W is up-to-𝐾 sound”,
where number 𝐾 is at most Ackermannian.

Note that generalised soundness for workflow nets (without

resets) is decidable [36], and belongs to PSPACE [3]. So, Proposi-

tion 4.4 implies that generalised soundness for the skeleton work-

flow net is a decidable relaxation of generalised soundness forW.

Before we prove Proposition 4.4, we need a definition that allows

us to associate markings inW with markings in W𝑠
.

The function 𝑅𝑒𝑠𝑒𝑡 : N𝑃 → N𝑃 is defined by

𝑅𝑒𝑠𝑒𝑡 (𝒙) (𝑝) =
{
𝒙 (𝑝) if 𝑝 ∈ 𝑃𝑠 ,
0 otherwise.

Note that 𝑅𝑒𝑠𝑒𝑡 (𝒙) is equal to applying 𝑅𝑒𝑠𝑒𝑡𝑡 (·) to 𝒙 for each

nonredundant transition 𝑡 (in any order). Lemma 4.6 will provide

some intuition on why 𝑅𝑒𝑠𝑒𝑡 (𝒙) corresponds to a marking in W𝑠
.

As we often consider runs in the reset workflowW, as well as

runs in its skeletonW𝑠
, we introduce the notation −→𝑠 to denote

runs specifically in W𝑠
.

Lemma 4.5. LetW be a reset workflow net which is generalised
sound. There exist 𝑧 ∈ N and a run {𝑖 : 𝑧} −→Z {𝑓 : 𝑧}, where Z
contains each nonredundant transition ofW. Moreover, 𝑧 and |Z | are
at most Ackermannian.

Further, the claim still holds if we relax the assumption ofW being
generalised sound to a weaker one, namely to “W is up-to-𝐾 sound”,
where 𝐾 is at most Ackermannian (the same as the bound on 𝑧).

Proof. For every nonredundant transition 𝑡 ofW, there is a run

firing 𝑡 , i.e. {𝑖 : 𝑧𝑡 } −→𝜌𝑡 𝑡 𝒎𝑡 for some 𝑧𝑡 ∈ N and some marking

𝒎𝑡 . We define 𝑧 B
∑
𝑡 ∈𝑇 𝑧𝑡 . Let 𝜌 be the concatenation (in any

order) of runs 𝜌𝑡 𝑡 . SinceW is up-to-𝐾 sound, by Claim 3, the initial

place 𝑖 cannot be reset by any nonredundant transition ofW. Thus,

{𝑖 : 𝑧} −→𝜌 𝒎′
for some marking 𝒎′

. Since W is generalised sound

(or up-to-𝑧-sound, as 𝑧 ≤ 𝐾), there is a run 𝛿 such that 𝒎′ −→𝛿

{𝑓 : 𝑧}. We conclude by taking Z B 𝜌𝛿 . The Ackermannian bounds

on 𝜌 follow from Proposition 4.3. The Ackermannian bounds on

𝛿 follow from a bound on the maximal length of the coverability

run in the reset Petri net (Lemma 2.3 with target marking {𝑓 : 𝑧}).
Thus, |Z | = |𝜌𝛿 | is at most Ackermannian. □

Remark 2. From the proof of Lemma 4.5, we can see that if the
initial place of W cannot be reset, then there exist 𝑧 ∈ N and
{𝑖 : 𝑧} −→Z 𝒎, for some marking 𝒎, that contains each nonredun-
dant transition.

We say that a marking 𝒎 ∈ N𝑃 of W is reachable if there exists
𝑘 ∈ N>0 such that {𝑖 : 𝑘} −→∗ 𝒎.

Lemma 4.6. Let Z be as in Lemma 4.5, and let 𝒎 be a reachable
marking of W. It is the case that {𝑖 : 𝑧} +𝒎 −→Z {𝑓 : 𝑧} + 𝑅𝑒𝑠𝑒𝑡 (𝒎).

Proof. We have {𝑖 : 𝑧} + 𝒎 −→Z 𝒏 for some marking 𝒏. We

need to prove that 𝒏 = {𝑓 : 𝑧} + 𝑅𝑒𝑠𝑒𝑡 (𝒎). It is easy to see that

𝒏(𝑝) = ({𝑓 : 𝑧} + 𝑅𝑒𝑠𝑒𝑡 (𝒎)) (𝑝) for all 𝑝 ∈ 𝑃𝑠 as these places are
not resetable, and the effect on them is the sum of effects on all

transitions in Z . Thus, we need to prove that 𝒏(𝑝) = 0 for all 𝑝 ∉ 𝑃𝑠 .

Let 𝑝 ∉ 𝑃𝑠 . If 𝑝 is redundant, then 𝒏(𝑝) = 𝒎(𝑝) = 0 since 𝑝 is

not marked in any reachable marking. Further, 𝑓 cannot be reset by

Claim 3, and 𝑝 ≠ 𝑓 as 𝑓 is nonredundant by generalised soundness

(or up-to-𝐾 soundness) ofW.

Thus, we may assume that 𝑝 is a nonredundant place, which is

reset by a nonredundant transition 𝑡 . By definition, we can decom-

pose Z as Z = 𝜌1𝑡𝜌2. Let {𝑖 : 𝑧} −→𝜌1𝑡 𝒏1 and {𝑖 : 𝑧}+𝒎 −→𝜌1𝑡 𝒏2. We

know that 𝒏1 (𝑝) = 𝒏2 (𝑝) = 0. Consider two runs, with the same

sequence of transitions: 𝜌2, but different starting points: 𝒏1 and 𝒏2.
By induction, one can prove that the markings in both runs will

always have the same value in 𝑝 . Indeed, they are the same initially,

and the same sequence of transitions are applied afterwards. Thus,

in the end 𝒏(𝑝) = ({𝑓 : 𝑧} + 𝑅𝑒𝑠𝑒𝑡 (𝒎)) (𝑝) = 0 as required. □

The next two subsections are devoted to proving the two items

of Proposition 4.4.

4.3 Skeletons are workflow nets
In this subsection, we prove the first item of Proposition 4.4. We

fix a reset workflow netW = (𝑃,𝑇 , 𝐹, 𝑅, 𝑖, 𝑓 ) as in the statement of

Proposition 4.4 and its skeleton (𝑃𝑠 ,𝑇 𝑠 , 𝐹𝑠 ). Overall, our aim is to

prove that W𝑠 = (𝑃𝑠 ,𝑇 𝑠 , 𝐹𝑠 , 𝑖, 𝑓 ) is a well-defined workflow net.

It follows directly from Claim 3 that no nonredundant transition

ofW resets 𝑖 or 𝑓 . Thus, the following holds.

Lemma 4.7. It is the case that 𝑖, 𝑓 ∈ 𝑃𝑠 .

The following claim is useful and trivial by definition.

Claim 4. Consider a run 𝒎 −→𝜌 𝒎′ of W. Let 𝒎𝑠 , 𝒎′
𝑠 ∈ N𝑃𝑠

be
the markings obtained by projecting 𝒎 and 𝒎′ onto 𝑃𝑠 ; and let 𝜌𝑠
be the run in W𝑠 obtained from 𝜌 (i.e. transitions are restricted to
𝑃𝑠 , and possibly isolated transitions are removed). It is the case that
𝒎𝑠 −→𝜌𝑠

𝑠 𝒎′
𝑠 .

We do not know yet whether W𝑠
is a workflow net, but the

definition of nonredundancy makes sense forW𝑠
even if it is not

a workflow net. Below, we note that nonredundancy of places in

W easily implies nonredundancy of places inW𝑠
.

Claim 5. For every place 𝑝 ∈ 𝑃𝑠 , there exist 𝑘 ∈ N, with 𝑘 ≤ 𝐾 ,
and a run {𝑖 : 𝑘} −→∗

𝑠 𝒎𝑠 such that 𝒎𝑠 (𝑝) > 0 and 𝒎𝑠 −→∗
𝑠 {𝑓 : 𝑘}.

Proof: By definition of W𝑠
, place 𝑝 is nonredundant in W, and

hence we have {𝑖 : 𝑘} −→∗ 𝒎 where 𝒎(𝑝) > 0. Since W is gener-

alised sound or up-to-𝑘 sound for𝑘 ≤ 𝐾 , there is a run𝒎 −→∗ {𝑓 : 𝑘}.
These two runs and Claim 4 conclude the proof. ■

To show Proposition 4.4 (1), it remains to prove that all places

from 𝑃𝑠 and all transitions from 𝑇 𝑠 are on a path from 𝑖 to 𝑓 in

W𝑠
. The following lemma reduces the problem to checking this

property for places only.

Lemma 4.8. Let 𝑡 ∈ 𝑇 𝑠 . It is the case that •𝑡 ≠ ∅ and 𝑡• ≠ ∅.

We will need the following technical claim. Note that although

its statement deals with places 𝑃𝑠 ⊆ 𝑃 of the skeleton, the claim

deals with runs fromW.

Claim 6. Let 𝑝 ∈ 𝑃𝑠 . There is no 𝑘 ∈ N, 𝑘 ≤ 𝐾 such thatW has
two runs {𝑖 : 𝑘} −→𝜋 𝒎 and {𝑖 : 𝑘} −→𝜋 ′

𝒎′ with 𝒎′ ≥ 𝒎 + {𝑝 : 1}.
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Proof: For the sake of contradiction, suppose two such runs exist.

By generalised soundness or up-to-𝐾 soundness ofW, there is a

run𝒎 −→𝛾 {𝑓 : 𝑘}. Since𝒎′ ≥ 𝒎 + {𝑝 : 1} and 𝑝 is not resetable, we

have {𝑖 : 𝑘} −→𝜋 ′𝛾 𝒎′′
for some𝒎′′ ≥ {𝑓 : 𝑘, 𝑝 : 1}. This contradicts

general soundness or up-to-𝐾 soundness as 𝒎′′ ̸−→∗ {𝑓 : 𝑘}. ■

Proof of Lemma 4.8. Towards a contradiction, suppose there

exists 𝑡 ∈ 𝑇 𝑠 such that
•𝑡 = ∅. By definition, there exists 𝑝 ∈ 𝑡• for

some 𝑝 ∈ 𝑃𝑠 (otherwise 𝑡 would be an isolated transition inW𝑠
).

Let 𝑢 ∈ 𝑇 be the original nonredundant transition from which 𝑡 is

obtained. Let 𝑧, 𝑧𝑢 , Z , and 𝜌𝑢 be as in the proof of Lemma 4.5. We

consider these runs ofW:

(1) {𝑖 : 𝑧𝑢 } −→𝜌𝑢 𝒎𝑢 −→𝑢 𝒎′
𝑢 (it exists by nonredundancy);

(2) {𝑖 : 𝑧𝑢 + 𝑧} −→𝜌𝑢 𝒎𝑢 + {𝑖 : 𝑧} −→Z {𝑓 : 𝑧} + 𝑅𝑒𝑠𝑒𝑡 (𝒎𝑢 );
(3) {𝑖 : 𝑧𝑢 + 𝑧} −→𝜌𝑢𝑢 𝒎′

𝑢 + {𝑖 : 𝑧} −→Z 𝑅𝑒𝑠𝑒𝑡 (𝒎′
𝑢 ) + {𝑓 : 𝑧}.

The last two runs are obtained by Lemma 4.6. Observe that

𝑅𝑒𝑠𝑒𝑡 (𝒎′
𝑢 ) ≥ 𝑅𝑒𝑠𝑒𝑡 (𝒎𝑢 ) + {𝑝 : 1}.

Indeed: since
•𝑡 = ∅, we have 𝒎′

𝑢 (𝑟 ) ≥ 𝒎𝑢 (𝑟 ) for all 𝑟 ∈ 𝑃𝑠 ; and,
since 𝑝 ∈ 𝑡•, we also have 𝒎′

𝑢 (𝑝) ≥ 𝒎𝑢 (𝑝) + 1. By Claim 6, the

runs (2) and (3) contradict the generalised soundness of W and

up-to-𝐾 soundness assuming that 𝐾 > 𝑧𝑢 + 𝑧.
The proof of the case where there is a transition 𝑡 ∈ 𝑇 𝑠 such that

𝑡• = ∅ is essentially the same. □

To prove Proposition 4.4 (1), it remains to prove that all places

in 𝑃𝑠 are on a path from 𝑖 to 𝑓 . We need to recall some standard

definitions from Petri net theory (e.g. see [26]).

A siphon is a subset of places 𝑆 ⊆ 𝑃 such that for every transition

𝑡 : if 𝑡• ∩ 𝑆 ≠ ∅ then
•𝑡 ∩ 𝑆 ≠ ∅. Similarly, a trap is a subset of places

𝑆 ′ such that for every transition 𝑡 : if •𝑡 ∩𝑆 ′ ≠ ∅ then 𝑡•∩𝑆 ′ ≠ ∅. By
definition, it is readily seen that every unmarked siphon remains

unmarked and every marked trap remains marked. More formally:

Lemma 4.9. Let 𝑆 be a siphon and let 𝑆 ′ be a trap of a Petri net
(without resets). For every 𝒎 −→∗ 𝒎′, the following holds:

(1) if 𝒎(𝑆) = 0, then 𝒎′ (𝑆) = 0;
(2) if 𝒎(𝑆 ′) > 0, then 𝒎′ (𝑆 ′) > 0.

The next two lemmas conclude the proof of Proposition 4.4 (1).

Lemma 4.10. For every 𝑝 ∈ 𝑃𝑠 , there is a path from 𝑖 to 𝑝 inW𝑠 .

Proof. Let 𝑝 ∈ 𝑃𝑠 . Let 𝑋 ⊆ 𝑃𝑠 be the set of places from which

there is a path to 𝑝 in W𝑠
. Observe that 𝑋 is a siphon in W𝑠

.

Indeed, if 𝑡• ∩𝑋 ≠ ∅ then
•𝑡 ⊆ 𝑋 and

•𝑡 ≠ ∅ because of Lemma 4.8.

Note that 𝑝 ∈ 𝑋 and, by Claim 5, the place 𝑝 can be marked in

W𝑠
. Initially, only place 𝑖 is marked. Thus, by Lemma 4.9, it must

be the case that 𝑖 ∈ 𝑋 as otherwise 𝑝 could not be marked. □

Lemma 4.11. For every 𝑝 ∈ 𝑃𝑠 , there is a path from 𝑝 to 𝑓 in W𝑠 .

Proof. Let 𝑝 ∈ 𝑃𝑠 . Let𝑋 ⊆ 𝑃𝑠 be the set of places to which there

is a path from 𝑝 in W𝑠
. Observe that 𝑋 is a trap in W𝑠

. Indeed, if

•𝑡 ∩ 𝑋 ≠ ∅, then 𝑡• ⊆ 𝑋 , and 𝑡• ≠ ∅ because of Lemma 4.8.

By Claim 5, there exist 𝑘 ∈ N and a marking 𝒎𝑠 ∈ N𝑃𝑠
such

that {𝑖 : 𝑘} −→∗
𝑠 𝒎𝑠 , where 𝒎𝑠 (𝑝) > 0 and 𝒎𝑠 −→∗

𝑠 {𝑓 : 𝑘}. Note that
𝑝 ∈ 𝑋 . Since 𝒎𝑠 −→∗

𝑠 {𝑓 : 𝑘} by Lemma 4.9, we get 𝑓 ∈ 𝑋 . □

4.4 Skeletons preserve generalised soundness
In this subsection, wewill prove Proposition 4.4 (2), i.e. we show that

if W is generalised sound (or up-to-𝐾 sound for some sufficiently

large 𝑘), then its skeletonW𝑠
is also generalised sound. To do so,

we will prove a general lemma, which will also be useful in the next

section. The lemma will not need the assumption of generalised

soundness, but only a weaker property. We start by defining two

properties for reset workflow nets.

We say that a reset workflow net W has a full reset run if there

exist 𝑧 ∈ N and a run Z such that these three conditions all hold:

• {𝑖 : 𝑧} −→Z {𝑓 : 𝑧} and Z contains each nonredundant transi-

tion ofW;

• if 𝒎 is a reachable marking of W, then {𝑖 : 𝑧} + 𝒎 −→Z

{𝑓 : 𝑧} + 𝑅𝑒𝑠𝑒𝑡 (𝒎);
• for every decomposition Z = 𝜌𝑡𝜌′, where {𝑖 : 𝑧} −→𝜌 𝒎, we

have 𝑅𝑒𝑠𝑒𝑡 (𝒎) −→∗ {𝑓 : 𝑧}.
We call Z a full reset run. Below, we note that having such a run is

a weaker condition than generalised soundness.

Corollary 4.12. IfW is generalised sound, then it has a full reset
run. Furthermore, the assumption of W being generalised sound can
be relaxed to the weaker assumption that W is up-to-𝐾-sound for an
Ackermannianly bounded number 𝐾 .

Proof. The first two conditions follow directly from Lemmas 4.5

and 4.6. Let Z be a run fulfilling these conditions, and consider a

decomposition Z = 𝜌𝑡𝜌′ with {𝑖 : 𝑧} −→𝜌 𝒎. We have {𝑖 : 2𝑧} −→𝜌Z

𝑅𝑒𝑠𝑒𝑡 (𝒎) + {𝑓 : 𝑧}. SinceW is generalised sound or up-to-𝐾 sound

for𝐾 ≥ 2𝑧, we get the third condition, i.e. 𝑅𝑒𝑠𝑒𝑡 (𝒎) −→∗ {𝑓 : 𝑧}. □

Lemma 4.13. There is an algorithm that, given a reset workflow
net W, outputs: either that W has a full reset run; or that W is
not generalised sound. The procedure works in Ackermannian time.
Moreover, if there exists {𝑖 : 𝑧} −→Z {𝑓 : 𝑧} witnessing a full reset
run, then there is also one where 𝑧 is at most Ackermannian. If the
algorithm outputs thatW is not generalised sound then it computes
𝐾 ∈ N>0, which is at most Ackermannian, for which W is not 𝐾-
sound.

Proof. If the initial place is resetable, then the algorithm out-

puts thatW is not generalised sound by Claim 3. It also gives an

Ackermannian bound for 𝐾 such thatW is not 𝐾-sound.

Otherwise, we invoke Remark 2 and obtain that from a marking

{𝑖 : 𝑧}, there is a run {𝑖 : 𝑧} −→𝛿 𝒎 that executes all nonredundant

transitions of W and is of length at most Ackermannian. Because

𝛿 has a bounded length, we can find it in Ackermannian time. Next,

we check if it is possible to cover {𝑓 : 𝑧} from𝒎, using the backward

coverability algorithm running in Ackermannian time. If not, then

W is not up-to-𝑧 sound and not generalised sound. Otherwise, the

algorithm produces a run 𝒎 −→𝛿 ′ ↑{𝑓 : 𝑧} of Ackermannian length.

We have to check whether 𝒎 −→𝛿 ′ {𝑓 : 𝑧} holds. If not, thenW is

not up-to-𝑧 sound and not generalised sound. Otherwise, we pick

Z B 𝛿𝛿 ′.
The latter satisfies the first two conditions of a full reset run. We

need to check whether it satisfies the third condition.

We do this exhaustively: for any decomposition of Z = 𝜌𝜌′, we
take a marking 𝒎 such that {𝑖 : 𝑧} −→𝜌 𝒎 and check a stronger

property: whether for a run 𝑅𝑒𝑠𝑒𝑡 (𝒎) −→b ↑{𝑓 : 𝑧} it is the case
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that 𝑅𝑒𝑠𝑒𝑡 (𝒎) −→b {𝑓 : 𝑧}. Note that this is not as trivial as for 𝛿 ′
since 𝑅𝑒𝑠𝑒𝑡 (𝒎) does not have to be a reachable configuration.

We prove the property by contradiction. If it does not hold, then

W is not generalised sound and not up-to-𝐾 sound. Indeed, due

to Corollary 4.12, we know that ifW is up-to-𝐾 sound, then it must

have a full reset run {𝑖 : 𝑧′} −→Z ′ {𝑓 : 𝑧′}. But, then, there would
be a run {𝑖 : 𝑧 + 𝑧′} −→𝜌 𝒎 + {𝑖 : 𝑧′} −→Z ′

𝑅𝑒𝑠𝑒𝑡 (𝒎) + {𝑓 : 𝑧′} −→b

{𝑓 : 𝑧+𝑧′}+𝒏 for some nonempty marking 𝒏. This contradicts both
generalised soundness and up-to-𝐾 soundness assuming 𝐾 > 𝑧 +𝑧′.

To achieve this check, we use the backward coverability algo-

rithm to find b , and then we execute b step by step. This process

works in Ackermannian time. □

Below we discuss markings both inW and its skeletonW𝑠
. For

convenience, if 𝒎𝑠 is a marking over N𝑃
𝑠
, then we also use it as a

marking over N𝑃 , where 𝒎𝑠 (𝑝) = 0 for 𝑝 ∉ 𝑃𝑠 .

Lemma 4.14. LetW be a reset workflow net with a full reset run
{𝑖 : 𝑧} −→Z {𝑓 : 𝑧}. Let {𝑖 : 𝑙} −→𝜋

𝑠 𝒎𝑠 be a run of the skeleton W𝑠 ,
where 𝑙 ∈ N. There exists𝑘′ ∈ N such that {𝑖 : 𝑙+𝑘′} −→∗ 𝒎𝑠+{𝑓 : 𝑘′}
holds in W. Moreover, 𝑘′ ≤ 2𝑧 |𝜋 |.

Before we prove Lemma 4.14, we show how it implies Proposi-

tion 4.4 (2).

Proof of Proposition 4.4 (2). Let W and W𝑠
be as described

in the proposition. Suppose that W𝑠
is not generalised sound. Be-

cause of [3, Theorem 5.1], there exists an exponentially bounded

number 𝑙 such that {𝑖 : 𝑙} −→∗
𝑠 𝒎𝑠 in W𝑠

and from 𝒎𝑠 it is not pos-

sible to reach {𝑓 : 𝑙}. Observe that if such 𝑙 and 𝒎𝑠 exist then the

shortest run 𝜋 from {𝑖 : 𝑙} to 𝒎𝑠 is at most Ackermannian (due to

bounds on the length of shortest runs in Petri nets). The bound on

the length of the shortest run between two configurations in a Petri

net is a consequence of the KLM [18] algorithm combined with the

Ackermannian bound on its complexity [22]. By Lemma 4.14 and

Corollary 4.12, there exists 𝑘′ ∈ N bounded by 2𝑧 |𝜋 |, i.e. Acker-
mannianly, such that {𝑖 : 𝑙 + 𝑘′} −→∗ 𝒎𝑠 + {𝑓 : 𝑘′} inW. Since W
is generalised sound or up-to-𝐾 sound for 𝐾 > 𝑙 + 𝑘′, there is a run
𝒎𝑠 −→∗ {𝑓 : 𝑙} in W. By Claim 4, this yields to the contradiction

with the assumption that 𝒎𝑠 ̸−→∗
𝑠 {𝑓 : 𝑙} inW𝑠

. □

Proof of Lemma 4.14. We proceed by induction on the length

of the run from {𝑖 : 𝑘} to 𝒎𝑠 . If the length is 0, then the claim is

trivial and 𝑘′ = 0.

Suppose the induction claim holds for every marking 𝒎𝑠 reach-

able via a run of length at most 𝑖 . Let 𝑡 be a transition inW𝑠
and

let 𝜋 ′ = 𝜋𝑡 be a run of length 𝑖 + 1 such that {𝑖 : 𝑘} −→𝜋
𝑠 𝒎𝑠 −→𝑡

𝒎′
𝑠 . By the induction hypothesis, there exists 𝑘′′ ∈ N such that

{𝑖 : 𝑘′′ + 𝑘} −→∗ 𝒎𝑠 + {𝑓 : 𝑘′′}. Thus, it is sufficient to prove that

there exists 𝑘𝑡 ∈ N such that {𝑖 : 𝑘𝑡 } +𝒎𝑠 −→∗ 𝒎′
𝑠 + {𝑓 : 𝑘𝑡 }.

If we treat𝒎𝑠 and𝒎′
𝑠 asmarkings overN𝑃 , then𝑅𝑒𝑠𝑒𝑡 (𝒎𝑠 ) = 𝒎𝑠

and 𝑅𝑒𝑠𝑒𝑡 (𝒎′
𝑠 ) = 𝒎′

𝑠 .

Let Z be a full reset run in W. Let 𝑡 ′ be the nonredundant tran-
sition inW from which 𝑡 , in the skeleton, is defined. Since Z has

all nonredundant transitions of W, 𝑡 ′ also occurs in it and we can

decompose Z = 𝜌𝑡 ′𝜌′. We denote {𝑖 : 𝑧} −→𝜌 𝒎𝑡 −→𝑡 ′ 𝒎′
𝑡 . Consider

the following run:

{𝑖 : 2𝑧} +𝒎𝑠 −→𝜌 𝒎𝑠 +𝒎𝑡 + {𝑖 : 𝑧}

−→𝑡 ′ 𝒎′
𝑠 + 𝑅𝑒𝑠𝑒𝑡𝑡 ′ (𝒎𝑡 ) + 𝒏 + {𝑖 : 𝑧},

where 𝒏(𝑝) = 𝑡 ′• (𝑝) if 𝑝 ∉ 𝑃𝑠 and 𝒏(𝑝) = 0 otherwise. The last

transition splits the effect of 𝑡 ′ between 𝒎𝑠 and 𝒎𝑡 as follows. The

places 𝑝 ∈ 𝑃𝑠 are updated by changing 𝒎𝑠 to 𝒎′
𝑠 . The remaining

places are updated by changing 𝒎𝑡 to 𝑅𝑒𝑠𝑒𝑡𝑡 ′ (𝒎𝑡 ) + 𝒏. Note that
𝑅𝑒𝑠𝑒𝑡 (𝒎𝑡 ) = 𝑅𝑒𝑠𝑒𝑡 (𝑅𝑒𝑠𝑒𝑡𝑡 ′ (𝒎𝑡 ) + 𝒏). Thus, we get

{𝑖 : 𝑧} +𝒎′
𝑠 + 𝑅𝑒𝑠𝑒𝑡𝑡 ′ (𝒎𝑡 ) + 𝒏 −→Z 𝒎′

𝑠 + 𝑅𝑒𝑠𝑒𝑡 (𝒎𝑡 ) + {𝑓 : 𝑧}.
Finally, recall that by definition of full reset runs (third condition)

𝑅𝑒𝑠𝑒𝑡 (𝒎𝑡 ) −→∗ {𝑓 : 𝑧}. Altogether, we get the following as required:
{𝑖 : 2𝑧} +𝒎𝑠 −→∗ 𝒎′

𝑠 + {𝑓 : 2𝑧}.
The bound on 𝑘′ follows directly from the proof. □

4.5 Proofs of Theorems 4.1 and 4.2
We may now prove Theorems 4.1 and 4.2 simultaneously. The con-

stant 𝑘′ in Theorem 4.2 will be defined at the end of the proof. There,

we will observe that if 𝑘 is large enough then the characterization

of P𝑘 in Theorem 4.2 holds.

Fix 𝑘 ∈ N>0. We start with the definition of property P𝑘 .

Definition 4.15. Property P𝑘 is defined as the conjunction of

these properties:

(1) Places 𝑖 and 𝑓 are not resetable;

(2) There is a full reset run {𝑖 : 𝑧} −→Z {𝑓 : 𝑧} inW;

(3) W𝑠
is a workflow net which is generalised sound;

(4) It is not possible to strictly cover {𝑓 : 𝑘} starting from {𝑖 : 𝑘},
where “strictly cover” means reaching some marking 𝒎 >

{𝑓 : 𝑘}. We call this property coverability-clean;
(5) The last property is more complex. Consider the following

set of markings:

𝑋 B
{
𝒎 ∈ N𝑃 \ {0} : 𝒎 ̸−→∗ ↑{𝑓 : 1}

}
.

In words, these are the nonzero markings that cannot mark

place 𝑓 . Let 𝐹 B {{𝑓 : ℓ} : ℓ ∈ N} and 𝑋 𝑓 B 𝑋 + 𝐹 , i.e.,
markings of 𝑋 with arbitrarily many tokens added to 𝑓 . Let

𝑅𝑒𝑠𝑒𝑡 (𝑋 𝑓 ) B {𝑅𝑒𝑠𝑒𝑡 (𝒎) : 𝒎 ∈ 𝑋 𝑓 }. The last property

requires that {𝑖 : 𝑗} ̸−→∗
𝑠 𝑅𝑒𝑠𝑒𝑡 (𝑋 𝑓 ) \ 𝐹 holds for all 𝑗 ≥ 1.

First observe that properties (1–4) are implied by generalised

soundness, as well as up-to-𝑘 soundness for sufficiently large 𝑘 .

It is clear for (4), while properties (1–3) follow respectively from

Claim 3, Corollary 4.12 and Proposition 4.4.

To prove that P𝑘 is 𝑘-in-between, it suffices to show that for any

workflow satisfying properties (1–4), these two claims, capturing

property (5), hold:

Claim 7. If {𝑖 : 𝑗} −→∗
𝑠 𝑅𝑒𝑠𝑒𝑡 (𝑋 𝑓 ) \ 𝐹 holds for some 𝑗 ≥ 1, then

W is not generalised sound.

Claim 8. If {𝑖 : 𝑗} ̸−→∗
𝑠 𝑅𝑒𝑠𝑒𝑡 (𝑋 𝑓 ) \ 𝐹 holds for all 𝑗 ∈ [1..𝑘], then

W is up-to-𝑘 sound.

Before proceeding, we show the claim below, which will be help-

ful for proving Claim 7 and Claim 8. Let us assume that properties

(1–4) hold.



LICS ’24, July 8–11, 2024, Tallinn, Estonia Michael Blondin, Alain Finkel, Piotr Hofman, Filip Mazowiecki, and Philip Offtermatt

Claim 9. W is not 𝑘-sound if and only if {𝑖 : 𝑘} −→∗ 𝑋 𝑓 .

Proof: ⇒) Suppose W is not 𝑘-sound and let {𝑖 : 𝑘} −→∗ 𝒎 be such

that 𝒎 ̸−→∗ {𝑓 : 𝑘}. Let ℓ be the largest number such that from 𝒎
we can cover {𝑓 : ℓ}. Note that such a number exists and ℓ ≤ 𝑘 ,

as otherwise we get a contradiction with Claim 4 and generalised

soundness of W𝑠
. Let 𝒎 −→∗ 𝒎′ + {𝑓 : ℓ}, where 𝒎′ (𝑓 ) = 0. If

𝒎′ ≠ 0, then we are done as 𝒎′ ∈ 𝑋 . Otherwise, note that ℓ < 𝑘

as 𝒎 ̸−→∗ {𝑓 : 𝑘}, which yields a contradiction with Claim 4 and

generalised soundness of W𝑠
.

⇐) This follows by definition of 𝑋 and by the fact that, in reset

workflow nets, the effect of firing transitions cannot be zero. ■

Let 𝑋0 B 𝑋 ∪ {0}. We may now prove Claim 7:

Proof: Let {𝑖 : 𝑗} −→∗
𝑠 𝒎 + {𝑓 : ℓ} ∈ 𝑅𝑒𝑠𝑒𝑡 (𝑋 𝑓 ) \ 𝐹 , where 𝒎(𝑓 ) = 0.

Note that 𝒎 ≠ 0 as the set 𝐹 was excluded. By Lemma 4.14, there

exists 𝑘′ such that {𝑖 : 𝑗+𝑘′} −→∗ 𝒎+{𝑓 : ℓ+𝑘′}. As𝑋0 is downward
closed and 𝒎 ≠ 0, we get 𝒎 + {𝑓 : ℓ + 𝑘′} ∈ 𝑋 𝑓

. Thus, by Claim 9,

W is not ( 𝑗 + 𝑘′)-sound, and hence it is not generalised sound. ■

We may now prove Claim 8:

Proof: We show the contrapositive. For the sake of contradiction,

suppose W is not up-to-𝑘 sound, i.e. not 𝑗-sound for some 𝑗 ∈
[1..𝑘]. We must exhibit a run {𝑖 : 𝑗} −→∗

𝑠 𝑅𝑒𝑠𝑒𝑡 (𝑋 𝑓 ) \ 𝐹 .
By Claim 9, we have {𝑖 : 𝑗} −→∗ 𝒎 + {𝑓 : ℓ} ∈ 𝑋 𝑓

in W, where

𝒎(𝑓 ) = 0. By Claim 4, we have {𝑖 : 𝑗} −→∗
𝑠 𝑅𝑒𝑠𝑒𝑡 (𝒎) + {𝑓 : ℓ} in

W𝑠
. If 𝑅𝑒𝑠𝑒𝑡 (𝒎) ≠ 0, then we get a contradiction since

𝑅𝑒𝑠𝑒𝑡 (𝒎) + {𝑓 : ℓ} ∈ 𝑅𝑒𝑠𝑒𝑡 (𝑋 𝑓 ) \ 𝐹 .

Suppose 𝑅𝑒𝑠𝑒𝑡 (𝒎) = 0. From this, we have {𝑖 : 𝑗} −→𝑠 {𝑓 : 𝑙} which
is possible only if ℓ = 𝑗 , as otherwise we get a contradiction with

W𝑠
being generalised sound. This means that 𝒎 > {𝑓 : 𝑗}, which

is a contradiction withW being coverability-clean. ■

To conclude the proof, it suffices to show that P𝑘 is decidable, i.e.

that properties (1–5) can be checked. First, computingW𝑠
amounts

to identifying the subset of nonredundant transitions of W, which

can be done in Ackermannian time by Proposition 4.3. Then:

(1) Property (1) is trivial;

(2) Property (2) is decidable because of Lemma 4.13;

(3) Testing whether W𝑠
is generalised sound can be done in

PSPACE [3, Theorem 5.1];

(4) Property (4) is a coverability check, which can be done using

the backward coverability algorithm [19] (or by Lemma 2.3);

(5) Property (5) requires more effort. We explain it below.

Let us show that we can determine whether {𝑖 : 𝑘} −→∗ 𝑋 𝑓
. We

start by computing a representation of 𝑋 𝑓
. A representation of 𝑋0

can be computed with the backwards coverability algorithm [19].

More precisely, we can compute the set 𝑋 ′
of all markings from

which there is a run covering {𝑓 : 1}. Then, 𝑋0 is the complement

of 𝑋 ′
. Moreover, since 𝑋 ′

is upward closed, the set 𝑋0 is downward

closed. Obviously, this yields a representation of both 𝑋 and 𝑋 𝑓
.

To simplify the notation, we also identify 𝑅𝑒𝑠𝑒𝑡 (𝑋 𝑓 ) with the

set of markings over 𝑃𝑠 (i.e. by dropping the places outside of 𝑃𝑠 ).

Recall 𝐹 = {{𝑓 : ℓ} : ℓ ∈ N} from the definition of 𝑋 𝑓
.

It remains to show that we can decide whether there exists 𝑗 ≥ 1

such that:

{𝑖 : 𝑗} −→∗
𝑠 𝑅𝑒𝑠𝑒𝑡 (𝑋 𝑓 ) \ 𝐹 holds in W𝑠 . (★)

Moreover, we must prove that if such a 𝑗 exists, then it is Acker-

mannianly bounded. This will allow to prove Theorem 4.2.

We reduce query (★) to a reachability query for Petri nets (with-

out resets). To do so, we modifyW𝑠
into a new Petri netN𝑠

(whose

arcs may consume or produce several tokens at once). First, we add

a transition 𝑡𝑖 that can always add one token in place 𝑖 , this allows

to produce arbitrarily many tokens in 𝑖 . Second, we add a place 𝑝
all

that keeps the sum of tokens in all places from 𝑃𝑠 \ {𝑓 } (it will be
needed as 𝑋 forbids 0). This can be easily achieved by adjusting all

transitions on 𝑝
all

as follows:

•𝑡 (𝑝
all
) B

∑︁
𝑝∈𝑃𝑠\{ 𝑓 }

•𝑡 (𝑝) and 𝑡• (𝑝
all
) B

∑︁
𝑝∈𝑃𝑠\{ 𝑓 }

𝑡• (𝑝) .

We define 𝑋
𝑓

all
as the set{

𝒎′ ∈ N𝑃
𝑠∪{𝑝all }

: ∃𝒎 ∈ 𝑋 s.t. 𝒎′ (𝑝) = 𝒎(𝑝) for all 𝑝 ∈ 𝑃𝑠

and 𝒎′ (𝑝
all
) ≥ 𝒎(𝑃𝑠 \ {𝑓 })

}
.

Note that if 𝒎′ ∈ 𝑋 𝑓

all
, then we have 𝒎′ (𝑝

all
) > 0. Note that only

markings such that 𝒎′ (𝑝
all
) = 𝒎(𝑃𝑠 \ {𝑓 }) make sense, but it will

be convenient to allow markings to be larger in place 𝑝
all
.

Observe that query (★) is equivalent to testing whether 0 −→∗ 𝑋 𝑓

all

in N𝑠
. Indeed, transition 𝑡𝑖 allows to guess the initial value 𝑗 , and

place 𝑝
all

guarantees that we at least one token among places other

than 𝑓 .

Now we analyse the set 𝑋
𝑓

all
. Let 𝒎 ∈ 𝑋 𝑓

all
. The following holds:

• if𝒎′ > 𝒎 and𝒎′ (𝑝) = 𝒎(𝑝) for 𝑝 ∈ 𝑃𝑠 \{𝑓 } then𝒎′ ∈ 𝑋 𝑓

all
;

• if 𝒎′ < 𝒎 and 𝒎′ (𝑝) = 𝒎(𝑝) for 𝑝 ∈ {𝑓 , 𝑝
all
} then 𝒎′ ∈

𝑋
𝑓

all
.

Intuitively, 𝑋
𝑓

all
is downward closed on some places and upward

closed on other places. Since N𝑠
is a Petri net (without resets), it is

folklore that reachability queries to such sets can be performed in

Ackermannian time (see e.g. [6, Lemma 7]). Moreover, if there is

such a run, then there is one of length at most Ackermannian. This

concludes the proof of Theorem 4.1. It also provides an Ackerman-

nian bound on the minimal 𝑗 satisfying query (★).

We briefly explain that it also proves Theorem 4.2. Indeed, let

us comment on the threshold 𝑘′ such that, for any 𝑘 ≥ 𝑘′, P𝑘 is

equivalent to up-to-𝑘-soundness. Observe that properties (1), (2),

(3) and (5) do not depend on 𝑘 , so intuitively there is a 𝑘′ such that

if they are satisfied for 𝑘′, then they are satisfied for all 𝑘 > 𝑘′. So,
properties (1), (2), (3) and (5) are implied by up-to-𝑘 soundness for

𝑘 > 𝑘′. Moreover, property (4) is also implied by up-to-𝑘 soundness,

which means that P𝑘 , for 𝑘 > 𝑘′, is implied by up-to-𝑘 soundness.

What remains is to show that an Ackermannianly bounded 𝑘′

suffices. Property (1) is implied by up-to-𝑘′ soundness for an Acker-

mannianly bounded 𝑘′ according to Claim 3. Similarly, property (2)

is implied by up-to-𝑘′ soundness for an Ackermannianly bounded

𝑘′ according to Lemma 4.5. Property (3) is implied by up-to-𝑘′

soundness for an Ackermannianly bounded 𝑘′ according to Propo-

sition 4.4. Thus, it remains to bound the number 𝑘′ needed for
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property (5). We know that, if there is a run that violates prop-

erty (5), then there is one of length ℓ which is at most Ackerman-

nian. Now, because of Lemma 4.14, we conclude that there is a

run {𝑖 : ℓ + ℓ · 2𝑧} −→∗ 𝑋 𝑓
, where 𝑧 is Ackermannianly bounded as

in Lemma 4.14. This, together with Claim 9, shows that 𝑘′ > ℓ+ℓ ·2𝑧
suffices. Altogether, an Ackermannianly bounded 𝑘′ suffices for the

proof of Theorem 4.2.

Remark 3. One may think that the proof of Theorem 4.1 is contra-
dictory with the undecidability of generalised soundness, as it might
seem that, using Claim 7 and Claim 8, we can decide generalised
soundness. The reason why there is no contradiction is that, earlier,
we assumed thatW is coverability-clean. In some sense, checking the
coverability-clean property, for all 𝑘 , is the source of undecidability
for generalised soundness.

5 CONCLUSION
In this paper, we studied soundness in reset workflow nets: the

standard correctness notion of a well-established formalism for the

modeling of process activities such as business processes.

All existing variants of soundness, but generalised soundness,

were known to be undecidable for reset workflow nets. In this work,

we have shown that generalised soundness is also undecidable. This

closes its status which had been open for over fifteen years.

Given the resulting undecidable landscape, we investigated a new

approach. We introduced the notion of 𝑘-in-between soundness,

which lies between 𝑘-soundness and generalised soundness. We

revealed an unusual complexity behaviour: a decidable soundness

property is in between two undecidable ones. We think this can

be valuable in the algorithmic analysis of reset workflow nets, and

that it may spark a new line of research both in theory and practice.

5.1 Other future work
The reachability problem for Minsky machines is already undecid-

able for two transitions that test counters for zero. Thus, our proof

of the undecidability of generalised soundness only requires four

transitions that reset some places. The question about decidability

of generalised soundness for reset workflow nets with fewer than

four transitions that reset some places, remains open.We conjecture

decidability for reset workflow net with only one such transition.

Furthermore, it would be interesting to extend the definition of

soundness to more powerful models like well-structured transition

systems (WSTS): the properties of resilience [10] can be seen as a

first step. We may also try to adapt the efficient reductions for Petri

nets [2] to reset Petri nets and reset workflow nets.
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