
The Complexity of Reachability in
Affine Vector Addition Systems with States

Michael Blondin
∗

michael.blondin@usherbrooke.ca
Université de Sherbrooke

Sherbrooke, Québec, Canada

Mikhail Raskin
†

raskin@in.tum.de
Technische Universität München

Munich, Bavaria, Germany

Abstract
Vector addition systems with states (VASS) are widely used

for the formal verification of concurrent systems. Given their

tremendous computational complexity, practical approaches

have relied on techniques such as reachability relaxations,

e.g., allowing for negative intermediate counter values. It

is natural to question their feasibility for VASS enriched

with primitives that typically translate into undecidability.

Spurred by this concern, we pinpoint the complexity of inte-

ger relaxations w.r.t. arbitrary classes of affine operations.

More specifically, we provide a trichotomy on the com-

plexity of integer reachability in VASS extended with affine

operations (affine VASS). Namely, we show that it is NP-
complete for VASS with resets, PSPACE-complete for VASS

with (pseudo-)transfers and VASS with (pseudo-)copies, and

undecidable for any other class. We further present a di-

chotomy for standard reachability in affine VASS: it is decid-

able for VASS with permutations, and undecidable for any

other class. This yields a complete and unified complexity

landscape of reachability in affine VASS.

CCS Concepts: • Theory of computation → Logic and
verification; Complexity classes; Automata over infi-
nite objects.

Keywords: vector addition system, affine transformation,

reachability, computational complexity

∗
Supported by a Discovery Grant from the Natural Sciences and Engineering

Research Council of Canada (NSERC) and by the Fonds de recherche du

Québec – Nature et technologies (FRQNT)

†
Supported by the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme under grant

agreement No 787367 (PaVeS).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

LICS ’20, July 8–11, 2020, Saarbrücken, Germany

© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-7104-9/20/07. . . $15.00

https://doi.org/10.1145/3373718.3394741

ACM Reference Format:
Michael Blondin and Mikhail Raskin. 2020. The Complexity of

Reachability in Affine Vector Addition Systems with States. In

Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in

Computer Science (LICS ’20), July 8–11, 2020, Saarbrücken, Germany.

ACM,NewYork, NY, USA, 17 pages. https://doi.org/10.1145/3373718.
3394741

1 Introduction
Vector addition systems with states (VASS), which can equiv-

alently be seen as Petri nets, form a widespread general

model of infinite-state systems with countless applications

ranging from the verification of concurrent programs to

the modeling of biological, chemical and business processes

(see, e.g., [13, 18, 20, 23, 37]). They comprise a finite-state

controller with counters ranging over N and updated via

instructions of the form x ← x + c which are executable if

x + c ≥ 0. The central decision problem concerning VASS

is the reachability problem: given configurations x and y,
is it possible to reach y starting from x? Such queries al-

low, e.g., to verify whether unsafe states can be reached in

concurrent programs. The notorious difficulty of the reach-

ability problem led to many proofs of its decidability over

the last decades [24–28, 32, 34]. While the problem has been

known to be EXPSPACE-hard since 1976 [31], its computa-

tional complexity has remained unknown until very recently,

where it was shown to be TOWER-hard [10] and solvable in

Ackermannian time [29, 30].

Given the potential applications on the one hand, and

the tremendously high complexity on the other hand, re-

searchers have investigated relaxations of VASS in search of

a tradeoff between expressiveness and algorithmic complex-

ity. Two such relaxations consist in permitting either:

(a) transitions to be executed fractionally, and consequently

counters to range over Q≥0 (continuous reachability); or
(b) counters to range over Z (integer reachability).

In both cases, the complexity drops drastically: continuous

reachability is P-complete and NP-complete for Petri nets

and VASS respectively [4, 17], while integer reachability is

NP-complete for both models [9, 19]. Moreover, these two

types of reachability have been used successfully to prove

safety of real-world instances like multithreaded program

skeletons, e.g., see [2, 3, 14].

https://doi.org/10.1145/3373718.3394741
https://doi.org/10.1145/3373718.3394741
https://doi.org/10.1145/3373718.3394741

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Michael Blondin and Mikhail Raskin

Although VASS are versatile, they are sometimes too lim-

ited to model common primitives. Consequently, their mod-

eling power has been extended with various operations. For

example, (multi-)transfers, i.e. operations of the form

x ← x +
n∑
i=1

yi ; y1 ← 0; y2 ← 0; · · · ; yn ← 0,

allow, e.g., for the verification of multi-threaded C and Java

program skeletons with communication primitives [11, 23].

Another example is the case of resets, i.e. operations of the

form x ← 0, which allow, e.g., for the validation of some

business processes [38], and the generation of program loop

invariants [35]. Many such extensions fall under the generic

family of affine VASS, i.e. VASS with instructions of the form

x ← A ·x +b. As a general rule of thumb, reachability is un-

decidable for essentially any class of affine VASS introduced

in the literature; in particular, for transfers and resets [1, 12].

Given the success of relaxations for the practical analy-

sis of (standard) VASS, it is tempting to employ the same

approach for affine VASS. Unfortunately, continuous reacha-

bility becomes undecidable for mild affine extensions such

as resets and transfers. However, integer reachability was

recently shown decidable for affine operations such as re-

sets (NP-complete) and transfers (PSPACE-complete) [5, 19].

While such complexity results do not translate immediately

into practical procedures, they arguably guide the design of

algorithmic verification strategies.

Contribution. Thus, these recent results raise two natural

questions: for what classes of affine VASS is integer reacha-

bility decidable? And, whenever it is decidable, what is its

exact computational complexity?We fully answer these ques-

tions in this paper by giving a precise trichotomy: integer

reachability is NP-complete for VASS with resets, PSPACE-
complete for VASS with (pseudo-)transfers and VASS with

(pseudo-)copies, and undecidable for any other class. In par-

ticular, this answers a question left open in [5]: integer reach-

ability is undecidable for any class of affineVASSwith infinite

matrix monoid.

This clear complexity landscape is obtained by formal-

izing classes of affine VASS and by carefully analyzing the

structure of arbitrary affine transformations; which could be

of independent interest. In particular, it enables us to prove

a dichotomy on (standard) reachability for affine VASS: it is

decidable for VASS with permutations, and undecidable for

any other class. To the best of our knowledge, this is the first

proof of the folkore rule of thumb stating that “reachability

is undecidable for essentially any class of affine VASS”.

Related work. Our work is related to [5] which shows that

integer reachability is decidable for affine VASSwhosematrix

monoid is finite; and more particularly PSPACE-complete

in general for VASS with transfers and VASS with copies.

While it is also recalled in [5] that integer reachability is

undecidable in general for affine VASS, the authors do not

provide any necessary condition for undecidability to hold.

Moreover, the complexity landscape for affine VASS with

finite monoids is left blurred, e.g., it does not give necessary

conditions for PSPACE-hardness results to hold, and the

complexity remains unknown for monoids with negative

coefficients. This paper completes the work initiated in [5]

by providing a unified framework, which includes the notion

of matrix class, that allows us to precisely characterize the

complexity of integer reachability for any class of affine

VASS.

Our work is also loosely related to a broader line of re-

search on (variants of) affine VASS dealing with, e.g., mod-

eling power [36], accelerability [16], formal languages [8],

coverability [7], and the complexity of integer reachability

for restricted counters [15] and structures [22].

Structure of the paper. Section 2 introduces general nota-

tion and affine VASS. In Section 3, we prove our main result,

namely the complexity trichotomy for integer reachability in

affine VASS. In Section 4, we show a dichotomy on (standard)

reachability in affine VASS. Finally, we conclude in Section 5.

To avoid cluttering the presentation with too many technical

details, some proofs are deferred to the appendix.

2 Preliminaries
Notation. Let Z,N, [a,b] and [k] denote respectively the sets
{. . . ,−1, 0, 1, . . .}, {0, 1, 2, . . .}, {a,a + 1, . . . ,b} and [1,k].
For every pair of vectors u,v ∈ Zk , let u +v be the vector

w ∈ Zk such that w(i) B u(i) + v(i) for every i ∈ [k]. Let
ei be the unit vector such that ei (i) = 1 and ei (j) = 0 for

every j , i . We do not specify the arity of ei as we will use it
without ambiguity in various dimensions. For every square

matrix A ∈ Zk×k , let dimA B k and let

∥A∥ B max{|A[i, j]| : i, j ∈ [k]}.

We naturally extend the latter notation to any set X of ma-

trices, i.e. ∥X ∥ B sup{∥A∥ : A ∈ X }. Throughout the paper,
we will often refer to matrix and vector indices as counters.

We will also often describe permutations in cycle notation,

where elements are separated by semicolons for readability,

e.g., (i; j) denotes the permutation that swaps i and j.

Affine VASS. An affine vector addition system with states

(affine VASS) is a tupleV = (d,Q,T) where:

• d ≥ 1 is the number of counters ofV;

• Q is a finite set of elements called control-states;

• T ⊆ Q ×Zd×d ×Zd ×Q is a finite set of elements called

transitions.

For every transition t = (p,A,b,q), let src(t) B p,M(t) B
A, ∆(t) B b and tgt(t) B q. A configuration is a pair (q,v) ∈
Q × Zd written q(v). For all t ∈ T and D ∈ {Z,N}, we write

p(u)
t
−→D q(v)

ifu,v ∈ Dd , src(t) = p, tgt(t) = q, andv = M(t)·u+∆(t). The
relation −→D is naturally extended to sequences of transitions,

The Complexity of Reachability in Affine VASS LICS ’20, July 8–11, 2020, Saarbrücken, Germany

i.e. for everyw ∈ T k
we let

w
−→D B

wk
−−→D ◦ · · · ◦

w2

−−→D ◦
w1

−−→D .

Moreover, we write

p(u) −→D q(v) if p(u)
t
−−→D q(v) for some t ∈ T , and

p(u)
∗
−→D q(v) if p(u)

w
−−→D q(v) for somew ∈ T ∗.

As an example, let us consider the affine VASS of Figure 1,

i.e.whered = 2,Q = {p,q, r } andT is as depicted graphically.

We have:

p(3, 1)
s
−→Z q(1, 0)

t
−→Z r (1, 0)

u
−→Z q(1, 1)

t
−→Z r (2, 0)

u
−→Z q(2, 2)

t
−→Z r (4, 0).

More generally, p(x , 1)
∗
−→Z r (2

k , 0) for all x ∈ Z and k ∈ N>0.

However, p(3, 0)
s
−→N q(1,−1) does not hold as counters

are not allowed to become negative under this semantics.

p q r

s :

(
0 0

0 1

)
,

(
1

−1

) t :

(
1 1

0 0

)
,

(
0

0

)

u :

(
1 0

1 0

)
,

(
0

0

)
Figure 1. Example of an affine VASS.

Classes of matrices. Let us formalize the informal notion

of classes of affine VASS, such as “VASS with resets”, “VASS

with transfers”, “VASS with doubling”, etc., used throughout

the literature.

Such classes depend on the extra operations they provide,

i.e. by their affine transformations. Since affine VASS ex-

tend standard VASS, they always include the identity matrix,

which amounts to not applying any extra operation. More-

over, as transformations can be composed along sequences of

transitions, their matrices are closed under multiplication. In

other words, they form amonoid. In addition, general classes

do not pose restrictions on the number of counters that can

be used, or on the subset of counters on which operations

can be applied. In other words, their affine transformations

can be extended to arbitrary dimensions and can be applied

on any subset of counters.

We formalize these observations as follows. For every

k ≥ 1, let Ik be the k × k identity matrix and let Sk denote

the set of permutations over [k]. Let Pσ ∈ {0, 1}k×k be the

permutation matrix of σ ∈ Sk . For every matrix A ∈ Zk×k ,
every permutation σ ∈ Sk and every n ≥ 1, let

σ (A) B Pσ · A · Pσ −1 ,

and let A↾n ∈ Z(k+n)×(k+n) be the matrix such that:

A↾n B
(
A 0
0 In

)
.

A class (of matrices) is a set of matrices C ⊆
⋃

k≥1 Z
k×k

that satisfies {σ (A),A↾n , In ,A · B} ⊆ C for every A,B ∈ C,
every σ ∈ SdimA and every n ≥ 1. In other words, C is closed

under counter renaming; each matrix of C can be extended

to larger dimensions; and C∩Zk×k is a monoid under matrix

multiplication for every k ≥ 1.

Note that “counter renaming” amounts to choosing a set

of counters on which to apply a given transformation, i.e.

it renames the counters, applies the transformation, and

renames the counters back to their original names. Let us

illustrate this. Consider the classical case of transfer VASS,

i.e. where the contents of a counter can be transferred onto

another counter with operations of the form “x ← x+y; y ←
0”. In matrix notation, this amounts to:

O B
(
1 1

0 0

)
.

Now, consider a systemwith three counters c1, c2 and c3. This
system should be able to compute “c1 ← c1 + c2 + c3; c2 ←
0; c3 ← 0”, but matrix O cannot achieve this on its own.

However, it can be done with the following matrix:

O′ B ©«
1 1 0

0 0 0

0 0 1

ª®¬ · ©«
1 0 1

0 1 0

0 0 0

ª®¬ = ©«
1 1 1

0 0 0

0 0 0

ª®¬ .
We have O′ = O↾

1
· σ (O↾

1
) where σ B (2; 3). Thus, the

operation can be achieved by any class containing O. The
symmetric operation “c3 ← c1 + c2 + c3; c1 ← 0; c2 ← 0”,

e.g., can also be achieved with appropriate permutations.

Hence, this corresponds to the usual notion of transfers: we

are allowed to choose some counters and apply transfers in

either direction.

Note that requiring Pσ · A ∈ C for classes would be too

strong as it would allow to permute the contents of counters

even for classes with no permutation matrix, such as resets.

Classes of interest. We say that a matrix A ∈ Zk×k is a

pseudo-reset, pseudo-transfer or pseudo-copy matrix if A ∈
{−1, 0, 1}k×k and if it also satisfies the following:

• pseudo-reset matrix:

A is a diagonal matrix;

• pseudo-transfer matrix:

A has at most one nonzero entry per column;

• pseudo-copy matrix:

A has at most one nonzero entry per row.

We omit the prefix “pseudo-” if A ∈ {0, 1}k×k . Note that
the sets of (pseudo-)reset matrices, (pseudo-)transfer ma-

trices, and (pseudo-)copy matrices all form classes. More-

over, (pseudo-)reset matrices are both (pseudo-)transfer and

(pseudo-)copy matrices.

Note that the terminology of “reset”, “transfer” and “copy”

comes from the fact that such matrices implement operations

like “x ← 0”, “x ← x + y; y ← 0” and “x ← x ; y ← x”, as

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Michael Blondin and Mikhail Raskin

achieved respectively by the matrices of transitions s (reset),
t (transfer) and u (copy) illustrated in Figure 1.

Reachability problems. We say that an affine VASSV =

(k,Q,T) belongs to a class ofmatricesC if {M(t) : t ∈ T } ⊆ C,
i.e. if all matrices appearing on its transitions belong to C.

The reachability problem and integer reachability problem for

a fixed class C are respectively defined as:

ReachC

Input: an affine VASS V that belongs to C, and

two configurations p(u),q(v);

Decide: p(u)
∗
−→N q(v) inV?

Z-ReachC

Input: an affine VASS V that belongs to C, and

two configurations p(u),q(v);

Decide: p(u)
∗
−→Z q(v) inV?

3 A complexity trichotomy for integer
reachability

This section is devoted to the proof of ourmain result, namely

the trichotomy on Z-ReachC :

Theorem 3.1. The integer reachability problem Z-ReachC is:

(i) NP-complete if C only contains reset matrices;

(ii) PSPACE-complete, otherwise, if either C only contains

pseudo-transfer matrices or C only contains pseudo-copy

matrices;

(iii) Undecidable otherwise.

It is known from [19, Cor. 10] that NP-hardness already
holds for affine VASS using only the identity matrix, and

that NP membership holds for any class of reset matrices.

Hence, (i) follows immediately. Thus, the rest of this section

is dedicated to proving (ii) and (iii).

3.1 PSPACE-hardness
For the rest of this subsection, let us fix some class C that

either only contains pseudo-transfer matrices or only con-

tains pseudo-copy matrices. We prove PSPACE-hardness of
Z-ReachC by first proving that PSPACE-hardness holds if
either:

• C contains a matrix with an entry equal to −1; or

• C contains a matrix with entries from {0, 1} and a

nonzero entry outside of its diagonal.

For these two cases, we first show that C can implement

operations x ← −x or (x ,y) ← (y,x) respectively, i.e. sign
flips or swaps. Essentially, each of these operations is suf-

ficient to simulate linear bounded automata. Before inves-

tigating these two cases, let us carefully formalize what it

means to implement an operation:

Definition 3.2. Let f : Zk 7→ Zk and let τ ∈ {0, ?}. Given a

set of counters X ⊆ [m], let

VX B

{
v ∈ Zm :

∧
j<X

v(j) = 0

}
if τ = 0,

and let VX B Z
m
otherwise. We say that C τ -implements f

if for every n ≥ k , there exist counters X = {x1,x2, . . . ,xn},
matrices {Fσ : σ ∈ Sk } ⊆ C and m ≥ n such that the

following holds for every σ ∈ Sk andv ∈ VX :

(a) dim Fσ =m;

(b) (Fσ ·v)(xσ (i)) = f (xσ (1),xσ (2), . . . ,xσ (k))(i) for all i ∈ [k];
(c) (Fσ ·v)(xσ (i)) = v(xσ (i)) for every i < [k];
(d) Fσ ·v ∈ VX .
We further say that C implements f if it either 0-implements

or ?-implements f .

Definition 3.2 (b) and (c) state that it is possible to obtain

arbitrarily many counters X such that f can be applied on

any k-subset ofX , provided that the counter values belong to

VX . Moreover, (d) states that vectors resulting from applying

operation f also belong to VX , which ensures that f can be

applied arbitrarily many times. Note that (a) allows for extra

auxiliary counters whose values are only restricted by VX .
Informally, ?-implementation means that we use addi-

tional counters that can hold arbitrary values, while 0-imple-

mentation requires the extra counters to be initialized with

zeros but promises to keep them in this state. It turns out that

pseudo-transfer matrix classes 0-implement the functions we

need, while pseudo-copy matrix classes ?-implement them.

Proposition 3.3. If C contains a matrix with some entry

equal to −1, then it implements sign flips, i.e. the operation

f : Z→ Z such that f (x) B −x .

Proof. Let n ≥ 1 and A ∈ C be such that A[a,b] = −1 for

some counters a and b. Let d B dimA. We extend A with

n+2 countersX ′ B X ∪{y, z}, whereX B {xi : i ∈ [n]} are
the counters for which we wish to implement sign flips, and

{y, z} are auxiliary counters. More formally, let A′ B A↾n+2
where X ′ = [d + 1,d ′] and d ′ B d + n + 2.

For every s, t ∈ X ′ such that s , t , let Bs,t B πs,t (A′) and
let Ct B σt (A′) where πs,t B (a; t)(b; s) and σt B (a; t). For
every x ∈ X , let

Fx B

{
Bz,x · By,z · Bx,y if a , b,

Cx otherwise.

Intuitively,Bs,t (resp.Ct) flips the sign from source counter

s (resp. t) to target counter t . If a , b, then matrix Fx imple-

ments a sign flip in three steps using auxiliary counters y
and z, as illustrated in Figure 2. Otherwise, Fx implements

sign flip directly in one step.

Let us consider the case where A is a pseudo-transfer

matrix. From the definition of Bs,t and Ct , it can be shown

that for every s, t ,u ∈ X ′ such that s , t and u < {s, t}, the
following holds:

The Complexity of Reachability in Affine VASS LICS ’20, July 8–11, 2020, Saarbrücken, Germany

x

y

z

Bx ,yBy,zBz,x

x

y

z

?

?

?

??

?

Bx ,yBy,zBz,x

Figure 2. Effect of applying Fx for the case a , b, where the left (resp. right) diagram depicts the case where A is a pseudo-

transfer (resp. pseudo-copy) matrix. A solid or dashed edge from counter s to counter t represents operation s ← t or s ← −t
respectively. Filled nodes indicate counters that necessarily hold 0. Symbol “?” stands for an integer whose value is irrelevant

and depends on A and the counter values.

(i) Bs,t · es = Ct · et = −et , and
(ii) Bs,t · eu = Ct · eu = eu .

Let us show that we 0-implement sign flips, so let

V B

{
v ∈ Zd

′

:

∧
j<X

v(j) = 0

}
.

Let v ∈ V and x ∈ X . We have v =
∑
y∈X v(y) · ey by

definition of V . Let v ′ B
∑

j ∈X \{x }v(j) · ej . Items (b), (c)

and (d) of Definition 3.2 are satisfied since:

Fx ·v = Fx ·v(x) · ex + Fx ·v ′

= v(x) · Fx · ex +v ′ (by (ii) and def. of Fx)

= v(x) · −ex +v
′

(by (i), (ii) and def. of Fx)

= −v(x) · ex +v
′.

The proof of (i) and (ii), and the similar proof for the

case where A is a pseudo-copy matrix, are deferred to the

appendix. □

Proposition 3.4. Z-ReachC is PSPACE-hard if C has a ma-

trix with an entry equal to −1.

Proof. We give a reduction, partially inspired by [5, Thm. 10],

from the membership problem for linear bounded automata,

which is PSPACE-complete (e.g., see [21, Sect. 9.3 and 13]).

Letw ∈ {0, 1}k and let A = (P , Σ,δ ,pinit,pacc) be a linear
bounded automaton where:

• P is its finite set of control-states;

• Σ = {0, 1} is its input and tape alphabet;

• δ : P × Σ → P × Σ × {Left,Right} is its transition
function; and

• pinit and pacc are its initial and accepting control-states,
respectively.

We construct an affine VASSV = (d,Q,T) and configura-

tions p(u), q(v) such thatV belongs to C, and

p(u)
∗
−→Z q(v) ⇐⇒ A acceptsw .

For every control-state p and head position j of A, there

is a matching control-state inV , i.e. Q B {qp, j : p ∈ P , 1 ≤

j ≤ k} ∪ Q , where Q will be auxiliary control-states. We

associate two counters to each tape cell of A, i.e. d B 2 · k .
For readability, let us denote these counters {x j ,yj : j ∈ [k]}.

rqpacc,i

qpacc,1

qpacc,k

y1 ← −y1

x1 ← x1 − 1
y1 ← y1 − 1

yk ← −yk

xk ← xk − 1
yk ← yk − 1

Figure 3. Gadget ofV for tesing whether A was faithfully

simulated and has acceptedw .

We represent the contents of tape cell i by the sign of

counter yj , i.e. yj > 0 represents 0, and yj < 0 represents

1. We will ensure that yj is never equal to 0, which would

otherwise be an undefined representation. SinceV cannot

directly test the sign of a counter, it will be possible forV

to commit errors during the simulation of A. However, we

will constructV in such a way that erroneous simulations

are detected.

The gadget depicted in Figure 4 simulates a transition of

A in three steps:

• xi is incremented;

• yi is incremented (resp. decremented) if the letter a to

be read is 0 (resp. 1);

• the sign of yi is flipped if the letter b to be written

differs from the letter a to be read.

Let u ∈ Zd be the vector such that for every j ∈ [k]:

u(x j) B 1 and u(yj) B (−1)
w j .

Provided thatV starts in vector u, we claim that:

•
∧k

j=1(|x j | ≥ |yj | > 0) is an invariant;

• V has faithfully simulated A so far if and only if∧k
j=1(|x j | = |yj |) holds;

• ifV has faithfully simulated A so far, then the sign

of yj representsw j for every j ∈ [k].

Let us see why this claim holds. Let i ∈ [k]. Initially, we
have |xi | = |yi | and the sign of yi set correctly. Assume we

execute the gadget of Figure 4, resulting in new values x ′i
and y ′i . Let λ ≥ 0 be such that |xi | = |yi | + λ. Let c ∈ {0, 1}

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Michael Blondin and Mikhail Raskin

qp,i qp ′,i+1
xi ← xi + 1 yi ← yi + (−1)

a yi ← (−1)
b−a · yi

Figure 4. Gadget ofV simulating transition δ (p,a) = (p ′,b,Right) of A. The gadget for direction Left is the same except for

qp′,i+1 which is replaced by qp′,i−1. Note that a and b are fixed, hence expressions such as (−1)a are constants; they do not

require exponentiation.

be the letter represented by yi . If c = a, then |x ′i | = |y
′
i | + λ

and the sign of y ′i represents b as desired. If c , a, then
|x ′i | = |y

′
i | + (λ + 1). Thus, we have |x

′
i | = |y

′
i | if and only if

no error was made before and during the execution of the

gadget.

From the above observations, we conclude thatA accepts

w if and only if there exist i ∈ [k] andv ∈ Zd such that

qpinit,1(u)
∗
−→Z qpacc,i (v)

and |v(x j)| = |v(yj)| for every j ∈ [k]. This can be tested

using the gadget depicted in Figure 3, which:

• detects nondeterministically that some control-state

of the form qpacc,i has been reached;

• attempts to setyj to its absolute value for every j ∈ [k];
• decrements x j and yj simultaneously for every j ∈ [k].

Due to the above observations, it is only possible to reach

r (0) if |x j | = |yj | for every j ∈ [k] before entering the gadget
of Figure 3. Thus, we are done proving the reduction since

A acceptsw if and only if

qpinit,1(u)
∗
−→Z r (0).

Sign flips. The above construction considers sign flips as

a “native” operation. However, this is not necessarily the

case, and instead relies on the fact that class C either 0-

implements or ?-implements sign flips, by Proposition 3.3.

Thus, the reachability question must be changed to

qpinit,1(u, 0)
∗
−→Z r (0, 0)

to take auxiliary counters into account. Moreover, if C ?-

implements sign flips, then extra transitions (r , I,ej , r) and
(r , I,−ej , r) must be added to T , for every auxiliary counter

j, to allow counter j to be set back to 0. □

In the two forthcoming propositions, we prove PSPACE-
hardness of the remaining case.

Proposition 3.5. If C contains a matrix with entries from

{0, 1} and a nonzero entry outside of its main diagonal, then

it implements swaps, i.e. the operation f : Z2 → Z2 such that

f (x ,y) B (y,x).

Proof. Let n ≥ 2 and let A ∈ C be a matrix with entries from

{0, 1} and a nonzero entry outside of its main diagonal. Let

d B dimA. There exist a,b ∈ [d] such that A[a,b] = 1 and

a , b. Let us extend A with n + 1 counters X ′ B X ∪ {z}
where X B {xi : i ∈ [n]}. More formally, let A′ B A↾n+1,
X ′ = [d + 1,d ′] and d ′ B d + n + 1.

For all s, t ∈ X ′ such that s , t , let Bs,t B πs,t (A′) where
πs,t B (b; s)(a; t). For every distinct counters x ,y ∈ X , let

Fx,y B Bz,x · Bx,y · By,z .

Intuitively, Bs,t moves the contents from some source

counter s to some target counter t , and Fx,y implements a

swap in three steps using an auxiliary counter z as depicted
in Figure 5. In the case where A is a transfer matrix, Bs,t
resets s , provided that t held value 0.

Let us consider the case where A is a transfer matrix.

From the definition of Bs,t , it can be shown that for every

s, t ,u ∈ X ′ such that s , t andu < {s, t}, the following holds:

(i) Bs,t · es = et , and
(ii) Bs,t · eu = eu .

Let us show that we 0-implement swaps, so let

VX B

{
v ∈ Zd

′

:

∧
j<X

v(j) = 0

}
.

Let v ∈ VX and let x ,y ∈ X be such that x , y. We have

v =
∑

j ∈X v(j) · ej by definition of VX . Let

v ′ B
∑

j ∈X \{x,y }

v(j) · ej .

Items (b), (c) and (d) of Definition 3.2 are satisfied since we

obtain the following by applications of (i) and (ii):

Fx,y ·v = Fx,y ·
(
v(x) · ex +v(y) · ey

)
+ Fx,y ·v ′

= Fx,y ·
(
v(x) · ex +v(y) · ey

)
+v ′

= Bz,x · Bx,y · By,z · (v(x) · ex +v(y) · ey) +v ′

= Bz,x · Bx,y · (v(x) · ex +v(y) · ez) +v ′

= Bz,x · (v(x) · ey +v(y) · ez) +v ′

= v(x) · ey +v(y) · ex +v
′.

The proof of (i) and (ii), and the similar proof for the case

where A is a copy matrix, are deferred to the appendix. □

Proposition 3.6. Z-ReachC is PSPACE-hard if C contains

a matrix with entries from {0, 1} and a nonzero entry outside

of its main diagonal.

Proof. It is shown in [6] that Z-reachability is PSPACE-hard
for affine VASS with swaps, using a reduction from the mem-

bership problem for linear bounded automata.

Here, wemay not have swaps as a “native” operation. How-

ever, by Proposition 3.5, class C implements swaps. Thus, as

The Complexity of Reachability in Affine VASS LICS ’20, July 8–11, 2020, Saarbrücken, Germany

x

y

z

By,zBx ,yBz,x

x

y

z

?

?

?

By,zBx ,yBz,x

Figure 5. Effect of applying Fx,y , where the left (resp. right) diagram depicts the case where A is a transfer (resp. copy) matrix.

An edge from counter s to counter t represents operation s ← t . Filled nodes indicate counters that necessarily hold 0. Symbol

“?” stands for an integer whose value is irrelevant and depends on A and the counter values.

in the proof of Proposition 3.4, if the reachability question is

of the form

p(u)
∗
−→Z q(v),

then it must be changed to

p(u, 0)
∗
−→Z q(v, 0).

Moreover, if the class C ?-implements swaps, then new tran-

sitions must be introduced to allow auxiliary counters to be

set back to 0. □

We now proceed to prove the main result of this subsec-

tion, namely Theorem 3.1 (ii):

Proof of Theorem 3.1 (ii). LetMk B C ∩ Z
k×k

for every k ≥
1. Theorem 7 of [5] shows thatZ-ReachC belongs to PSPACE
if eachMk is a finite monoid of at most exponential norm

and size in k . Let us show that this is the case. First, since

C is a class, each Mk is a (finite) monoid. Moreover, by

definitions of pseudo-transfer and pseudo-copy matrices,

each such matrix can be described by cutting it into k lines

and specifying for each line either the position of the unique

nonzero entry (which is −1 or 1), or the lack of such entry.

Therefore, for every k ≥ 1, it is the case that ∥Mk ∥ ≤ 1 and

|Mk | ≤ (2k + 1)
k

≤ (4k)k

= 2
2k+k logk

≤ 2
poly(k).

It remains to show PSPACE-hardness. By assumption, C

contains a nonreset matrixA. Since ∥C∥ ≤ 1, we have ∥A∥ =
1 as no class can be such that ∥C∥ = 0. If A contains an entry

equal to −1, then we are done by Proposition 3.4. Otherwise,

A only has entries from {0, 1}, and hence we are done by

Proposition 3.6. □

3.2 Undecidability
In this subsection, we first show that any class C, that does

not satisfy the requirements for Z-ReachC ∈ {NP-complete,
PSPACE-complete}, must be such that ∥C∥ ≥ 2. We then

show that this is sufficient to mimic doubling, i.e. the opera-

tion x 7→ 2x , even if C does not contain a doubling matrix.

In more details, we will (a) construct a matrix C that pro-

vides a sufficiently fast growth; which will (b) allow us to

derive undecidability by revisiting a reduction from the Post

correspondence problem which depends on doubling.

Proposition 3.7. Let C be a class that contains somematrices

A and B which are respectively not pseudo-copy and pseudo-

transfer matrices. It is the case that ∥C∥ ≥ 2.

Proof. By assumption,A and B respectively have a row and a

columnwith at least two nonzero entries. Wemake use of the

following lemma whose proof is deferred to the appendix:

if C contains a matrix which has a row (resp.

column) with at least two nonzero entries, then

C also contains a matrix which has a row (resp.

column) with at least two nonzero entries with

the same sign.

Since C is a class, we can assume that dimA = dimB = d
for some d ≥ 2, as otherwise the smallest matrix can be

enlarged. Thus, there exist i, i ′j,k ∈ [d] and a,b,a′,b ′ , 0

such that:

• j , k ;
• A[i, j] = a and A[i,k] = b;
• B[j, i ′] = a′ and B[k, i ′] = b ′; and
• a > 0 ⇐⇒ b > 0 and a′ > 0 ⇐⇒ b ′ > 0.

Note that the reason we can assume A and B to share coun-

ters j and k is due to C being closed under counter renaming.

We wish to obtain a matrix with entry

A[i, j] · B[j, i ′] + A[i,k] · B[k, i ′] = a · a′ + b · b ′.

We cannot simply pick A · B as (A · B)[i, i ′] may differ from

this value due to other nonzero entries. Hence, we rename

all counters of B, except for j and k , with fresh counters.

This way, we avoid possible overlaps and we can select pre-

cisely the four desired entries. More formally, let A′ B A↾d ,
B′ B B↾d and C B A′ · σ (B′), where σ : [2d] → [2d] is the
permutation:

σ B
∏

ℓ∈[d]\{j,k }

(ℓ; ℓ + d).

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Michael Blondin and Mikhail Raskin

Let i ′′ B i ′ + d if i ′ < {j,k} and i ′′ B i ′ otherwise. We have:

C[i, i ′′] =
∑

ℓ∈[2d]

A′[i, ℓ] · B′[σ (ℓ), i ′] (1)

=
∑

ℓ∈[d] s.t. σ (ℓ)∈[d]

A′[i, ℓ] · B′[σ (ℓ), i ′] (2)

= A′[i, j] · B′[j, i ′] + A′[i,k] · B′[k, i ′]

= a · a′ + b · b ′,

where (1) follows by definition of C and by σ (i ′′) = i ′; and (2)
follows by definition of A′ and B′, and by i, i ′ ∈ [d].
Since a and b (resp. a′ and b ′) have the same sign, and

since a,b,a′,b ′ , 0, we conclude that |C[i, i ′′]| ≥ 2 and

consequently that ∥C∥ ≥ ∥C∥ ≥ 2. □

To avoid cumbersome subscripts, we write e for e1 in the

rest of the section. Moreover, let λℓ(C) B (Cℓ · e)(1) for
every matrix C and ℓ ∈ N.

The following technical lemma will be key to mimic dou-

bling. It shows that, from any class of norm at least 2, we

can extract a matrix with sufficiently fast growth.

Lemma 3.8. For every class of matrices C such that ∥C∥ ≥ 2,

there exists C ∈ C with λn+1(C) ≥ 2 · λn(C) for every n ∈ N.

Proof. Let A ∈ C be a matrix with some entry c such that

|c | ≥ 2. We can assume that c ≥ 2. Indeed, if it is negative,

then we can multiply A by a suitable permutation of itself to

obtain an entry equal to c · c (see the proof of Lemma A.1 in

the appendix which achieves this). We can further assume

that c is the largest positive coefficient occurring within A,
and that it lies on the first column of A, i.e. A[k, 1] = c for
some k ∈ [d] where d B dimA. We consider the case where

k = 1. The case where k , 1 will be discussed later.

For readability, we rename counters {1, 2, . . . ,d} respec-
tively by X B {x1,x2, . . . ,xd }. Note that (A · e)(x1) = c ≥
2 · e(x1) as desired. However, vector A · e may now hold

nonzero values in counters x2, . . . ,xd . Therefore, if we mul-

tiply this vector by A, some “noise” will be added to counter

x1. If this noise is too large, then it may cancel the growth

of x1 by ≈ c . We address this issue by introducing extra aux-

iliary counters replacing x2, . . . ,xd at each “iteration”. Of

course, we cannot have infinitely many auxiliary counters.

Fortunately, after a sufficiently large numberm of iterations,

the auxiliary counters used at the first iteration will contain

sufficiently small noise so that the process can restart from

there.

More formally, let A′ B A↾ |Y | where Y B {yi, j : 0 ≤ i <
m, j ∈ [2,d]} is the set of auxiliary counters, andm ≥ 1 is a

sufficiently large constant whose value will be picked later.

Let V be the set of vectorsv ∈ Z |X |+ |Y | satisfyingv(x1) > 0

and

|v(yi, j)| ≤

(
3c

4

) i
·
v(x1)

4d
for every yi, j ∈ Y .

Let us fix some vector v0 ∈ V . For every 0 ≤ i < m, let

Bi B σi (A′) andvi+1 B Bi ·vi where σi is the permutation

σi B
∏

j ∈[2,d]

(x j ;yi, j).

We claim that:

vm(x1) ≥ 2 ·v0(x1) andvm ∈ V .

The validity of this claim proves the lemma. Indeed, C ·v0 =

vm where C B Bm−1 · · ·B1 · B0. Hence, an application of C
yields a vector whose first component has at least doubled.

Since e ∈ V and the resulting vector also belong to V , this
can be iterated arbitrarily many times.

Let us first establish the following properties for every

0 ≤ i < m and j ∈ [2,d]:

(a) vi (yi, j) = v0(yi, j) andvm(yi, j) = vi+1(yi, j);
(b) vi+1(x1) ∈

[
3c
4
·vi (x1),

5c
4
·vi (x1)

]
; and

(c) |vi+1(yi, j)| ≤ 2c ·vi (x1).

Property (a), which follows from the definition of Bi , essen-
tially states that the contents of counter yi, j is only altered

fromvi tovi+1. Properties (b) and (c) bound the growth of

the counters in terms of x1. Let us prove these two latter

properties by induction on i .
By definition ofvi+1, we havevi+1(x1) = c ·vi + δ where

δ B
∑
z,x1

Bi [x1, z] ·vi (z).

Therefore, vi+1(x1) ∈ [c · vi (x1) − |δ |, c · vi (x1) + |δ |], and
hence property (b) follows from:

|δ | ≤
∑

z∈X∪Y
z,x1

|Bi [x1, z]| · |vi (z)|

=
∑

j ∈[2,d]

|A′[x1,x j]| · |vi (yi, j)| (by def. of Bi and σi)

=
∑

j ∈[2,d]

|A′[x1,x j]| · |v0(yi, j)| (by (a))

≤ dc · (3c/4)i ·
v0(x1)

4d
(byv0 ∈ V and by

maximality of c)

≤ dc ·
vi (x1)

4d
(3)

=
c

4

·vi (x1),

where (3) holds byvi (x1) ≥ (3c/4)
i ·v0(x1) from (b).

The Complexity of Reachability in Affine VASS LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Similarly, property (c) holds since, for every j ∈ [2,d]:

|vi+1(yi, j)| ≤ |A′[x j ,x1]| ·vi (x1) +∑
ℓ∈[2,d]

|A′[x j ,xℓ]| · |vi (yi, ℓ)|

(by def. of Bi and σi)

≤ c ·vi (x1) + dc · (3c/4)
i ·

v0(x1)

4d
(by (a) andv0 ∈ V)

≤ c ·vi (x1) + dc ·
vi (x1)

4d

(by (b))

≤ 2c ·vi (x1).

We may now prove the claim. Letm be sufficiently large

so that (3c/4)m ≥ 8cd . We havevm(x1) ≥ (3c/4)
m ·v0(x1) ≥

8cd · v0(x1) by (b) and definition ofm. Hence, since c ≥ 2

and d ≥ 1, we havevm(x1) ≥ 2 ·v0(x1), which satisfies the

first part of the claim. Moreover, the second part of the claim,

namelyvm ∈ V , holds since for every yi, j ∈ Y , we have:

|vm(yi, j)| = |vi+1(yi, j)| (by (a))

≤ 2c ·vi (x1) (by (c))

≤ 2c ·
vm(x1)

(3c/4)m−i
(4)

= 2c · (3c/4)i ·
vm(x1)

(3c/4)m

≤ 2c · (3c/4)i ·
vm(x1)

8cd
(by def. ofm)

= (3c/4)i ·
vm(x1)

4d
,

where (4) holds byvm(x1) ≥ (3c/4)
m−i ·vi (x1) from (b).

We are done proving the lemma for the case A[k, 1] = c ≥
2 with k = 1. This case is slightly simpler as c lies on the

main diagonal of A which means that vi+1(x1) ≈ c ·vi (x1).
If k , 1, then we have vi+1(xk) ≈ c ·vi (x1) instead, which
breaks composability for the next iteration. However, this is

easily fixed by swapping the names of countersxk andx1. □

Let us fix some class C such that ∥C∥ ≥ 2 and the matrixC
obtained for C from Lemma 3.8. For simplicity, we will write

λℓ instead of λℓ(C). We prove two intermediary propositions

that essentially show that C can encode binary strings. Let

fb (v) B C ·v +b ·e for both b ∈ {0, 1} and everyv ∈ ZdimC
.

Let fε be the identity function, and let

fx B fxn ◦ · · · ◦ fx2 ◦ fx1 for every x ∈ {0, 1}
n .

Let γx B fx (e)(1) for every x ∈ {0, 1}∗. Let JεK B ∅ and
let JwK B {i ∈ [k] : wi = 1} be the “support” ofw for every

sequencew ∈ {0, 1}+ of length k > 0.

Proposition 3.9. For every x ∈ {0, 1}∗, the following holds:
γx = λ |x | +

∑
i ∈JxK λ |x |−i .

Proof. It suffices to show that fx (e) = C |x | ·e+
∑

i ∈JxK C |x |−i ·e
for every x ∈ {0, 1}∗. Let us prove this by induction on |x |.
If |x | = 0, then x = ε , and hence fx (e) = e = C0 · e . Assume

that |x | > 0 and that the claim holds for sequences of length

|x | − 1. There exist b ∈ {0, 1} and w ∈ {0, 1}∗ such that

x = wb. We have:

fx (e) = C · fw (e) + b · e

= C · ©«C |w | · e +
∑
i ∈JwK

C |w |−i · eª®¬ + b · e (5)

=
©«C |w |+1 · e +

∑
i ∈JwK

C |w |+1−i · eª®¬ + b · e
=

©«C |x | · e +
∑

i ∈JxK\{ |x | }

C |x |−i · eª®¬ + b · C |x |− |x | · e
= C |x | · e +

∑
i ∈JxK

C |x |−i · e, (6)

where (5) follows by induction hypothesis, and (6) by defini-

tion of JxK. □

Proposition 3.10. For every x ,y ∈ {0, 1}∗, it is the case that
x = y if and only if γx = γy .

Proof. Let <lex denote the lexicographical order over {0, 1}
∗
.

It is sufficient to show that for every x ,y ∈ {0, 1}∗ the fol-
lowing holds: if x <lex y, then γx < γy . Indeed, if this claim
holds, then for every x ,y ∈ {0, 1}∗ such that x , y, we either
have x <lex y or y <lex x , which implies γx , γy in both

cases.

Let us prove the claim. Let x ,y ∈ {0, 1}∗ be such that

x <lex y. We either have |x | < |y | or |x | = |y |. If the former

holds, then the claim follows from:

γx = λ |x | +
∑
i ∈JxK

λ |x |−i (by Proposition 3.9)

≤ λ |x | +

|x |∑
i=1

λ |x |/2
i

(by Lemma 3.8)

= λ |x | ·

(
1 +

|x |∑
i=1

1/2i

)
= λ |x | · (2 − 1/2

|x |)

< 2 · λ |x | (since λ |x | > 0)

≤ λ |y | (by Lemma 3.8)

≤ γy (by Proposition 3.9).

It remains to prove the case where |x | = |y | = k for some

k > 0. Since x <lex y, there exist u,v,w ∈ {0, 1}∗ such
that x = u0v and y = u1w . Let ℓ B k − |u | − 1. Note that

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Michael Blondin and Mikhail Raskin

ℓ = |v | = |w |. The proof is completed by observing that:

γy − γx = λℓ +
∑
i ∈JwK

λℓ−i −
∑
i ∈JvK

λℓ−i (by Proposition 3.9)

≥ λℓ −

|v |∑
i=1

λℓ−i

≥ λℓ −

|v |∑
i=1

λℓ/2
i

(7)

= λℓ ·

(
1 −

ℓ∑
i=1

1/2i

)
(by |v | = ℓ)

= λℓ/2
ℓ

> 0,

where (7) holds by λℓ ≥ 2
i · λℓ−i from Lemma 3.8. □

We may finally prove the last part of our trichotomy.

Theorem 3.11. Z-ReachC is undecidable if ∥C∥ ≥ 2.

Proof. We give a reduction from the Post correspondence

problem inspired by [33]. There, counter values can be dou-

bled as a “native” operation. Here, we adapt the construction

with our emulation of doubling. Let us consider an instance

of the Post correspondence problem over alphabet {0, 1}:

Γ B

{[
u1
v1

]
,

[
u2
v2

]
, . . . ,

[
uℓ
vℓ

]}
.

We say that Γ has a match if there exists w ∈ Γ+ such that

the underlying top and bottom sequences ofw are equal.

Let C be the matrix obtained for C from Lemma 3.8, let

d B dimC, and let e be of size d . For every x ∈ {0, 1}∗, let
дx and hx be the linear mappings over Z2d defined as fx ,
but operating on counters 1, 2, . . . ,d and counters d + 1,d +
2, . . . , 2d respectively.

LetV B (2d,Q,T) be the affine VASS such that Q and T
are as depicted in Figure 6. Note thatV belongs to C. Indeed,

дx and hx can be obtained from matrix C ∈ C and the fact

that C is a class, and hence closed under counter renaming

and larger dimensions. We claim that

p(e,e)
∗
−→Z r (e,e) if and only if Γ has a match.

Note that any sequence w ∈ T + from p to p computes

дwx ◦ hwy for some word[
wx
wy

]
∈ Γ+.

p

q1

qi

qℓ

r

дu1 hv1

дuℓ hvℓ

(−e,−e)

(−e,−e)

дui

hvi

Figure 6. Affine VASSV for the Post correspondence prob-

lem. Arcs labeled by mappings of the form дx and hx each

stand for finite sequences of |x | transitions implementing дx
and hx .

Thus:

p(e,e)
∗
−→Z r (e,e)

⇐⇒ ∃w ∈ T +,v ∈ Z2d : p(e,e)
w
−→Z p(v)

∗
−→Z r (e,e)

⇐⇒ ∃w ∈ T +,v ∈ Z2d : (8)

p(e,e)
w
−→Z p(v) andv(1) = v(d + 1)

⇐⇒ ∃w ∈ T + : γwx = γwy (9)

⇐⇒ ∃w ∈ T + : wx = wy (10)

⇐⇒ Γ has a match,

where (9) follows by definitions of д, h and γ , and where (10)
follows from Proposition 3.10. □

We conclude this section by proving Theorem 3.1 (iii)

which can be equivalently formulated as follows:

Corollary 3.12. Z-ReachC is undecidable if C does not only

contain pseudo-transfer matrices and does not only contain

pseudo-copy matrices.

Proof. We have ∥C∥ ≥ 2 by Proposition 3.7, hence undecid-

ability follows from Theorem 3.11. □

4 A complexity dichotomy for reachability
This section is devoted to the following complexity dichotomy

on ReachC , which is mostly proven by exploiting notions

and results from the previous section:

Theorem 4.1. The reachability problem ReachC is equiva-

lent to the (standard) VASS reachability problem if C only

contains permutation matrices, and is undecidable otherwise.

4.1 Decidability
Note that the (standard) VASS reachability problem is the

problem ReachI where I B
⋃

n≥1 In . Clearly ReachI ≤

ReachC for any class C. Therefore, it suffices to show the

following:

The Complexity of Reachability in Affine VASS LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Proposition 4.2. ReachC ≤ ReachI for every C that only

contains permutation matrices.

Proof. Let V = (d,Q,T) be an affine VASS that belongs to

C. We construct a (standard) VASS V ′ = (d,Q ′,T ′) that
simulatesV . Recall that a (standard) VASS is an affine VASS

that only uses the identitymatrix. For readability, we omit the

identity matrix on the transitions ofV ′. We assume without

loss of generality that each transition t ∈ T satisfies either

∆(t) = 0 or M(t) = I. Indeed, since permutation matrices

are nonnegative, every transition of T can be splitted in two

parts: first applying its matrix, and then its vector.

The control-states and transitions of V ′ are defined as

Q ′ B {qσ : q ∈ Q,σ ∈ Sd } and T ′ B S⟳ ∪ Svec, which
are to be defined shortly. Intuitively, each control-state of

V ′ stores the current control-state ofV together with the

current renaming of its counters. Whenever a transition

t ∈ T such that ∆(t) = 0 is to be applied, this means that the

counters must be renamed by the permutationM(t). This is
achieved by:

S⟳ B {(pσ , 0,qπ◦σ) : (p, Pπ , 0,q) ∈ T ,σ ∈ Sd }.

Similarly, whenever a transition t ∈ T such thatM(t) = I is
to be applied, this means that ∆(t) should be added to the

counters, but in accordance to the current renaming of the

counters. This is achieved by:

Svec B {(pσ , Pσ · b,qσ) : (p, I,b,q),σ ∈ Sd }.

A routine induction shows that

p(u)
∗
−→N q(v) inV iff pε (u)

∗
−→N qσ (Pσ ·v) inV ′,

where ε denotes the identity permutation. Since this amounts

to finitely many reachability queries, i.e. |Sd | = d! queries,
this yields a Turing reduction

1
. □

4.2 Undecidability
We show undecidability by considering three types of classes:

(1) classes with matrices with negative entries; (2) nontrans-

fer and noncopy classes; and (3) transfer or copy classes. In

each case, we will argue that an “undecidable operation” can

be simulated, namely: zero-tests, doubling and resets.

Proposition 4.3. ReachC is undecidable for every class C

that contains a matrix with some negative entry.

Proof. Let A ∈ C be a matrix such that A[i, j] < 0 for some

i, j ∈ [d] where d B dimA. We show how a two counter

Minsky machine M can be simulated by an affine VASS

V belonging to C. Note that we only have to show how

to simulate zero-tests. The affine VASSV has 2d counters:

counters j and j + d which represent the two counters x
and y ofM; and 2d − 2 auxiliary counters which will be

permanently set to value 0.

1
Although it is not necessary for our needs, the reduction can be made

many-one by weakly computing a matrix multiplication by Pσ −1 onto d
new counters, from each control-state qσ to a common state r .

x ← x + c y ← y + c x = 0? y = 0?

(c · ej , 0) (0, c · ej)

(
A 0
0 I

) (
I 0
0 A

)
Figure 7. Top: example of a two counter machineM. Bottom:

an affine VASSV simulatingM.

Observe that for every λ ∈ N, the following holds:

A · λej =

{
0 if λ = 0,

λ · A[⋆, j] otherwise.

Thus, A simulates a zero-test as it leaves all counters set to

zero if counter j holds value zero, and it generates a vector

with some negative entry otherwise, which is an invalid

configuration underN-reachability. Figure 7 shows how each

transition ofM is replaced inV . We are done since

(m,n)
∗
−→N (m

′,n′) inM

⇐⇒ (m · ej ,n · ej)
∗
−→N (m

′ · ej ,n
′ · ej) inV . □

Proposition 4.4. ReachC is undecidable if C does not only

contain transfer matrices and does not only contain copy ma-

trices.

Proof. If C contains a matrix with some negative entry, then

we are done by Proposition 4.3. Thus, assume C only contains

nonnegative matrices. By Proposition 3.7, we have ∥C∥ ≥ 2.

Let C be the matrix obtained for C from Lemma 3.8. Since

C ≥ 0, we have C ·v ≥ 0 for everyv ≥ 0. Hence, multiplica-

tion by C is always allowed under N-reachability. Thus, the
reduction from the Post correspondence problem given in

Theorem 3.11 holds here under N-reachability, as the only
possibly (relevant) negative values arose from C. □

We may finally prove the last part of our dichotomy:

Theorem 4.5. ReachC is undecidable for every class C with

some nonpermutation matrix.

Proof. Let A ∈ C be a matrix which is not a permutation ma-

trix. By Proposition 4.3 and Proposition 4.4, we may assume

that A is either a transfer or a copy matrix. Hence, A must

have a column or a row equal to 0, as otherwise it would be

a permutation matrix. Thus, we either have A[⋆, i] = 0 or

A[i,⋆] = 0 for some i ∈ [d] where d B dimA.
We show that C implements resets, i.e. the operation

f : Z → Z such that f (x) B 0. This is sufficient to com-

plete the proof since reachability for VASS with resets is

undecidable [1].

Let X B {d + 1,d + 2, . . . ,d + n} be the counters for

which we wish to implement resets. Let A′ B A↾n and let

Bx B σx (A′) where σx B (x ; i). Let x ,y ∈ X be counters

such that x , y.

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Michael Blondin and Mikhail Raskin

Case A[⋆, i] = 0. We have: Bx ·ex = Bx [⋆,x] = A′[⋆, i] = 0.
Similarly, it can be shown that Bx · ey = ey . Hence, class C
0-implements resets.

Case A[i,⋆] = 0. The following holds for everyv ∈ Zd+n :

(Bx ·v)(x) =
∑

ℓ∈[d+n]

B[x , ℓ] ·v(ℓ)

=
∑

ℓ∈[d+n]

A′[i,σx (ℓ)] ·v(ℓ)

= 0.

Similarly, we have (Bx ·v)(y) = v(y). Hence, class C ?-imple-

ments resets. □

5 Conclusion and further work
Motivated by the use of relaxations to alleviate the tremen-

dous complexity of reachability in VASS, we have studied

the complexity of integer reachability in affine VASS.

Namely, we have shown a trichotomy on the complexity

of integer reachability for affine VASS: it is NP-complete for

any class of reset matrices; PSPACE-complete for any class

of pseudo-transfers matrices and any class of pseudo-copies

matrices; and undecidable for any other class.

Moreover, the notions and techniques introduced along

the way allowed us to give a complexity dichotomy for (stan-

dard) reachability in affine VASS: it is decidable for any class

of permutation matrices, and undecidable for any other class.

This provides a complete general landscape of the complexity

of reachability in affine VASS.

A further direction of study is the range of possible com-

plexities for integer reachability relations for specific affine

VASS instances and specific matrix monoids. For the former

question, we conjecture that the computational complexity

can be completely arbitrary across a very wide range go-

ing from polynomial complexity to undecidability. We are

currently studying a specific construction that is likely to

provide a proof of that conjecture. The case of fixed specific

matrix monoids is entirely open.

References
[1] Toshiro Araki and Tadao Kasami. 1976. Some Decision Problems Re-

lated to the Reachability Problem for Petri Nets. Theoretical Computer

Science 3, 1 (1976), 85–104. https://doi.org/10.1016/0304-3975(76)90067-
0

[2] Konstantinos Athanasiou, Peizun Liu, and Thomas Wahl. 2016.

Unbounded-Thread Program Verification using Thread-State Equa-

tions. In Proc. 8
th
International Joint Conference on Automated Reason-

ing (IJCAR). 516–531. https://doi.org/10.1007/978-3-319-40229-1_35
[3] Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad.

2017. The Logical View on Continuous Petri Nets. ACM Transactions

on Computational Logic (TOCL) 18, 3 (2017), 24:1–24:28. https://doi.
org/10.1145/3105908

[4] Michael Blondin and Christoph Haase. 2017. Logics for continuous

reachability in Petri nets and vector addition systems with states. In

Proc. 32
nd

Annual ACM/IEEE Symposium on Logic in Computer Science

(LICS). 1–12. https://doi.org/10.1109/LICS.2017.8005068

[5] Michael Blondin, Christoph Haase, and Filip Mazowiecki. 2018. Affine

Extensions of Integer Vector Addition Systems with States. In Proc. 29
th

International Conference on Concurrency Theory (CONCUR). 14:1–14:17.

https://doi.org/10.4230/LIPIcs.CONCUR.2018.14
[6] Michael Blondin, Christoph Haase, Filip Mazowiecki, and Mikhail A.

Raskin. 2019. Affine Extensions of Integer Vector Addition Systems

with States. CoRR (2019). arXiv:1909.12386

[7] Rémi Bonnet, Alain Finkel, and M. Praveen. 2012. Extending the

Rackoff technique to Affine nets. In Proc. 32
nd

Annual Conference on

Foundations of Software Technology and Theoretical Computer Science

(FSTTCS). 301–312. https://doi.org/10.4230/LIPIcs.FSTTCS.2012.301
[8] Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. 2012. Affine

Parikh automata. RAIRO – Theoretical Informatics and Applications 46,

4 (2012), 511–545. https://doi.org/10.1051/ita/2012013
[9] Dmitry Chistikov, Christoph Haase, and Simon Halfon. 2018. Context-

free commutative grammars with integer counters and resets. Theo-

retical Computer Science 735 (2018), 147–161. https://doi.org/10.1016/j.
tcs.2016.06.017

[10] Wojciech CzerwiÅĎski, SÅĆawomir Lasota, Ranko Lazić, Jérôme Ler-

oux, and Filip Mazowiecki. 2019. The reachability problem for Petri

nets is not elementary. In Proc. 51
st
Annual ACM SIGACT Symposium on

Theory of Computing (STOC). 24–33. https://doi.org/10.1145/3313276.
3316369

[11] Giorgio Delzanno, Jean-François Raskin, and Laurent Van Begin. 2002.

Towards the Automated Verification of Multithreaded Java Programs.

In Proc. 8
th
International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS). 173–187. https://doi.
org/10.1007/3-540-46002-0_13

[12] Catherine Dufourd, Alain Finkel, and Philippe Schnoebelen. 1998.

Reset Nets Between Decidability and Undecidability. In Proc. 25
th

International Colloquium on Automata, Languages and Programming

(ICALP). 103–115. https://doi.org/10.1007/BFb0055044
[13] Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar.

2017. Verification of population protocols. Acta Informatica 54, 2

(2017), 191–215. https://doi.org/10.1007/s00236-016-0272-3
[14] Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp J.

Meyer, and Filip NikÅąiÄĞ. 2014. An SMT-Based Approach to Cov-

erability Analysis. In Proc. 26
th
International Conference on Computer

Aided Verification (CAV). 603–619. https://doi.org/10.1007/978-3-319-
08867-9_40

[15] Alain Finkel, Stefan Göller, and Christoph Haase. 2013. Reachability in

Register Machines with Polynomial Updates. In Proc. 38
th
International

Symposium on Mathematical Foundations of Computer Science (MFCS).

409–420. https://doi.org/10.1007/978-3-642-40313-2_37
[16] Alain Finkel and Jérôme Leroux. 2002. How to Compose Presburger-

Accelerations: Applications to Broadcast Protocols. In Proc. 22
nd

Con-

ference on Foundations of Software Technology and Theoretical Computer

Science (FSTTCS). 145–156. https://doi.org/10.1007/3-540-36206-1_14
[17] Estíbaliz Fraca and Serge Haddad. 2015. Complexity Analysis of

Continuous Petri Nets. Fundamenta Informaticae 137, 1 (2015), 1–28.

https://doi.org/10.3233/FI-2015-1168
[18] StevenM. German and A. Prasad Sistla. 1992. Reasoning about Systems

with Many Processes. Journal of the ACM 39, 3 (1992), 675–735. https:
//doi.org/10.1145/146637.146681

[19] Christoph Haase and Simon Halfon. 2014. Integer Vector Addition

Systems with States. In Proc. 8
th
International Workshop on Reachability

Problems (RP). 112–124. https://doi.org/10.1007/978-3-319-11439-2_9
[20] Monika Heiner, David R. Gilbert, and Robin Donaldson. 2008. Petri

Nets for Systems and Synthetic Biology. In Formal Methods for Com-

putational Systems Biology. 215–264. https://doi.org/10.1007/978-3-
540-68894-5_7

[21] John E. Hopcroft and Jeffrey D. Ullman. 1979. Introduction to Automata

Theory, Languages and Computation. Addison-Wesley.

[22] Radu Iosif and Arnaud Sangnier. 2016. How Hard is It to Verify Flat

Affine Counter Systems with the Finite Monoid Property?. In Proc. 14
th

https://doi.org/10.1016/0304-3975(76)90067-0
https://doi.org/10.1016/0304-3975(76)90067-0
https://doi.org/10.1007/978-3-319-40229-1_35
https://doi.org/10.1145/3105908
https://doi.org/10.1145/3105908
https://doi.org/10.1109/LICS.2017.8005068
https://doi.org/10.4230/LIPIcs.CONCUR.2018.14
https://arxiv.org/abs/1909.12386
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.301
https://doi.org/10.1051/ita/2012013
https://doi.org/10.1016/j.tcs.2016.06.017
https://doi.org/10.1016/j.tcs.2016.06.017
https://doi.org/10.1145/3313276.3316369
https://doi.org/10.1145/3313276.3316369
https://doi.org/10.1007/3-540-46002-0_13
https://doi.org/10.1007/3-540-46002-0_13
https://doi.org/10.1007/BFb0055044
https://doi.org/10.1007/s00236-016-0272-3
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-642-40313-2_37
https://doi.org/10.1007/3-540-36206-1_14
https://doi.org/10.3233/FI-2015-1168
https://doi.org/10.1145/146637.146681
https://doi.org/10.1145/146637.146681
https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1007/978-3-540-68894-5_7
https://doi.org/10.1007/978-3-540-68894-5_7

The Complexity of Reachability in Affine VASS LICS ’20, July 8–11, 2020, Saarbrücken, Germany

International Symposium on Automated Technology for Verification and

Analysis (ATVA). 89–105. https://doi.org/10.1007/978-3-319-46520-3_6
[23] Alexander Kaiser, Daniel Kroening, and Thomas Wahl. 2014. A Widen-

ing Approach to Multithreaded Program Verification. ACM Trans.

on Prog. Languages and Systems 36, 4 (2014), 14:1–14:29. https:
//doi.org/10.1145/2629608

[24] S. Rao Kosaraju. 1982. Decidability of Reachability in Vector Addition

Systems (Preliminary Version). In Proc. 14
th
Symposium on Theory of

Computing (STOC). 267–281. https://doi.org/10.1145/800070.802201
[25] Jean-Luc Lambert. 1992. A Structure to Decide Reachability in Petri

Nets. Theoretical Computer Science 99, 1 (1992), 79–104. https://doi.
org/10.1016/0304-3975(92)90173-D

[26] Jérôme Leroux. 2010. The General Vector Addition System Reachability

Problem by Presburger Inductive Invariants. Logical Methods in Com-

puter Science 6, 3 (2010). https://doi.org/10.2168/LMCS-6(3:22)2010
[27] Jérôme Leroux. 2011. Vector addition system reachability problem:

a short self-contained proof. In Proc. 38
th
Symposium on Principles of

Programming Languages (POPL). 307–316. https://doi.org/10.1145/
1926385.1926421

[28] Jérôme Leroux. 2012. Vector Addition Systems Reachability Problem

(A Simpler Solution). In Turing-100 – The Alan Turing Centenary. 214–

228.

[29] Jérôme Leroux and Sylvain Schmitz. 2015. Demystifying Reachability

in Vector Addition Systems. In Proc. 30
th
Annual ACM/IEEE Symposium

on Logic in Computer Science (LICS). 56–67. https://doi.org/10.1109/
LICS.2015.16

[30] Jérôme Leroux and Sylvain Schmitz. 2019. Reachability in Vector

Addition Systems is Primitive-Recursive in Fixed Dimension. In Proc.

34
th
Symposium on Logic in Computer Science (LICS).

[31] Richard J. Lipton. 1976. The Reachability Problem Requires Exponential

Space. Technical Report 63. Department of Computer Science, Yale

University.

[32] ErnstW.Mayr. 1981. An Algorithm for the General Petri Net Reachabil-

ity Problem. In Proc. 13
th
Symposium on Theory of Computing (STOC).

238–246. https://doi.org/10.1145/800076.802477
[33] Julien Reichert. 2015. Reachability games with counters: decidability and

algorithms. Ph.D. Dissertation. École normale supérieure de Cachan,

France.

[34] George S. Sacerdote and Richard L. Tenney. 1977. The Decidability of

the Reachability Problem for Vector Addition Systems (Preliminary

Version). In Proc. 9
th
Symposium on Theory of Computing (STOC). 61–76.

https://doi.org/10.1145/800105.803396
[35] Jake Silverman and Zachary Kincaid. 2019. Loop Summarization with

Rational Vector Addition Systems. In Proc. 31
st
International Conference

on Computer Aided Verification (CAV). 97–115. https://doi.org/10.1007/
978-3-030-25543-5_7

[36] Rüdiger Valk. 1978. Self-Modifying Nets, a Natural Extension of Petri

Nets. In Proc. Fifth Colloquium on Automata, Languages and Program-

ming (ICALP). 464–476. https://doi.org/10.1007/3-540-08860-1_35
[37] Wil van der Aalst. 1998. The Application of Petri Nets to Workflow

Management. Journal of Circuits, Systems, and Computers 8, 1 (1998),

21–66. https://doi.org/10.1142/S0218126698000043
[38] Moe Thandar Wynn, Wil M. P. van der Aalst, Arthur H. M. ter Hof-

stede, and David Edmond. 2009. Synchronization and Cancelation

in Workflows Based on Reset Nets. International Journal of Coopera-

tive Information Systems 18, 1 (2009), 63–114. https://doi.org/10.1142/
S0218843009002002

https://doi.org/10.1007/978-3-319-46520-3_6
https://doi.org/10.1145/2629608
https://doi.org/10.1145/2629608
https://doi.org/10.1145/800070.802201
https://doi.org/10.1016/0304-3975(92)90173-D
https://doi.org/10.1016/0304-3975(92)90173-D
https://doi.org/10.2168/LMCS-6(3:22)2010
https://doi.org/10.1145/1926385.1926421
https://doi.org/10.1145/1926385.1926421
https://doi.org/10.1109/LICS.2015.16
https://doi.org/10.1109/LICS.2015.16
https://doi.org/10.1145/800076.802477
https://doi.org/10.1145/800105.803396
https://doi.org/10.1007/978-3-030-25543-5_7
https://doi.org/10.1007/978-3-030-25543-5_7
https://doi.org/10.1007/3-540-08860-1_35
https://doi.org/10.1142/S0218126698000043
https://doi.org/10.1142/S0218843009002002
https://doi.org/10.1142/S0218843009002002

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Michael Blondin and Mikhail Raskin

A Appendix
A.1 Details for the proof of Proposition 3.3
Pseudo-transfer matrix. Let us first prove properties (i) and (ii) stated within the proof of Proposition 3.5 for the case where

A is a pseudo-transfer matrix. The validity of (i) for Bs,t follows from:

(Bs,t · es)(k) = Bs,t [k, s]

= A′[πs,t (k),b] (since πs,t (s) = b)

= −1 if πs,t (k) = a else 0 (11)

= −1 if k = t else 0 (since πs,t (t) = a)

where (11) follows from A′[a,b] = −1 and the fact that A′ is a pseudo-transfer matrix. The validity of (ii) Bs,t follows from:

(Bs,t · eu)(k) = Bs,t [k,u]

= A′[πs,t (k),u] = 1 (since u ∈ X ′ \ {s, t})

= 1 if πs,t (k) = u else 0 (by def. of A′)
= 1 if k = u else 0 (since πs,t (u) = u).

The same proofs apply mutatis mutandis for Ct .

Pseudo-copy matrix. Let us now prove Proposition 3.3 for the case where A is a pseudo-copy matrix. For this case, we

consider ?-implementation and hence VX = Z
d ′
. Similarly to the case of pseudo-transfer matrices, we claim that for every

v ∈ VX and every s, t ,u ∈ X ′ such that s , t and u < {s, t}, the following holds:

(1) (Bs,t ·v)(t) = (Ct ·v)(t) = −v(s);
(2) (Bs,t ·v)(u) = (Ct ·v)(u) = v(u).

Indeed, we have:

(Bs,t ·v)(t) =
∑

ℓ∈[d]∪X ′
Bs,t [t , ℓ] ·v(ℓ)

=
∑

ℓ∈[d]∪X ′
A′[a,πs,t (ℓ)] ·v(ℓ) (since πs,t (t) = a)

= A′[a,b] ·v(s) +
∑

ℓ∈[d]∪X ′
ℓ,t

A′[a,πs,t (ℓ)] ·v(ℓ) (since πs,t (s) = b)

= −v(s) (by A′[a, j] , 0 ⇐⇒ j = b),

where the last equality follows from A′[a,b] = −1 and the fact that A′ is a pseudo-copy matrix. Moreover, we have:

(Bs,t ·v)(u) =
∑

ℓ∈[d]∪X ′
Bs,t [u, ℓ] ·v(ℓ)

= A′[u,u] ·v(u) +
∑

ℓ∈[d]∪X ′
ℓ,u

A′[a,πs,t (ℓ)] ·v(ℓ) (since πs,t (u) = u)

= v(u) (by A′[u, j] , 1 ⇐⇒ j = u).

Again, the same proofs apply mutatis mutandis for Ct .

We now prove the proposition. Let x ∈ X andv ∈ VX . We obviously have Fx ·v ∈ VX . If a , b, we have:

(Fx ·v)(x) = (Bz,x · (By,z · Bx,y ·v))(x) (by def. of Fx)
= −(By,z · (Bx,y ·v))(z) (by (1))

= (Bx,y ·v)(y) (by (1))

= −v(x) (by (1)),

and if a = b, we have:

(Fx ·v)(x) = (Cx ·v)(x) (by def. of Fx)
= −v(x) (by (1)).

Similarly, by applying (2) repeatedly, we derive (Fx ·v)(y) = v(y) for every y ∈ X \ {x}. □

The Complexity of Reachability in Affine VASS LICS ’20, July 8–11, 2020, Saarbrücken, Germany

A.2 Details for the proof of Proposition 3.5
The details of the proof are similar to those of the proof of Proposition 3.3.

Transfer matrix. Let us first prove properties (i) and (ii) stated within the proof of Proposition 3.5 for the case where A is a

transfer matrix. The validity of (i) follows from:

(Bs,t · es)(k) = 1 ⇐⇒ Bs,t [k, s] = 1

⇐⇒ A′[πs,t (k),b] = 1 (since πs,t (s) = b)

⇐⇒ πs,t (k) = a (since A is a transfer matrix)

⇐⇒ k = t .

The validity of (ii) follows from:

(Bs,t · eu)(k) = 1 ⇐⇒ Bs,t [k,u] = 1

⇐⇒ A′[πs,t (k),u] = 1 (since u ∈ X ′ \ {s, t})

⇐⇒ πs,t (k) = u (by def. of A′)
⇐⇒ k = u .

Copy matrix. Let us now prove Proposition 3.5 for the case where A is a copy matrix. For this case, we consider ?-

implementation and hence VX = Z
d ′
. Similarly to the case of transfer matrices, we claim that for every v ∈ VX and every

s, t ,u ∈ X ′ such that s , t and u < {s, t}, the following holds:

(1) (Bs,t ·v)(t) = v(s);
(2) (Bs,t ·v)(u) = v(u).

Indeed, we have:

(Bs,t ·v)(t) =
∑

ℓ∈[d]∪X ′
Bs,t [t , ℓ] ·v(ℓ)

=
∑

ℓ∈[d]∪X ′
A′[a,πs,t (ℓ)] ·v(ℓ) (since πs,t (t) = a)

= A′[a,b] ·v(s) +
∑

ℓ∈[d]∪X ′
ℓ,t

A′[a,πs,t (ℓ)] ·v(ℓ) (since πs,t (s) = b)

= v(s) (by A′[a, j] = 1 ⇐⇒ j = b),

where the last equality follows from A′[a,b] = 1 and the fact that A′ is a copy matrix. Morever, we have:

(Bs,t ·v)(u) =
∑

ℓ∈[d]∪X ′
Bs,t [u, ℓ] ·v(ℓ)

= A′[u,u] ·v(u) +
∑

ℓ∈[d]∪X ′
ℓ,u

A′[a,πs,t (ℓ)] ·v(ℓ) (since πs,t (u) = u)

= v(u) (by A′[u, j] = 1 ⇐⇒ j = u).

We may now prove the proposition. Let v ∈ VX and let x ,y ∈ X be such that x , y. We obviously have Fx,y · v ∈ VX .
Moreover, we have:

(Fx,y ·v)(x) = (Bz,x · (Bx,y · By,z ·v))(x) (by def. of Fx,y)
= (Bx,y · (By,z ·v))(z) (by (1))

= (By,z ·v)(z) (by (2))

= v(y) (by (1)),

and symmetrically (Fx,y · v)(y) = v(x). Similarly, by applying (2) three times, we derive (Fx,y · v)(u) = v(u) for every
u ∈ X \ {x ,y}. □

LICS ’20, July 8–11, 2020, Saarbrücken, Germany Michael Blondin and Mikhail Raskin

A.3 Details for the proof of Proposition 3.7
Let us prove the technical lemma invoked within the proof of Proposition 3.7:

Lemma A.1. For every class C, if C contains a matrix which has a row (resp. column) with at least two nonzero elements, then C

also contains a matrix which has a row (resp. column) with at least two nonzero elements with the same sign.

Proof. We first consider the case of rows. Let A ∈ C, i, j,k ∈ [d] and a,b , 0 be such that A[i, j] = a, A[i,k] = b and j , k . If a
and b have the same sign, then we are done. Thus, assume without loss of generality that a < 0 and b > 0.

Let us first give an informal overview of the proof where we see A as an operation over some counters. We have two

counters x and y that we wish to sum up (with some positive integer coefficients), using a supply of counters set to zero. We

apply A to x and some zero counters to produce a · x in some counter (while discarding extra noise into some other ones), and

we then apply A again to a · x , y and some zero counters in such a way that we get a2 · x + b · y. The matrix achieving this

procedure will have a2 and b on a common row.

More formally, we wish to obtain a matrix D with positive entries a2 and b, and more precisely such that D[i, j ′] = a2 and
D[i,k] = b for some counter j ′. Let B B A↾d , C B σ (B) and D B B · C where σ : [2d] → [2d] is the following permutation:

σ B

{
(j; i; i + d) ·

∏
ℓ∈[d]\{i, j }(ℓ; ℓ + d) if j , i,∏

ℓ∈[d]\{i }(ℓ; ℓ + d) if j = i .

We claim that D is as desired. First, observe that:

D[i,k] =
∑

ℓ∈[2d]

B[i, ℓ] · B[σ (ℓ),k + d] (by def. of D and σ (k) = k + d)

= B[i,k] · B[k + d,k + d] (since B[σ (ℓ),k + d] , 0 ⇐⇒ σ (ℓ) = k + d)

= b (since B[k + d,k + d] = 1).

Thus, D has a positive entry on row i . It remains to show that D has another positive entry on row i . We make a case distinction

on whether j = i .

Case j , i . Note that k , i + d . Hence, we are done since:

D[i, i + d] =
∑

ℓ∈[2d]

B[i, ℓ] · B[σ (ℓ), j] (by def. of D and σ (i + d) = j)

=
∑

ℓ : ℓ,σ (ℓ)∈[d]

B[i, ℓ] · B[σ (ℓ), j] (since B = A↾d and i, j ∈ [d])

= B[i, j] · B[i, j] (by def. of σ)

= a2.

Case j = i . Note that k , j = i . Hence, we are done since:

D[i, i] =
∑

ℓ∈[2d]

B[i, ℓ] · B[σ (ℓ), i] (by def. of D and σ (i) = i)

=
∑

ℓ:ℓ,σ (ℓ)∈[d]

B[i, ℓ] · B[σ (ℓ), i] (since B = A↾d and i ∈ [d])

= B[i, i] · B[i, i] (by def. of σ)

= a2 (since i = j).

We are done proving the proposition for the case of rows.

The Complexity of Reachability in Affine VASS LICS ’20, July 8–11, 2020, Saarbrücken, Germany

For the case of columns, we can instead assume that AT ∈ C, i.e. the transpose of A belongs to C. Since DT
is as desired, we

simply have to show that DT ∈ C. This is the case since:

DT = (B · C)T

= CT · BT

= (Pσ · B · Pσ −1)T · BT
(since C = σ (B))

= (Pσ · BT · Pσ −1) · BT
(since Pπ −1 = PTπ for every perm. π)

= σ (BT) · BT

= σ ((A↾d)T) · (A↾d)T

= σ ((AT)↾d) · (AT)↾d (since (A↾d)T = (AT)↾d).

∈ C (since AT ∈ C). □

A.4 Details for the proof of Theorem 4.5
We prove the missing details for both cases:

Case A[⋆, i] = 0. We have Bx · ey = ey since:

(Bx · ey)(k) = Bx [k,y]

= A′[σx (k),y] (since y , x)

= 1 ⇐⇒ k = y (by def. of A′ and σx).

Case A[i,⋆] = 0. We have:

(Bx ·v)(y) =
∑

ℓ∈[d+n]

B[y, ℓ] ·v(ℓ)

= A′[y,y] ·v(y) (by y , x and def. of A′ and σx)
= v(y). □

	Abstract
	1 Introduction
	2 Preliminaries
	3 A complexity trichotomy for integer reachability
	3.1 PSPACE-hardness
	3.2 Undecidability

	4 A complexity dichotomy for reachability
	4.1 Decidability
	4.2 Undecidability

	5 Conclusion and further work
	References
	A Appendix
	A.1 Details for the proof of prop:exist:flip
	A.2 Details for the proof of prop:exist:swaps
	A.3 Details for the proof of prop:row:col:two
	A.4 Details for the proof of thm:undec:nonperm

