Affine Extensions of Integer Vector Addition Systems with States

Michael Blondin

Christoph Haase

Filip Mazowiecki

(0, 1, -1) (0, -1, 2) (0, 0, 0)(1, 0, 0)

(0, 1, -1) (0, -1, 2) (0, 0, 0)(1, 0, 0)

Control-states

Transitions

(0, 1, -1) (0, -1, 2) (0, 0, 0)(1, 0, 0)

p(0, 0, 1)

(0, -1, 2) (0, 1, -1)(0, 0, 0)(1, 0, 0)p(0, 0, 1)

(0, 1, -1) (0, -1, 2) (0, 0, 0)(1, 0, 0)

p(0, 1, 0)

(0, 1, -1) (0, -1, 2) (0, 0, 0)(1, 0, 0)p(0, 1, 0)

(0, 1, -1) (0, 0, 0) (0, -1, 2) (1, 0, 0)p(0, 1, 0)

(0, 1, -1) (0, -1, 2) (0, 0, 0)(1, 0, 0)

q(0, 1, 0)

(0, 0, 0) (0, -1, 2) (0, 1, -1) (1, 0, 0)q(0, 1, 0)

(0, 1, -1) (0, -1, 2) (0, 0, 0)(1, 0, 0)

q(0, 0, 2)

(0, 1, -1) (0, -1, 2) (0, 0, 0)(1, 0, 0)

q(0, 0, 2)

(0, 1, -1) (0, -1, 2) (0, 0, 0)(1, 0, 0)

p(1, 0, 2)

(0, -1, 2) (0, 1, -1) (0, 0, 0)(1, 0, 0)

 $p(0, 0, 1) \xrightarrow{*}_{\mathbb{N}} p(1, 0, 2)$

(0, -1, 2) (0, 1, -1)(0, 0, 0)(1, 0, 0)

 $p(0, 0, 1) \stackrel{*}{\rightarrow}_{\mathbb{N}} p(x, y, z) \iff 0 < y + z \le 2^{x}$

Reachability: $p(\boldsymbol{u}) \xrightarrow{*}_{\mathbb{N}} q(\boldsymbol{v})$?Coverability: $p(\boldsymbol{u}) \xrightarrow{*}_{\mathbb{N}} q(\geq \boldsymbol{v})$?

Reachability: $p(\boldsymbol{u}) \xrightarrow{*}_{\mathbb{N}} q(\boldsymbol{v})$?Coverability: $p(\boldsymbol{u}) \xrightarrow{*}_{\mathbb{N}} q(\geq \boldsymbol{v})$?

Coverability: $p(\boldsymbol{u}) \stackrel{*}{\rightarrow}_{\mathbb{N}} q(\geq \boldsymbol{v})$?

Common operations used for modeling:

Common operations used for modeling:

Affine VASS:

	No extensions	+ Resets	+ Transfers
$\overset{*}{\rightarrow}_{\mathbb{N}}$	EXPSPACE-hard (Lipton '76) \in hAckermann (Leroux, Schmitz '15)	Undecidable (Araki, Kasami '76)	
$\xrightarrow{*}_{\mathbb{N}} \geq$	EXPSPACE-complete (Lipton '76, Rackoff '78)	Ackeri (Schnoebele	mann-complete en '02, Figueira et al. '11)

	No extensions	+ Resets	+ Transfers
$\xrightarrow{*}_{\mathbb{N}}$	EXPSPACE-hard (Lipton '76) \in hAckermann (Leroux, Schmitz '15)	Undecidable (Araki, Kasami '76)	
$\xrightarrow{*}_{\mathbb{N}} \geq$	EXPSPACE-complete (Lipton '76, Rackoff '78)	Ackeri (Schnoebeld	mann-complete en '02, Figueira et al. '11)

Intractable!

	No extensions	+ Resets	+ Transfers
$\overset{*}{\rightarrow}_{\mathbb{N}}$	EXPSPACE-hard (Lipton '76) \in hAckermann (Leroux, Schmitz '15)	Undecidable (Araki, Kasami '76)	
$\xrightarrow{*}_{\mathbb{N}} \geq$	EXPSPACE-complete (Lipton '76, Rackoff '78)	Ackeri (Schnoebele	mann-complete en '02, Figueira et al. '11)

- Can be alleviated by using an over-approximation of $\overset{*}{\rightarrow}_{\mathbb{N}}$
- Successful in practice, e.g. Esparza et al. CAV'14, B. et al. TACAS'16,

Geffroy et al. RP'16, Athanasiou et al. IJCAR'16

• We consider $\mathbb{Z}\text{-VASS:}$ counters allowed to drop below 0

	No extensions	+ Resets	+ Transfers
$\overset{*}{\rightarrow}_{\mathbb{N}}$	EXPSPACE-hard (Lipton '76) \in hAckermann (Leroux, Schmitz '15)	Undecidable (Araki, Kasami '76)	
$\xrightarrow{*}_{\mathbb{N}} \geq$	EXPSPACE-complete (Lipton '76, Rackoff '78)	Ackeri (Schnoebele	mann-complete en '02, Figueira et al. '11)

- Can be alleviated by using an over-approximation of $\overset{*}{\rightarrow}_{\mathbb{N}}$
- Successful in practice, e.g. Esparza et al. CAV'14, B. et al. TACAS'16,

Geffroy et al. RP'16, Athanasiou et al. IJCAR'16

• We consider $\mathbb{Z}\text{-VASS}\text{:}$ counters allowed to drop below 0

	No extensions	+ Resets	+ Transfers
$\overset{*}{\rightarrow}_{\mathbb{N}}$	EXPSPACE-hard (Lipton '76) \in hAckermann (Leroux, Schmitz '15)	Undecidable (Araki, Kasami '76)	
$\xrightarrow{*}_{\mathbb{N}} \geq$	EXPSPACE-complete (Lipton '76, Rackoff '78)	Ackermann-complete (Schnoebelen '02, Figueira <i>et al.</i> '11)	
$\stackrel{*}{\rightarrow}_{\mathbb{Z}} \\ \stackrel{*}{\rightarrow}_{\mathbb{Z}} \geq$	NP-complete (Haase, Halfon '14)		?

	No extensions	+ Resets	+ Transfers
$\overset{*}{\rightarrow}_{\mathbb{N}}$	EXPSPACE-hard (Lipton '76) \in hAckermann (Leroux, Schmitz '15)	Undecidable (Araki, Kasami '76)	
$\stackrel{*}{\rightarrow}_{\mathbb{N}} \geq$	EXPSPACE-complete (Lipton '76, Rackoff '78)	Ackermann-complete (Schnoebelen '02, Figueira <i>et al.</i> '11)	
$\stackrel{*}{\rightarrow}_{\mathbb{Z}} \\ \stackrel{*}{\rightarrow}_{\mathbb{Z}} \geq$	NP-complete (new proof)		PSPACE-complete

Our contribution

- Any affine $\mathbb{Z}\text{-VASS}$ with finite matrix monoid

can be translated into an equivalent $\mathbb{Z}\text{-VASS}$

- Reachability relation of such affine $\mathbb{Z}\text{-VASS}$ is semilinear
- Classification of complexity w.r.t. extensions

Related work

• Finkel and Leroux (FSTTCS'12)

Accelerations of affine counter machines without control-states

• Iosif and Sangnier (ATVA'16)

Complexity of model checking over flat structures with guards defined by convex polyhedra

• Cadilhac, Finkel and McKenzie (IJFCS'12)

Affine Parikh automata with finite-monoid restriction

3/10

3/10

For every transition $t: \mathcal{P} \xrightarrow{\mathbf{A} \cdot \mathbf{x} + \mathbf{b}} \mathcal{Q}$ and $\sigma \in T^*$, let

 $M_{\varepsilon} = \mathbf{I} \qquad \qquad \varepsilon(\mathbf{u}) = \mathbf{u}$ $M_{\sigma t} = \mathbf{A} \cdot M_{\sigma} \qquad \qquad \sigma t(\mathbf{u}) = \mathbf{A} \cdot \sigma(\mathbf{u}) + \mathbf{b}$
For every transition $t: \mathcal{D} \xrightarrow{\mathbf{A} \cdot \mathbf{x} + \mathbf{b}} \mathcal{Q}$ and $\sigma \in T^*$, let

 $M_{\varepsilon} = \mathbf{I} \qquad \varepsilon(\mathbf{u}) = \mathbf{u}$ $M_{\sigma t} = \mathbf{A} \cdot M_{\sigma} \qquad \sigma t(\mathbf{u}) = \mathbf{A} \cdot \sigma(\mathbf{u}) + \mathbf{b}$

Matrix

For every transition $t: \mathcal{P} \xrightarrow{\mathbf{A} \cdot \mathbf{x} + \mathbf{b}} \mathcal{Q}$ and $\sigma \in T^*$, let

$$\begin{split} \mathbf{M}_{\varepsilon} &= \mathbf{I} & \varepsilon(\mathbf{u}) = \mathbf{u} \\ \mathbf{M}_{\sigma t} &= \mathbf{A} \cdot \mathbf{M}_{\sigma} & \sigma t(\mathbf{u}) = \mathbf{A} \cdot \sigma(\mathbf{u}) + \mathbf{b} \\ \mathbf{M}_{\alpha} &= \mathbf{K} & \mathbf{E} \mathbf{F} \mathbf{F} \mathbf{e} \mathbf{c} \mathbf{f} \end{split}$$

For every transition $t: \mathcal{D} \xrightarrow{\mathbf{A} \cdot \mathbf{x} + \mathbf{b}} \mathcal{Q}$ and $\sigma \in T^*$, let

 $M_{\varepsilon} = \mathbf{I} \qquad \qquad \varepsilon(\mathbf{u}) = \mathbf{u}$ $M_{\sigma t} = \mathbf{A} \cdot M_{\sigma} \qquad \qquad \sigma t(\mathbf{u}) = \mathbf{A} \cdot \sigma(\mathbf{u}) + \mathbf{b}$

Matrix monoid

$$\mathcal{M}_{\mathcal{V}} = \{M_{w} : w \in T^*\}$$

Theorem

Let $\mathcal V$ be an affine $\mathbb Z\text{-VASS.}$ If $\mathcal M_\mathcal V$ is finite, then $\exists\ \mathbb Z\text{-VASS}\ \mathcal V'$ s.t.

- $p(\mathbf{u}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{v}) \text{ in } \mathcal{V} \iff p(\mathbf{u}, \mathbf{0}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{0}, \mathbf{v}) \text{ in } \mathcal{V}'$
- $\boldsymbol{\cdot} \ |\mathcal{V}'| \in \mathrm{poly}(|\mathcal{V}|,|\mathcal{M}_{\mathcal{V}}|)$

Theorem

Let \mathcal{V} be an affine \mathbb{Z} -VASS. If $\mathcal{M}_{\mathcal{V}}$ is finite, then $\exists \mathbb{Z}$ -VASS \mathcal{V}' s.t.

- $p(\mathbf{u}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{v}) \text{ in } \mathcal{V} \iff p(\mathbf{u}, \mathbf{0}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{0}, \mathbf{v}) \text{ in } \mathcal{V}'$
- $\boldsymbol{\cdot} \ |\mathcal{V}'| \in \mathrm{poly}(|\mathcal{V}|,|\mathcal{M}_{\mathcal{V}}|)$

$$p(\boldsymbol{u}) \xrightarrow{w}_{\mathbb{Z}} q(\boldsymbol{v}) \iff \boldsymbol{\cdot} \boldsymbol{w} \text{ is a path from } p \text{ to } q$$

 $\boldsymbol{\cdot} \boldsymbol{v} = w(\boldsymbol{u})$

Theorem

Let \mathcal{V} be an affine \mathbb{Z} -VASS. If $\mathcal{M}_{\mathcal{V}}$ is finite, then $\exists \mathbb{Z}$ -VASS \mathcal{V}' s.t.

- $p(\mathbf{u}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{v}) \text{ in } \mathcal{V} \iff p(\mathbf{u}, \mathbf{0}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{0}, \mathbf{v}) \text{ in } \mathcal{V}'$
- $\boldsymbol{\cdot} \ |\mathcal{V}'| \in \mathrm{poly}(|\mathcal{V}|,|\mathcal{M}_{\mathcal{V}}|)$

$$p(\boldsymbol{u}) \xrightarrow{w}_{\mathbb{Z}} q(\boldsymbol{v}) \iff \boldsymbol{\cdot} \boldsymbol{w} \text{ is a path from } p \text{ to } q$$
$$\boldsymbol{\cdot} \boldsymbol{v} = M_{w} \cdot \boldsymbol{u} + w(\boldsymbol{0})$$

Theorem

Let $\mathcal V$ be an affine $\mathbb Z\text{-VASS.}$ If $\mathcal M_\mathcal V$ is finite, then $\exists\ \mathbb Z\text{-VASS}\ \mathcal V'$ s.t.

- $p(\mathbf{u}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{v}) \text{ in } \mathcal{V} \iff p(\mathbf{u}, \mathbf{0}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{0}, \mathbf{v}) \text{ in } \mathcal{V}'$
- $\boldsymbol{\cdot} \ |\mathcal{V}'| \in \mathrm{poly}(|\mathcal{V}|,|\mathcal{M}_{\mathcal{V}}|)$

$$p(\boldsymbol{u}) \xrightarrow{w}_{\mathbb{Z}} q(\boldsymbol{v}) \iff \boldsymbol{\cdot} \boldsymbol{w} \text{ is a path from } p \text{ to } q$$
$$\boldsymbol{\cdot} \boldsymbol{v} = M_{w} \cdot \boldsymbol{u} + w(\boldsymbol{0})$$

Theorem

Let $\mathcal V$ be an affine $\mathbb Z\text{-VASS.}$ If $\mathcal M_\mathcal V$ is finite, then $\exists\ \mathbb Z\text{-VASS}\ \mathcal V'$ s.t.

- $p(\mathbf{u}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{v}) \text{ in } \mathcal{V} \iff p(\mathbf{u}, \mathbf{0}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{0}, \mathbf{v}) \text{ in } \mathcal{V}'$
- $\boldsymbol{\cdot} \ |\mathcal{V}'| \in \mathrm{poly}(|\mathcal{V}|,|\mathcal{M}_{\mathcal{V}}|)$

$$p(\boldsymbol{u}) \xrightarrow{w}_{\mathbb{Z}} q(\boldsymbol{v}) \iff \boldsymbol{\cdot} \boldsymbol{w} \text{ is a path from } p \text{ to } q$$
$$\boldsymbol{\cdot} \boldsymbol{v} = M_{w} \cdot \boldsymbol{u} + w(\boldsymbol{0})$$

Theorem

Let \mathcal{V} be an affine \mathbb{Z} -VASS. If $\mathcal{M}_{\mathcal{V}}$ is finite, then $\exists \mathbb{Z}$ -VASS \mathcal{V}' s.t.

- $p(\mathbf{u}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{v}) \text{ in } \mathcal{V} \iff p(\mathbf{u}, \mathbf{0}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{0}, \mathbf{v}) \text{ in } \mathcal{V}'$
- $\boldsymbol{\cdot} \ |\mathcal{V}'| \in \mathrm{poly}(|\mathcal{V}|,|\mathcal{M}_{\mathcal{V}}|)$

$$p(\boldsymbol{u}) \xrightarrow{w}_{\mathbb{Z}} q(\boldsymbol{v}) \iff \boldsymbol{\cdot} \boldsymbol{w} \text{ is a path from } p \text{ to } q$$
$$\boldsymbol{\cdot} \boldsymbol{v} = M_{w} \cdot \boldsymbol{u} + w(\boldsymbol{0})$$

Theorem

Let $\mathcal V$ be an affine $\mathbb Z\text{-VASS.}$ If $\mathcal M_\mathcal V$ is finite, then $\exists\ \mathbb Z\text{-VASS}\ \mathcal V'$ s.t.

- $p(\mathbf{u}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{v}) \text{ in } \mathcal{V} \iff p(\mathbf{u}, \mathbf{0}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{0}, \mathbf{v}) \text{ in } \mathcal{V}'$
- $\boldsymbol{\cdot} \ |\mathcal{V}'| \in \mathrm{poly}(|\mathcal{V}|,|\mathcal{M}_{\mathcal{V}}|)$

$$p(\boldsymbol{u}) \xrightarrow{w}_{\mathbb{Z}} q(\boldsymbol{v}) \iff \boldsymbol{\cdot} \boldsymbol{w} \text{ is a path from } p \text{ to } q$$
$$\boldsymbol{\cdot} \boldsymbol{v} = M_{w} \cdot \boldsymbol{u} + w(\boldsymbol{0})$$

From affine \mathbb{Z} -VASS to \mathbb{Z} -VASS

Theorem

Let \mathcal{V} be an affine \mathbb{Z} -VASS. If $\mathcal{M}_{\mathcal{V}}$ is finite, then $\exists \mathbb{Z}$ -VASS \mathcal{V}' s.t.

- $p(\mathbf{u}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{v}) \text{ in } \mathcal{V} \iff p(\mathbf{u}, \mathbf{0}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{0}, \mathbf{v}) \text{ in } \mathcal{V}'$
- $\boldsymbol{\cdot} \ |\mathcal{V}'| \in \mathrm{poly}(|\mathcal{V}|,|\mathcal{M}_{\mathcal{V}}|)$

$$p(\boldsymbol{u}) \xrightarrow{w}_{\mathbb{Z}} q(\boldsymbol{v}) \iff \boldsymbol{\cdot} \boldsymbol{w} \text{ is a path from } p \text{ to } q$$
$$\boldsymbol{\cdot} \boldsymbol{v} = M_w \cdot \boldsymbol{u} + w(\boldsymbol{0})$$

From affine \mathbb{Z} -VASS to \mathbb{Z} -VASS

Theorem

Let \mathcal{V} be an affine \mathbb{Z} -VASS. If $\mathcal{M}_{\mathcal{V}}$ is finite, then $\exists \mathbb{Z}$ -VASS \mathcal{V}' s.t.

- $p(\mathbf{u}) \xrightarrow{*}_{\mathbb{Z}} q(\mathbf{v}) \text{ in } \mathcal{V} \iff p(\mathbf{u}, \mathbf{0}) \xrightarrow{*}_{\mathbb{Z}} q(\mathbf{0}, \mathbf{v}) \text{ in } \mathcal{V}'$
- $\boldsymbol{\cdot} \ |\mathcal{V}'| \in \mathrm{poly}(|\mathcal{V}|,|\mathcal{M}_{\mathcal{V}}|)$

$$p(\boldsymbol{u}) \xrightarrow{w}_{\mathbb{Z}} q(\boldsymbol{v}) \iff \boldsymbol{\cdot} \boldsymbol{w} \text{ is a path from } p \text{ to } q$$
$$\boldsymbol{\cdot} \boldsymbol{v} = M_{w} \cdot \boldsymbol{u} + w(\boldsymbol{0})$$

From affine \mathbb{Z} -VASS to \mathbb{Z} -VASS

Theorem

Let \mathcal{V} be an affine \mathbb{Z} -VASS. If $\mathcal{M}_{\mathcal{V}}$ is finite, then $\exists \mathbb{Z}$ -VASS \mathcal{V}' s.t.

- $p(\mathbf{u}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{v}) \text{ in } \mathcal{V} \iff p(\mathbf{u}, \mathbf{0}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{0}, \mathbf{v}) \text{ in } \mathcal{V}'$
- $\bullet \ |\mathcal{V}'| \in \mathrm{poly}(|\mathcal{V}|, |\mathcal{M}_{\mathcal{V}}|)$

$$p(\boldsymbol{u}) \xrightarrow{w}_{\mathbb{Z}} q(\boldsymbol{v}) \iff \boldsymbol{\cdot} \boldsymbol{w} \text{ is a path from } p \text{ to } q$$
$$\boldsymbol{\cdot} \boldsymbol{v} = M_w \cdot \boldsymbol{u} + w(\boldsymbol{0})$$

Theorem

Let \mathcal{V} be an affine \mathbb{Z} -VASS. If $\mathcal{M}_{\mathcal{V}}$ is finite, then $\exists \mathbb{Z}$ -VASS \mathcal{V}' s.t.

- $p(\mathbf{u}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{v}) \text{ in } \mathcal{V} \iff p(\mathbf{u}, \mathbf{0}) \stackrel{*}{\rightarrow}_{\mathbb{Z}} q(\mathbf{0}, \mathbf{v}) \text{ in } \mathcal{V}'$
- $\bullet \ |\mathcal{V}'| \in \mathrm{poly}(|\mathcal{V}|, |\mathcal{M}_{\mathcal{V}}|)$

Corollary

Reachability is decidable for affine $\mathbb{Z}\text{-VASS}$ with finite matrix monoid

Semilinearity of affine $\mathbb{Z}\text{-VASS}$

Corollary

If an affine $\mathbb{Z}\text{-VASS}$ has a finite monoid, then

$$\left\{ (\boldsymbol{u}, \boldsymbol{v}) : p(\boldsymbol{u}) \xrightarrow{*}_{\mathbb{Z}} q(\boldsymbol{v}) \right\}$$
 is semilinear

Proof

Follows from our translation and known result on $\mathbb{Z}\text{-VASS}$ (Haase, Halfon RP'14)

Semilinearity of affine $\mathbb{Z}\text{-VASS}$

Corollary

If an affine $\mathbb{Z}\text{-VASS}$ has a finite monoid, then

$$\left\{ (\boldsymbol{u}, \boldsymbol{v}) : p(\boldsymbol{u}) \xrightarrow{*}_{\mathbb{Z}} q(\boldsymbol{v}) \right\}$$
 is semilinear

Observation

Converse is not true:

Semilinearity of affine $\mathbb{Z}\text{-VASS}$

Corollary

If an affine $\mathbb{Z}\text{-VASS}$ has a finite monoid, then

$$\left\{ (oldsymbol{u},oldsymbol{v}): p(oldsymbol{u}) \stackrel{*}{
ightarrow}_{\mathbb{Z}} q(oldsymbol{v})
ight\}$$
 is semilinear

Observation

Boigelot '98, Finkel and Leroux '02

Converse is true for single state and single transition:

$$\bigcirc$$
 A · x + b

- Transfer matrix: exactly one 1 per column, $\label{eq:matrix} \text{hence } |\mathcal{M}_{\mathcal{V}}| \leq 2^n$
- Transform transfer $\mathbb{Z}\text{-VASS }\mathcal{V}$ into $\mathbb{Z}\text{-VASS }\mathcal{V}'$ of size $\mathrm{poly}(|\mathcal{V}|,2^n)$
- \mathbb{Z} -reachability has witnesses of the form $w_1^{k_1}w_2^{k_2}\cdots w_\ell^{k_\ell}$ where $|w_1w_2\cdots w_\ell| \leq \operatorname{poly}(|\mathcal{V}'|)$ (B. et al. LICS'15)
- Guess witness with polynomial space

- Transfer matrix: exactly one 1 per column, $\label{eq:matrix} \text{hence } |\mathcal{M}_{\mathcal{V}}| \leq 2^n$
- Transform transfer $\mathbb{Z}\text{-VASS }\mathcal{V}$ into $\mathbb{Z}\text{-VASS }\mathcal{V}'$ of size $\mathrm{poly}(|\mathcal{V}|,2^n)$
- \mathbb{Z} -reachability has witnesses of the form $w_1^{k_1}w_2^{k_2}\cdots w_\ell^{k_\ell}$ where $|w_1w_2\cdots w_\ell| \leq \operatorname{poly}(|\mathcal{V}'|)$ (B. et al. LICS'15)
- Guess witness with polynomial space

- Transfer matrix: exactly one 1 per column, $\label{eq:matrix} \text{hence } |\mathcal{M}_{\mathcal{V}}| \leq 2^n$
- Transform transfer $\mathbb{Z}\text{-VASS }\mathcal{V}$ into $\mathbb{Z}\text{-VASS }\mathcal{V}'$ of size $\mathrm{poly}(|\mathcal{V}|,2^n)$
- \mathbb{Z} -reachability has witnesses of the form $w_1^{k_1}w_2^{k_2}\cdots w_\ell^{k_\ell}$ where $|w_1w_2\cdots w_\ell| \leq \operatorname{poly}(|\mathcal{V}'|)$ (B. et al. LICS'15)
- Guess witness with polynomial space

- Transfer matrix: exactly one 1 per column, $\label{eq:matrix} \text{hence } |\mathcal{M}_{\mathcal{V}}| \leq 2^n$
- Transform transfer $\mathbb{Z}\text{-VASS }\mathcal{V}$ into $\mathbb{Z}\text{-VASS }\mathcal{V}'$ of size $\mathrm{poly}(|\mathcal{V}|,2^n)$
- \mathbb{Z} -reachability has witnesses of the form $w_1^{k_1}w_2^{k_2}\cdots w_\ell^{k_\ell}$ where $|w_1w_2\cdots w_\ell| \leq \operatorname{poly}(|\mathcal{V}'|)$ (B. et al. LICS'15)
- Guess witness with polynomial space

$$w_1 = \frac{10}{1}$$
 $w_2 = \frac{01}{0}$ $w_3 = \frac{1}{011}$

Reichert '15

Reichert '15

Reichert '15

Reichert '15

Reichert '15

Reachability in affine \mathbb{Z} -VASS is undecidable

Reichert '15

Reduction from the Post correspondence problem

Has solution iff $p(1, 1) \xrightarrow{*}_{\mathbb{Z}} q(1, 1)$

Reachability in affine \mathbb{Z} -VASS is undecidable

Reichert '15

Reduction from the Post correspondence problem

Doubling can be done with a gadget of transfers and copies

- Unified approach to reachability in affine $\mathbb{Z}\text{-VASS}$
- Possible to remove transformations when matrix monoid is finite
- Reachability relation of affine $\mathbb{Z}\text{-VASS}$ is semilinear when monoid is finite
- Classification of complexity w.r.t. extensions

• Complexity of reachability for permutation \mathbb{Z} -VASS?

• Size of matrix monoid for arbitrary affine \mathbb{Z} -VASS?

• Characterization of classes of infinite matrix monoids for which reachability is undecidable? Thank you!