Automatic Analysis of Expected Termination Time for Population Protocols

Michael Blondin

©
UNIVERSITÉ DE SHERBROOKE

Javier Esparza

Antonín Kučera

Overview

Population protocols: distributed computing model for massive networks of passively mobile
finite-state agents

Overview

Can model e.g. networks of passively mobile sensors and chemical reaction networks

Overview

Can model e.g. networks of passively mobile sensors and chemical reaction networks

Protocols compute predicates of the form $\varphi: \mathbb{N}^{d} \rightarrow\{0,1\}$
e.g. if φ is unary, then $\varphi(n)$ is computed by n agents

Overview

This talk: automatic derivation of upper bounds on the running time of protocols

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion
- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

Example: majority protocol

At least as many blue birds than red birds?

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of different colors become small
- Large birds convert small birds to their color

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of different colors become small
- Large birds convert small birds to their color

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of different colors become small
- Large birds convert small birds to their color

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of different colors become small
- Large birds convert small birds to their color

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of different colors become small
- Large birds convert small birds to their color

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of different colors become small
- Large birds convert small birds to their color

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of different colors become small
- Large birds convert small birds to their color

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of different colors become small
- Large birds convert small birds to their color

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of different colors become small
- Large birds convert small birds to their color

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of different colors become small
- Large birds convert small birds to their color

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of different colors become small
- Large birds convert small birds to their color

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of different colors become small
- Large birds convert small birds to their color

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of different colors become small
- Large birds convert small birds to their color

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of different colors become small
- Large birds convert small birds to their color

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of different colors become small
- Large birds convert small birds to their color

- To break ties: small blue birds convert small red birds

Population protocols: formal model

- States:
- Opinions:
- Initial states:
-Transitions:
$T \subseteq Q^{2} \times Q^{2}$

finite set Q

$O: Q \rightarrow\{0,1\}$
$I \subseteq Q$

Population protocols: formal model

- States:
- Opinions:
- Initial states: $I \subseteq Q$
- Transitions:

Population protocols: formal model

- States:
- Opinions:
- Initial states:
$I \subseteq Q$
- Transitions:
$T \subseteq Q^{2} \times Q^{2}$

Population protocols: formal model

- States:
- Opinions:
$O: Q \rightarrow\{0,1\}$
- Initial states: $I \subseteq Q$
-Transitions:
$T \subseteq Q^{2} \times Q^{2}$

+ \rightarrow +

Population protocols: computations

Interaction graph:

Population protocols: computations

Underlying Markov chain:

(pairs of agents are picked uniformly at random)

Population protocols: computations

A run is an infinite path:

Population protocols: computations

A protocol computes a predicate $\varphi: \mathbb{N}^{\prime} \rightarrow\{0,1\}$ if runs reach common stable consensus
with probability 1

Population protocols: computations

A protocol computes a predicate $\varphi: \mathbb{N}^{\prime} \rightarrow\{0,1\}$ if runs reach common stable consensus
with probability 1

Expressive power
Angluin, Aspnes, Eisenstat PODC'06
Population protocols compute precisely predicates definable in Presburger arithmetic, i.e. $\mathrm{FO}(\mathbb{N},+,<)$

Protocols speed

$$
\begin{array}{rlll}
B, R & \mapsto & b, r \\
B, r & \mapsto & B, b \\
\text { R, b } & \mapsto & \text { R, } r \\
\mathbf{b , r} & \mapsto & b, b
\end{array}
$$

Computes correctly predicate \#B \geq \# ...but how fast?

Protocols speed

$$
\begin{array}{rlll}
\mathbf{B}, \mathbf{R} & \mapsto & \mathbf{b}, \mathbf{r} \\
\mathbf{B}, \mathbf{r} & \mapsto & \mathbf{B}, \mathbf{b} \\
\mathbf{R}, \mathbf{b} & \mapsto & \mathbf{R}, \mathbf{r} \\
\mathbf{b}, \mathbf{r} & \mapsto & \mathbf{b}, \mathbf{b}
\end{array}
$$

Computes correctly predicate \#B $\#$ \#
...but how fast?

- Natural to want protocols to be fast
- Upper bounds on number of steps useful since generally not possible to know whether a protocol has stabilized

Protocols speed

$\mathbf{B}, \mathbf{R} \mapsto \mathbf{b}, \mathbf{r}$
$B, r \mapsto B, b$
$\mathbf{R}, \mathbf{b} \quad \mapsto \quad \mathbf{R}, \mathbf{r}$
$\mathbf{b}, \mathbf{r} \quad \mapsto \quad \mathbf{b}, \mathbf{b}$

Simulations show that it is slow when R has slight majority:

Steps	Initial configuration
100000	$\{B: 7, R: 8\}$
7	$\{B: 3, R: 12\}$
27	$\{B: 4, R: 11\}$
100000	$\{B: 7, R: 8\}$
3	$\{B: 13, R: 2\}$

Protocols speed

$$
\begin{aligned}
& \mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t} \quad X, y \mapsto X, x \text { for } x, y \in\{\mathbf{b}, \mathbf{r}, \mathbf{t}\} \\
& B, \mathbf{T} \mapsto B, b \\
& \mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r} \\
& \mathbf{T}, \mathbf{T} \mapsto \mathrm{~T}, \mathbf{t} \\
& O(\mathbf{B})=O(\mathbf{b})=O(\mathbf{T})=O(\mathbf{t})=1 \\
& O(\mathbf{R})=O(\mathbf{r})=0
\end{aligned}
$$

Alternative protocol

Protocols speed

$$
\begin{aligned}
& \mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t} \quad X, y \mapsto X, x \text { for } x, y \in\{\mathbf{b}, \mathbf{r}, \mathbf{t}\} \\
& \mathbf{B}, \mathbf{T} \mapsto \mathbf{B}, \mathbf{b} \\
& \mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r} \\
& \mathbf{T}, \mathbf{T} \mapsto \mathbf{T}, \mathbf{t} \\
& O(\mathbf{B})=O(\mathbf{b})=O(\mathbf{T})=O(\mathbf{t})=1 \\
& O(\mathbf{R})=O(\mathbf{r})=0
\end{aligned}
$$

Alternative protocol

Protocols speed

$\mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t} \quad X, y \mapsto X, x$ for $x, y \in\{\mathbf{b}, \mathbf{r}, \mathbf{t}\}$
$B, \mathbf{T} \mapsto B, b$
$\mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r}$
$\mathbf{T}, \mathbf{T} \mapsto \mathbf{T}, \mathbf{t}$
Is it faster?

$$
\text { Yes, for size } 15 \ldots
$$

Protocols speed

$$
\begin{aligned}
& \mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t} \quad X, y \mapsto X, x \text { for } x, y \in\{\mathbf{b}, \mathbf{r}, \mathbf{t}\} \\
& B, \mathbf{T} \mapsto B, b \\
& \mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r} \\
& \mathbf{T}, \mathbf{T} \mapsto \mathbf{T}, \mathbf{t} \\
& \text { Obtained using PRISM } \\
& \text { Clément et al. ICDCS } 11 \text {, Offtermatt' } 17
\end{aligned}
$$

Protocols speed

Protocols speed: related work

- Any Presburger-definable predicate is computable in time $\mathcal{O}\left(n^{2} \log n\right)$ Angluin et al. (PODC'04)
- Upper/lower bounds for majority and leader election
- Study of trade-offs between speed and number of states
e.g.
- Alistarh, Aspnes, Eisenstat, Gelashvili and Rivest (SODA'17)
- Belleville, Doty and Soloveichik (ICALP'17)
- Doty and Soloveichik (DISC'15), etc.

Definitions: a simple temporal logic

$$
\begin{array}{ll}
C \models q & \Longleftrightarrow C(q) \geq 1 \\
C \models q! & \Longleftrightarrow C(q)=1 \\
C \models O t_{b} & \Longleftrightarrow \quad O(q)=b \text { for every } q \models C \\
C \models \neg \varphi & \Longleftrightarrow C \not \models \varphi \\
C \models \varphi \wedge \psi & \Longleftrightarrow C \models \varphi \wedge \psi \\
C \models \square \varphi & \Longleftrightarrow \quad \mathbb{P}_{C}\left(\left\{\sigma \in \operatorname{Runs}(C): \sigma_{i} \models \varphi \text { for every } i\right\}=1\right. \\
C \models \Delta \varphi & \Longleftrightarrow \quad \mathbb{P}_{C}\left(\left\{\sigma \in \operatorname{Runs}(C): \sigma_{i} \models \varphi \text { for some } i\right\}=1\right.
\end{array}
$$

Definitions: a simple temporal logic

$$
\begin{array}{ll}
C \models q & \Longleftrightarrow C(q) \geq 1 \\
C \models q! & \Longleftrightarrow C(q)=1 \\
C \models O t_{b} & \Longleftrightarrow \quad O(q)=b \text { for every } q \models C \\
C \models \neg \varphi & \Longleftrightarrow C \not \models \varphi \\
C \models \varphi \wedge \psi & \Longleftrightarrow C \models \varphi \wedge \psi \\
C \models \square \varphi & \Longleftrightarrow \quad \mathbb{P}_{C}\left(\left\{\sigma \in \operatorname{Runs}(C): \sigma_{i} \models \varphi \text { for every } i\right\}=1\right. \\
C \models \diamond \varphi & \Longleftrightarrow \quad \mathbb{P}_{C}\left(\left\{\sigma \in \operatorname{Runs}(C): \sigma_{i} \models \varphi \text { for some } i\right\}=1\right.
\end{array}
$$

Definitions: a simple temporal logic

$$
\begin{array}{ll}
C \models q & \Longleftrightarrow C(q) \geq 1 \\
C \models q! & \Longleftrightarrow C(q)=1 \\
C \models O t_{b} & \Longleftrightarrow C(q)=b \text { for every } q \models C \\
C \models \neg \varphi & \Longleftrightarrow C \not \models \varphi \\
C \models \varphi \wedge \psi & \Longleftrightarrow C \models \varphi \wedge \psi
\end{array}
$$

$$
C \models \square \varphi
$$

$$
\Longleftrightarrow
$$

$$
\mathbb{P}_{C}\left(\left\{\sigma \in \operatorname{Runs}(C): \sigma_{i} \models \varphi \text { for every } i\right\}=1\right.
$$

$$
c \models \Delta \varphi
$$

$$
\Longleftrightarrow
$$

$$
\mathbb{P}_{C}\left(\left\{\sigma \in \operatorname{Runs}(C): \sigma_{i} \models \varphi \text { for some } i\right\}=1\right.
$$

Definitions: expected termination time

Random variable Steps ${ }_{\varphi}$:
assigns to each run σ the smallest k s.t. $\sigma_{k} \models \varphi$, otherwise ∞

Definitions: expected termination time

Random variable Steps ${ }_{\varphi}$:
assigns to each run σ the smallest k s.t. $\sigma_{k} \models \varphi$, otherwise ∞

Maximal expected termination time

We are interested in time : $\mathbb{N} \rightarrow \mathbb{N}$ where
$\operatorname{time}(n)=\max \left\{\mathbb{E}_{C}\left[\right.\right.$ Steps $\left._{\square O u t_{0} \vee \square O u t_{1}}\right]: C$ is initial and $\left.|C|=n\right\}$

Definitions: expected termination time

Random variable Steps ${ }_{\varphi}$:
assigns to each run σ the smallest k s.t. $\sigma_{k} \models \varphi$, otherwise ∞

Maximal expected termination time

We are interested in time : $\mathbb{N} \rightarrow \mathbb{N}$ where
$\operatorname{time}(n)=\max \left\{\mathbb{E}_{C}\left[\right.\right.$ Steps $\left._{\square \text { out }_{0} \vee \square O u t_{1}}\right]: C$ is initial and $\left.|C|=n\right\}$

Definitions: expected termination time

Random variable Steps ${ }_{\varphi}$:
assigns to each run σ the smallest k s.t. $\sigma_{k} \models \varphi$, otherwise ∞

Maximal expected termination time

We are interested in time : $\mathbb{N} \rightarrow \mathbb{N}$ where
$\operatorname{time}(n)=\max \left\{\mathbb{E}_{C}\left[\right.\right.$ Steps $\left._{\square \text { out }_{0} \vee \square 0 u t_{1}}\right]: C$ is initial and $\left.|C|=n\right\}$

Definitions: expected termination time

Random variable Steps ${ }_{\varphi}$:
assigns to each run σ the smallest k s.t. $\sigma_{k} \models \varphi$, otherwise ∞

Maximal expected termination time

We are interested in time : $\mathbb{N} \rightarrow \mathbb{N}$ where
$\operatorname{time}(n)=\max \left\{\mathbb{E}_{C}\left[\right.\right.$ Steps $\left._{\left.\square \text { out }_{0} \vee \square \text { out }_{1}\right]}\right]: C$ is initial and $\left.|C|=n\right\}$

Stage graphs

Our approach:

- Most protocols are naturally designed in stages
- Construct these stages automatically
- Derive bounds on expected running time
from stages structure

Stage graphs

A stage graph is a directed acyclic graph $(\mathbb{S}, \rightarrow)$ such that

- every node $S \in \mathbb{S}$ is associated to a formula φ_{S}

Stage graphs

A stage graph is a directed acyclic graph $(\mathbb{S}, \rightarrow)$ such that

- every node $S \in \mathbb{S}$ is associated to a formula φ_{S}
- for every $C \in$ Init, there exists $S \in \mathbb{S}$ such that $C \models \varphi_{S}$

Stage graphs

A stage graph is a directed acyclic graph $(\mathbb{S}, \rightarrow)$ such that

- every node $S \in \mathbb{S}$ is associated to a formula φ_{S}
- for every $C \in$ Init, there exists $S \in \mathbb{S}$ such that $C \models \varphi_{S}$
- $C \models \Delta V_{S \rightarrow S^{\prime}} \varphi_{S^{\prime}}$ for every $S \in \mathbb{S}$ and $C \models \varphi_{S}$

Stage graphs

A stage graph is a directed acyclic graph $(\mathbb{S}, \rightarrow)$ such that

- every node $S \in \mathbb{S}$ is associated to a formula φ_{S}
- for every $C \in$ Init, there exists $S \in \mathbb{S}$ such that $C \models \varphi_{S}$
- $C \equiv \diamond V_{S \rightarrow s^{\prime}} \varphi_{S^{\prime}}$ for every $S \in \mathbb{S}$ and $C \models \varphi_{S}$
- $C \mid=\varphi_{\text {S }}$ implies $C \models \square$ Out $_{0} \vee \square$ Out $_{1}$ for every bottom $S \in \mathbb{S}$

Stage graphs

time(n) is bounded by the maximal expected number of steps to move from a stage to a successor

Stage graphs

time (n) is bounded by the maximal expected number of steps to move from a stage to a successor

For example, time $(n) \in O\left(n^{2} \log n\right)$ if:

A procedure for computing stage graphs

$B, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t}$

$$
S_{0}:(\mathbf{B} \vee \mathbf{R}) \wedge \bigwedge_{q \notin\{B, R\}} \neg q
$$

$$
\mathbf{B}, \mathbf{T} \mapsto \mathbf{B}, \mathbf{b}
$$

$$
\mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r}
$$

$$
\mathbf{T}, \mathbf{T} \quad \mapsto \quad \mathbf{T}, \mathbf{t}
$$

$$
X, y \quad \mapsto \quad X, x
$$

A procedure for computing stage graphs

$$
\begin{array}{lllll}
\mathbf{B}, \mathbf{R} & \mapsto & \mathbf{T}, \mathbf{t} & \\
\mathbf{B}, \mathbf{T} & \mapsto & \mathbf{B}, \mathbf{b} & \mathcal{O}(1) & S_{0}:(\mathbf{B} \vee \mathbf{R}) \wedge \bigwedge_{q \nsubseteq\{\mathbf{B}, \mathbf{R}\}} \neg q \\
\mathbf{R}, \mathbf{T} & \mapsto & \mathbf{R}, \mathbf{r} & \mathcal{O}(1) \downarrow \\
\mathbf{T}, \mathbf{T} & \mapsto & \mathbf{T}, \mathbf{t} & S_{1}: \square\left(\mathbf{B} \wedge \bigwedge_{q \neq \mathrm{B}} \neg q\right) & S_{2}: \square\left(\mathbf{R} \wedge \bigwedge_{q \neq \mathbf{R}} \neg q\right) \\
X, Y & \mapsto & X, X & &
\end{array}
$$

A procedure for computing stage graphs
$\mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t}$

$\mathbf{R}, \mathbf{T} \quad \mapsto \quad \mathbf{R}, \mathbf{r}$
$S_{1}: \square\left(\mathrm{B} \wedge \bigwedge_{q \neq \mathrm{B}} \neg q\right)$
$S_{2}: \square\left(\mathrm{R} \wedge \bigwedge_{q \neq \mathrm{R}} \neg q\right)$
$X, y \quad \mapsto \quad X, x$
Transformation graph
(B) T
(R)
(b) t

A procedure for computing stage graphs

$$
\begin{array}{llll}
\mathbf{B}, \mathbf{R} & \mapsto & \mathbf{T}, \mathbf{t} & \\
\begin{array}{llll}
\mathbf{B}, \mathbf{T} & \mapsto & \mathbf{B}, \mathbf{b} & \mathcal{O}(1) \\
\mathbf{R}, \mathbf{T} & \mapsto & \mathbf{R}, \mathbf{r}
\end{array} & S_{0}:(\mathbf{B} \vee \mathbf{R}) \wedge \bigwedge_{q \notin\{\mathbf{B}, \mathrm{R}\}} \neg q \\
\mathbf{T}, \mathbf{T} & \mapsto & \mathbf{T}, \mathbf{t} & S_{1}: \square(1) \downarrow \\
X, y & \mapsto & X, x & \left.\bigwedge_{q \neq \mathrm{B}} \neg q\right)
\end{array} \quad S_{2}: \square\left(\mathbf{R} \wedge \bigwedge_{q \neq \mathbf{R}} \neg q\right)
$$

A procedure for computing stage graphs

$$
\begin{array}{lll}
\mathbf{B}, \mathbf{R} & \mapsto \mathbf{T}, \mathbf{t} \\
\mathbf{B}, \mathbf{T} & \mapsto & \mathbf{B}, \mathbf{b}
\end{array} \quad \mathcal{O}(1) \downarrow S_{0}:(\mathbf{B} \vee \mathbf{R}) \wedge \bigwedge_{q \notin\{\mathbf{B}, \mathbf{R}\}} \neg q
$$

A procedure for computing stage graphs

$$
\begin{array}{lll}
\mathbf{B}, \mathbf{R} & \mapsto \mathbf{T}, \mathbf{t} \\
\mathbf{B}, \mathbf{T} & \mapsto & \mathbf{B}, \mathbf{b}
\end{array} \quad \mathcal{O}(1) \downarrow S_{0}:(\mathbf{B} \vee \mathbf{R}) \wedge \bigwedge_{q \notin\{\mathbf{B}, \mathrm{R}\}} \neg q
$$

A procedure for computing stage graphs

$$
\begin{array}{lllll}
\mathbf{B}, \mathbf{R} & \mapsto \mathbf{T}, \mathbf{t} & & S_{0}:(\mathbf{B} \vee \mathbf{R}) \wedge \bigwedge_{q \notin \mathbf{B}, \mathbf{R}\}} \neg q \\
\mathbf{B}, \mathbf{T} & \mapsto & \mathbf{B}, \mathbf{b} & \mathcal{O}(1) \downarrow \\
\mathbf{R}, \mathbf{T} & \mapsto & \mathbf{R}, \mathbf{r} & \mathcal{O}(1) \downarrow \\
\mathbf{T}, \mathbf{T} & \mapsto & \mathbf{T}, \mathbf{t} & S_{1}: \square\left(\mathbf{B} \wedge \bigwedge_{q \neq \mathrm{B}} \neg q\right) & S_{2}: \square\left(\mathbf{R} \wedge \bigwedge_{q \neq \mathbf{R}} \neg q\right)
\end{array}
$$

A procedure for computing stage graphs

$$
\begin{array}{lllll}
\mathbf{B}, \mathbf{R} & \mapsto \mathbf{T}, \mathbf{t} & \\
\mathbf{B}, \mathbf{T} & \mapsto & \mathbf{B}, \mathbf{b} & \mathcal{O}(1) & S_{0}:(\mathbf{B} \vee \mathbf{R}) \wedge \bigwedge_{q \notin\{\mathrm{~B}, \mathbf{R}\}} \neg q \\
\mathbf{R}, \mathbf{T} & \mapsto & \mathbf{R}, \mathbf{r} & \mathcal{O}(1) \downarrow \\
\mathbf{T}, \mathbf{T} & \mapsto & \mathbf{T}, \mathbf{t} & S_{1}: \square\left(\mathbf{B} \wedge \bigwedge_{q \neq \mathrm{B}} \neg q\right) & S_{2}: \square\left(\mathbf{R} \wedge \bigwedge_{q \neq \mathbf{R}}\right. \\
X, y & \mapsto & X, X &
\end{array}
$$

A procedure for computing stage graphs

$$
\begin{aligned}
& \mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t} \\
& B, T \quad B, b \\
& \mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r} \\
& \mathbf{T}, \mathbf{T} \mapsto \mathbf{T}, \mathbf{t} \\
& X, y \quad \perp \quad X \\
& S_{1}: \square\left(B \wedge \bigwedge_{q \neq B} \neg q\right) \quad S_{2}: \square\left(R \wedge \bigwedge_{q \neq R} \neg q\right)
\end{aligned}
$$

Will become permanently disabled
 almost surely

A procedure for computing stage graphs

$$
S_{3}: \square[(\neg \mathbf{B} \vee \neg \mathbf{R}) \wedge(\neg \mathbf{B} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{R} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{T} \vee \mathbf{T}!)] \wedge
$$

$((\mathbf{B} \wedge \mathbf{b}) \vee(\mathbf{R} \wedge \mathbf{r}) \vee(\mathbf{T} \wedge \mathbf{t}))$

A procedure for computing stage graphs

$S_{3}: \square[(\neg \mathbf{B} \vee \neg \mathbf{R}) \wedge(\neg \mathbf{B} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{R} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{T} \vee \mathbf{T})] \wedge$

$S_{4}: \square\left(\mathbf{B} \wedge \mathbf{b} \wedge \bigwedge_{q \notin\{\mathrm{~B}, \mathrm{~b}\}} \neg q\right) \quad S_{5}: \square\left(\mathbf{R} \wedge \mathbf{r} \wedge \bigwedge_{q \notin\{\mathrm{R}, \mathrm{r}\}} \neg q\right) \quad S_{6}: \square\left(\mathrm{T}!\wedge \mathbf{t} \wedge \bigwedge_{q \notin\{\mathrm{~T}, \mathrm{t}\}} \neg q\right)$

A procedure for computing stage graphs

$S_{3}: \square[(\neg \mathbf{B} \vee \neg \mathbf{R}) \wedge(\neg \mathbf{B} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{R} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{T} \vee \mathbf{T}!)] \wedge$

$S_{4}: \square\left(\mathbf{B} \wedge \mathbf{b} \wedge \bigwedge_{q \notin\{\mathbf{B}, \mathbf{b}\}} \neg q\right) \quad S_{5}: \square\left(\mathbf{R} \wedge \mathbf{r} \wedge \bigwedge_{q \notin\{\mathbf{R}, \mathrm{r}\}} \neg q\right) \quad S_{6}: \square\left(\mathrm{T}!\wedge \mathbf{t} \wedge \bigwedge_{q \notin\{\mathrm{~T}, \mathrm{t}\}} \neg q\right)$

Experimental results

- Prototype implemented in python" + Microsoft Z3
- Can report: $\mathcal{O}(1), \mathcal{O}\left(n^{2}\right), \mathcal{O}\left(n^{2} \log n\right), \mathcal{O}\left(n^{3}\right), \mathcal{O}($ poly $(n))$ or $\mathcal{O}(\exp (n))$
- Tested on various protocols from the literature
- Available @ github.com/blondimi/pp-time-analysis

Experimental results

Protocol			Stages	Bound	Time	
$\varphi /$ params.	$\|Q\|$	\|T				
$x_{1} \vee \ldots \vee x_{n}[b]$	2	1	5	$n^{2} \log n$	0.1	
$x \geq y[a]$	6	10	23	$n^{2} \log n$	0.9	
$x \geq y[c]$	4	3	9	$n^{2} \log n$	0.2	
$x \geq y[c]$	4	4	11	$\exp (n)$	0.3	
Threshold [a]: $x \geq c$						
$c=5$	6	21	26	n^{3}	0.8	
$c=15$	16	136	66	n^{3}	12.1	
$c=25$	26	351	106	n^{3}	58.0	
$c=35$	36	666	146	n^{3}	222.3	
$c=45$	46	1081	186	n^{3}	495.3	
$c=55$	56	1596	-	-	T/O	
Logarithmic threshold: $x \geq c$						
$c=7$	6	14	34	n^{3}	1.9	
$c=31$	10	34	130	n^{3}	6.1	
$c=127$	14	62	514	n^{3}	39.4	
$c=1023$	20	119	4098	n^{3}	395.7	
$c=4095$	24	167	-	-	T/O	

[a] Angluin et al. 2006
[b] Clément et al. 2011
[c] Draief et al. 2012
[d] Alistarh et al. 2015

Protocol			Stages	Bound	Time
φ / params.	$\|Q\|$	$\|T\|$			
Threshold [b]: $x \geq c$					
$c=5$	6	9	54	n^{3}	2.5
$c=7$	8	13	198	n^{3}	11.3
$c=10$	11	19	1542	n^{3}	83.9
$c=13$	14	25	12294	n^{3}	816.4
$c=15$	16	29	-	-	T/O
Average-and-conquer [d]: $x \geq y$ (param. m, d)					
$m=3, d=1$	6	21	41	$n^{2} \log n$	2.0
$m=3, d=2$	8	36	1948	$n^{2} \log n$	98.7
$m=5, d=1$	8	36	1870	n^{3}	80.1
$m=5, d=2$	10	55	-	-	T/O
Remainder [a]: $\sum_{1 \leq i<m} i \cdot x_{i} \equiv 0(\bmod c)$					
$c=5$	7	25	225	$n^{2} \log n$	12.5
$c=7$	9	42	1351	$n^{2} \log n$	88.9
$c=9$	11	63	7035	$n^{2} \log n$	544.0
$c=10$	12	75	-	-	T/O
Linear inequalities [a]					
$-x_{1}+x_{2}<0$	12	57	21	n^{3}	3.0
$-x_{1}+x_{2}<1$	20	155	131	n^{3}	30.3
$-x_{1}+x_{2}<2$	28	301	-	-	T/O

Conclusion: summary

- First procedure providing asymptotic upper bounds on expected termination time
- Approach promising in practice
- New crucial notions: stage graphs and transformation graphs

Conclusion: future work

- Is our procedure "weakly complete"? i.e. for every φ, is there a protocol for φ analyzable by our procedure?
- Approach can be used for verification?
- How to compute lower bounds?

Thank you!

