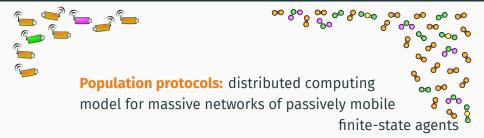
Automatic Analysis of Expected Termination Time for Population Protocols

Michael Blondin

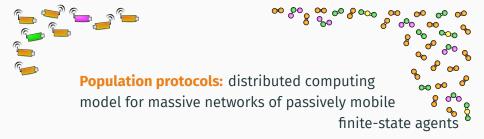
Javier Esparza

Antonín Kučera

Population protocols: distributed computing model for massive networks of passively mobile finite-state agents

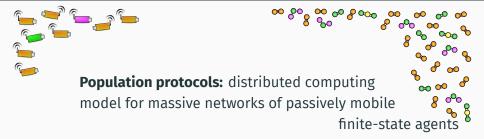


Can model e.g. networks of passively mobile sensors and chemical reaction networks



Can model *e.g.* networks of passively mobile sensors and chemical reaction networks

Protocols compute predicates of the form $\varphi \colon \mathbb{N}^d \to \{0,1\}$ e.g. if φ is unary, then $\varphi(n)$ is computed by n agents



This talk: automatic derivation of upper bounds on the running time of protocols

- anonymous mobile agents with very few resources
- · agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- · anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- · each agent has opinion true/false
- · computes by stabilizing agents to some opinion

- · anonymous mobile agents with very few resources
- · agents change states via random pairwise interactions
- · each agent has opinion true/false
- computes by stabilizing agents to some opinion

- · anonymous mobile agents with very few resources
- · agents change states via random pairwise interactions
- · each agent has opinion true/false
- · computes by stabilizing agents to some opinion

- · anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- · each agent has opinion true/false
- · computes by stabilizing agents to some opinion

- · anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- · each agent has opinion true/false
- computes by stabilizing agents to some opinion

- · anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- · each agent has opinion true/false
- · computes by stabilizing agents to some opinion

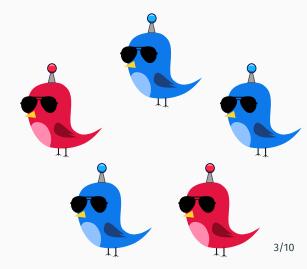
- · anonymous mobile agents with very few resources
- · agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- · anonymous mobile agents with very few resources
- · agents change states via random pairwise interactions
- · each agent has opinion true/false
- computes by stabilizing agents to some opinion

- · anonymous mobile agents with very few resources
- · agents change states via random pairwise interactions
- · each agent has opinion true/false
- computes by stabilizing agents to some opinion

- · anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- · each agent has opinion true/false
- computes by stabilizing agents to some opinion

At least as many blue birds than red birds?



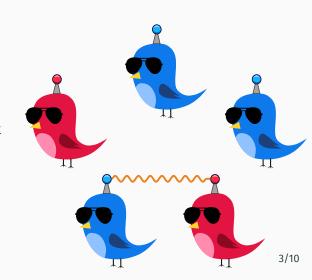
At least as many blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color



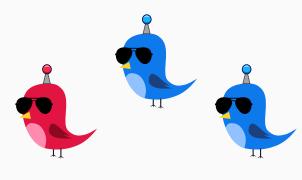
At least as many blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color



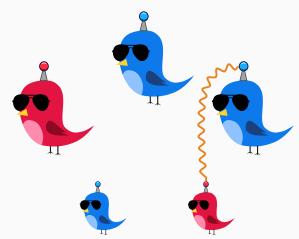
At least as many blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color



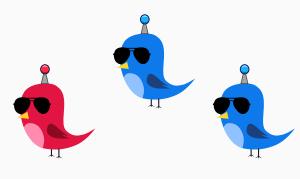
At least as many blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color



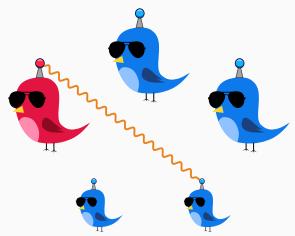
At least as many blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color



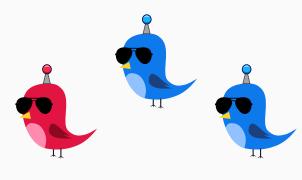
At least as many blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color



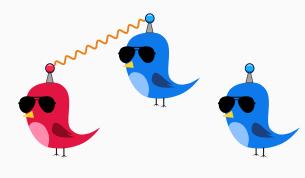
At least as many blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color



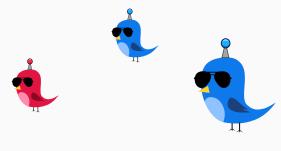
At least as many blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color



At least as many blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color

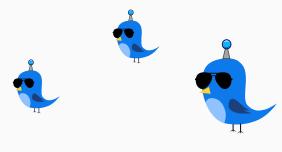


At least as many blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color

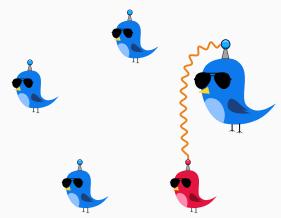
At least as many blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color



At least as many blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color

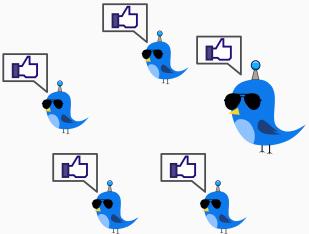


At least as many blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color

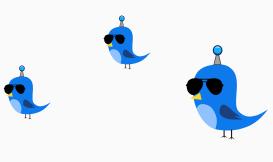
At least as many blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color



At least as many blue birds than red birds?

- Two large birds of different colors become small
- Large birds convert small birds to their color
- To break ties: small blue birds convert small red birds



• States: finite set Q

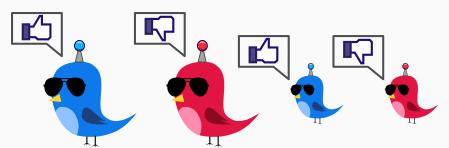
• Opinions: $O: Q \rightarrow \{0,1\}$

• Initial states: $I \subseteq Q$

• States: finite set Q

• Opinions: $O: Q \rightarrow \{0,1\}$

• Initial states: $I \subseteq Q$



• States: finite set Q

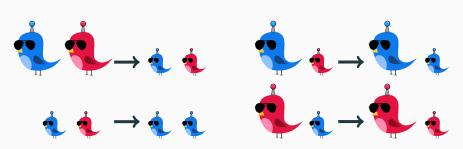
• Opinions: $0: Q \rightarrow \{0,1\}$

• Initial states: $I \subseteq Q$

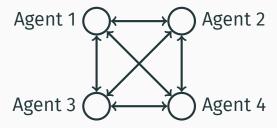
• States: finite set Q

• Opinions: $O: Q \rightarrow \{0,1\}$

• Initial states: $I \subseteq Q$

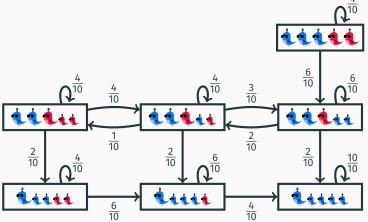


Interaction graph:

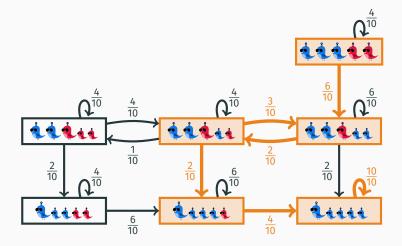


Underlying Markov chain:

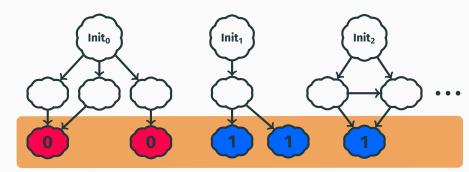
(pairs of agents are picked uniformly at random)



A run is an infinite path:



A protocol computes a predicate $\varphi \colon \mathbb{N}' \to \{\mathbf{0}, \mathbf{1}\}$ if runs reach common stable consensus with probability 1



A protocol computes a predicate $\varphi \colon \mathbb{N}^I \to \{\mathbf{0},\mathbf{1}\}$ if runs reach common stable consensus with probability 1

Expressive power

Angluin, Aspnes, Eisenstat PODC'06

Population protocols compute precisely predicates definable in Presburger arithmetic, *i.e.* $FO(\mathbb{N}, +, <)$

```
\begin{array}{cccc} \textbf{B}, \textbf{R} & \mapsto & \textbf{b}, \textbf{r} \\ \textbf{B}, \textbf{r} & \mapsto & \textbf{B}, \textbf{b} \\ \textbf{R}, \textbf{b} & \mapsto & \textbf{R}, \textbf{r} \\ \textbf{b}, \textbf{r} & \mapsto & \textbf{b}, \textbf{b} \end{array}
```

Computes correctly predicate #B ≥ #R ...but how fast?

```
\begin{array}{cccc} \textbf{B}, \textbf{R} & \mapsto & \textbf{b}, \textbf{r} \\ \textbf{B}, \textbf{r} & \mapsto & \textbf{B}, \textbf{b} \\ \textbf{R}, \textbf{b} & \mapsto & \textbf{R}, \textbf{r} \\ \textbf{b}, \textbf{r} & \mapsto & \textbf{b}, \textbf{b} \end{array}
```

- · Natural to want protocols to be fast
- Upper bounds on number of steps useful since generally not possible to know whether a protocol has stabilized

```
egin{array}{lll} B,R & \mapsto & b,r \\ B,r & \mapsto & B,b \\ R,b & \mapsto & R,r \\ b,r & \mapsto & b,b \end{array}
```

Simulations show that it is slow when R has slight majority:

Initial

```
Steps configuration

100000 {B: 7, R: 8}

7 {B: 3, R: 12}

27 {B: 4, R: 11}

100000 {B: 7, R: 8}

3 {B: 13, R: 2}
```

$$\mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t} \qquad X, y \mapsto X, x \text{ for } x, y \in \{\mathbf{b}, \mathbf{r}, \mathbf{t}\}$$
 $\mathbf{B}, \mathbf{T} \mapsto \mathbf{B}, \mathbf{b}$
 $\mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r}$
 $\mathbf{T}, \mathbf{T} \mapsto \mathbf{T}, \mathbf{t}$
 $O(\mathbf{B}) = O(\mathbf{b}) = O(\mathbf{T}) = O(\mathbf{t}) = 1$
 $O(\mathbf{R}) = O(\mathbf{r}) = 0$
Alternative profocol

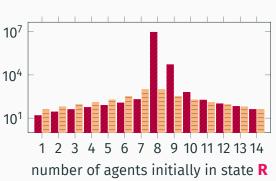
$$\mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t}$$
 $X, y \mapsto X, x \text{ for } x, y \in \{\mathbf{b}, \mathbf{r}, \mathbf{t}\}$
 $\mathbf{B}, \mathbf{T} \mapsto \mathbf{B}, \mathbf{b}$
 $\mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r}$
 $\mathbf{T}, \mathbf{T} \mapsto \mathbf{T}, \mathbf{t}$

$$O(\mathbf{B}) = O(\mathbf{b}) = O(\mathbf{T}) = O(\mathbf{t}) = 1$$

$$O(\mathbf{R}) = O(\mathbf{r}) = 0$$
Alternative protocol

expected number of steps to stable consensus X,y → X,x for x,y ∈ {b,r,t}

Is if faster?
Yes, for size 15...



 $B, R \mapsto T, t$

 $\mathbf{B}, \mathbf{T} \mapsto \mathbf{B}, \mathbf{b}$

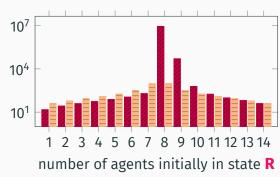
 $\mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r}$

 $T, T \mapsto T, t$

expected number of steps to stable consensus

Obtained using PRISM

Clément et al. ICDCS'11, Offtermatt'17



 $B, R \mapsto T, t$

 $\mathbf{B}, \mathbf{T} \mapsto \mathbf{B}, \mathbf{b}$

 $\mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r}$

 $T, T \mapsto T, t$

expected number of steps to stable consensus

 $X, y \mapsto X, x \text{ for } x, y \in \{b, r, t\}$ Our goal: analyze speed for all sizes 10^{7} 10^{4} 2 3 4 5 6 7 8 9 10 11 12 13 14 number of agents initially in state R

Protocols speed: related work

- Any Presburger-definable predicate is computable in time $\mathcal{O}(n^2 \log n)$ Angluin et al. (PODC'04)
- Upper/lower bounds for majority and leader election
- Study of trade-offs between speed and number of states

e.g.

- Alistarh, Aspnes, Eisenstat, Gelashvili and Rivest (SODA'17)
- Belleville, Doty and Soloveichik (ICALP'17)
- Doty and Soloveichik (DISC'15), etc.

Definitions: a simple temporal logic

$$C \models q \qquad \iff C(q) \ge 1$$

$$C \models q! \qquad \iff C(q) = 1$$

$$C \models Out_b \qquad \iff O(q) = b \text{ for every } q \models C$$

$$C \models \neg \varphi \qquad \iff C \not\models \varphi$$

$$C \models \varphi \land \psi \qquad \iff C \models \varphi \land \psi$$

$$C \models \Box \varphi \qquad \iff P_C(\{\sigma \in Runs(C) : \sigma_i \models \varphi \text{ for every } i\} = 1$$

$$C \models \Diamond \varphi \qquad \iff P_C(\{\sigma \in Runs(C) : \sigma_i \models \varphi \text{ for some } i\} = 1$$

Definitions: a simple temporal logic

$$C \models q \iff C(q) \ge 1$$

$$C \models q! \iff C(q) = 1$$

$$C \models Out_b \iff O(q) = b \text{ for every } q \models C$$

$$C \models \neg \varphi \iff C \not\models \varphi$$

$$C \models \varphi \land \psi \iff C \models \varphi \land \psi$$

$$C \models \Box \varphi \iff \mathbb{P}_C(\{\sigma \in Runs(C) : \sigma_i \models \varphi \text{ for every } i\} = 1$$

$$C \models \Diamond \varphi \iff \mathbb{P}_C(\{\sigma \in Runs(C) : \sigma_i \models \varphi \text{ for some } i\} = 1$$

Definitions: a simple temporal logic

$$C \models q \qquad \iff C(q) \ge 1$$

$$C \models q! \qquad \iff C(q) = 1$$

$$C \models Out_b \qquad \iff O(q) = b \text{ for every } q \models C$$

$$C \models \neg \varphi \qquad \iff C \not\models \varphi$$

$$C \models \varphi \land \psi \qquad \iff C \models \varphi \land \psi$$

$$C \models \Box \varphi \qquad \iff P_C(\{\sigma \in Runs(C) : \sigma_i \models \varphi \text{ for every } i\} = 1$$

$$C \models \Diamond \varphi \qquad \iff P_C(\{\sigma \in Runs(C) : \sigma_i \models \varphi \text{ for some } i\} = 1$$

Random variable $Steps_{\varphi}$:

assigns to each run σ the smallest k s.t. $\sigma_k \models \varphi$, otherwise ∞

Random variable $Steps_{\varphi}$:

assigns to each run σ the smallest k s.t. $\sigma_k \models \varphi$, otherwise ∞

Maximal expected termination time

We are interested in $time: \mathbb{N} \to \mathbb{N}$ where

 $time(n) = \max\{\mathbb{E}_{C}[Steps_{\square Out_0 \ \lor \ \square Out_1}] : C \text{ is initial and } |C| = n\}$

Random variable $Steps_{\varphi}$:

assigns to each run σ the smallest k s.t. $\sigma_k \models \varphi$, otherwise ∞

Maximal expected termination time

We are interested in $\mathit{time} : \mathbb{N} \to \mathbb{N}$ where

 $time(n) = \max\{\mathbb{E}_{C}[Steps_{\square Out_0 \vee \square Out_1}] : C \text{ is initial and } |C| = n\}$

Random variable $Steps_{\varphi}$:

assigns to each run σ the smallest k s.t. $\sigma_k \models \varphi$, otherwise ∞

Maximal expected termination time

We are interested in $time: \mathbb{N} \to \mathbb{N}$ where

 $time(n) = \max\{\mathbb{E}_{C}[Steps_{\square Out_0 \vee \square Out_1}] : C \text{ is initial and } |C| = n\}$

Random variable $Steps_{\varphi}$:

assigns to each run σ the smallest k s.t. $\sigma_k \models \varphi$, otherwise ∞

Maximal expected termination time

We are interested in $time: \mathbb{N} \to \mathbb{N}$ where

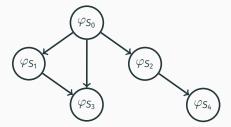
 $time(n) = \max\{\mathbb{E}_{C}[Steps_{\square Out_0 \vee \square Out_1}] : C \text{ is initial and } |C| = n\}$

Our approach:

- Most protocols are naturally designed in stages
- · Construct these stages automatically
- Derive bounds on expected running time from stages structure

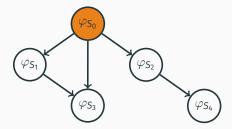
A stage graph is a directed acyclic graph $(\mathbb{S}, \rightarrow)$ such that

• every node $S \in \mathbb{S}$ is associated to a formula φ_S



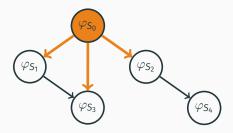
A stage graph is a directed acyclic graph $(\mathbb{S}, \rightarrow)$ such that

- every node $S \in \mathbb{S}$ is associated to a formula φ_S
- for every $C \in \text{Init}$, there exists $S \in \mathbb{S}$ such that $C \models \varphi_S$



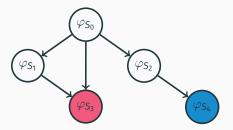
A stage graph is a directed acyclic graph $(\mathbb{S}, \rightarrow)$ such that

- every node $S \in \mathbb{S}$ is associated to a formula φ_S
- for every $\mathit{C} \in \mathrm{Init}$, there exists $\mathit{S} \in \mathbb{S}$ such that $\mathit{C} \models \varphi_{\mathit{S}}$
- $C \models \Diamond \bigvee_{S \rightarrow S'} \varphi_{S'}$ for every $S \in \mathbb{S}$ and $C \models \varphi_S$

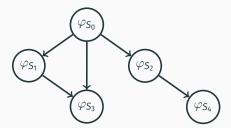


A stage graph is a directed acyclic graph $(\mathbb{S}, \rightarrow)$ such that

- every node $S \in \mathbb{S}$ is associated to a formula φ_S
- for every $\mathit{C} \in \mathrm{Init}$, there exists $\mathit{S} \in \mathbb{S}$ such that $\mathit{C} \models \varphi_{\mathit{S}}$
- $C \models \Diamond \bigvee_{S \rightarrow S'} \varphi_{S'}$ for every $S \in \mathbb{S}$ and $C \models \varphi_S$
- $C \models \varphi_S$ implies $C \models \square Out_0 \lor \square Out_1$ for every bottom $S \in \mathbb{S}$

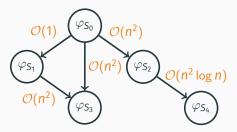


time(n) is bounded by the maximal expected number of steps to move from a stage to a successor



time(n) is bounded by the maximal expected number of steps to move from a stage to a successor

For example, $time(n) \in O(n^2 \log n)$ if:



$$\mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t}$$

$$\mathbf{B}, \mathbf{T} \mapsto \mathbf{B}, \mathbf{b}$$

$$\mathbf{R},\mathbf{T} \mapsto \mathbf{R},\mathbf{r}$$

$$\textbf{T},\textbf{T} \ \mapsto \ \textbf{T},\textbf{t}$$

$$X, y \mapsto X, x$$

$$S_0: (\mathbf{B} \vee \mathbf{R}) \wedge \bigwedge_{q \notin \{\mathbf{B},\mathbf{R}\}} \neg q$$

Transformation graph

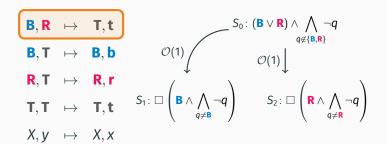
B

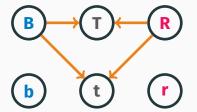
- (T)
- (R)

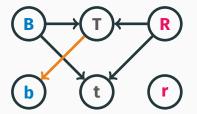
(b

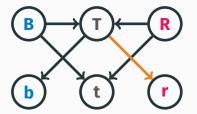
(t)

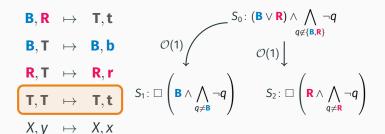
r

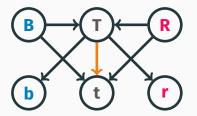


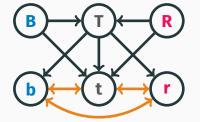


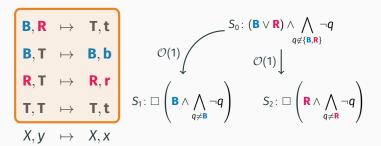


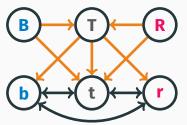


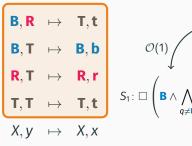


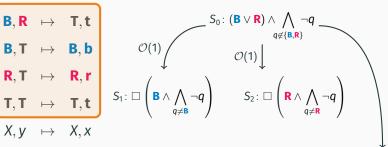


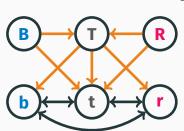












$$S_3 : \Box \left[(\neg B \lor \neg R) \land (\neg B \lor \neg T) \land (\neg R \lor \neg T) \land (\neg T \lor T!) \right] \land$$

$$((B \land b) \lor (R \land r) \lor (T \land t))$$

Experimental results

- Prototype implemented in ₱ python + Microsoft Z3
- Can report: $\mathcal{O}(1), \mathcal{O}(n^2), \mathcal{O}(n^2 \log n), \mathcal{O}(n^3), \mathcal{O}(\text{poly}(n))$ or $\mathcal{O}(\exp(n))$
- Tested on various protocols from the literature

Available @ github.com/blondimi/pp-time-analysis

Experimental results

Q 2	T 1	Stages	Bound	Time			
2	- 1						
	1	5	n ² log n	0.1			
6	10	23	n ² log n	0.9			
4	3	9	n² log n	0.2			
4	4	11	$\exp(n)$	0.3			
Threshold [a]: $x \ge c$							
6	21	26	n ³	0.8			
16	136	66	n³	12.1			
26	351	106	n³	58.0			
36	666	146	n ³	222.3			
46	1081	186	n ³	495.3			
56	1596	_	_	T/O			
Logarithmic threshold: $x \ge c$							
6	14	34	n³	1.9			
10	34	130	n ³	6.1			
14	62	514	n³	39.4			
20	119	4098	n³	395.7			
24	167	_	_	T/O			
	4 4 4 6 16 26 36 46 56 hold 6 10 14 20	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 3 9 4 4 11 2 c	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

[a] Angluin et	al. 2006
----------------	----------

[b] Clément et al. 2011

[d] Alistarh et al. 2015

Protocol		Ctagas	Bound	Time				
φ / params.	Q	T	Stages	воипа	rime			
Threshold [b]: $x \ge c$								
c = 5	6	9	54	n ³	2.5			
c = 7	8	13	198	n ³	11.3			
c = 10	11	19	1542	n ³	83.9			
c = 13	14	25	12294	n ³	816.4			
c = 15	16	29	_	_	T/O			
Average-and-conquer [d]: $x \ge y$ (param. m , d)								
m = 3, d = 1	6	21	41	n ² log n	2.0			
m = 3, d = 2	8	36	1948	n ² log n	98.7			
m = 5, d = 1	8	36	1870	n ³	80.1			
m = 5, d = 2	10	55	_	_	T/O			
Remainder [a]: $\sum_{1 \le i < m} i \cdot x_i \equiv 0 \pmod{c}$								
c = 5	7	25	225	n ² log n	12.5			
c = 7	9	42	1351	n ² log n	88.9			
c = 9	11	63	7035	n ² log n	544.0			
c = 10	12	75	_	_	T/O			
Linear inequalities [a]								
$-x_1 + x_2 < 0$	12	57	21	n ³	3.0			
$-x_1 + x_2 < 1$	20	155	131	n ³	30.3			
$-x_1 + x_2 < 2$	28	301	_	_	T/O			

[[]c] Draief et al. 2012

Conclusion: summary

 First procedure providing asymptotic upper bounds on expected termination time

Approach promising in practice

New crucial notions: stage graphs and transformation graphs

Conclusion: future work

• Is our procedure "weakly complete"? *i.e.* for every φ , is there a protocol for φ analyzable by our procedure?

Approach can be used for verification?

How to compute lower bounds?

Thank you!