Automatic Analysis of Population Protocols

Michael Blondin

Joint work with Javier Esparza, Stefan Jaax, Antonín Kučera, Philipp J. Meyer

£
unnverit pe
SHERBROOKE

Overview

Population protocols: distributed computing model for massive networks of passively mobile finite-state agents

Overview

Model e.g. networks of passively mobile sensors and chemical reaction networks

Overview

Model e.g. networks of passively mobile sensors and

chemical reaction networks

Protocols compute predicates of the form $\varphi: \mathbb{N}^{d} \rightarrow\{0,1\}$ e.g. $\varphi(m, n)$ is computed by $m+n$ agents

Overview

This talk: automatic verification and expected termination time analysis

Population protocols

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion
- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

Example: threshold protocol

Are there at least 4 sick birds?

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

3/14

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

3/14

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

3/14

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

3/14

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

3/14

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

3/14

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

3/14

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

3/14

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agent in a state of $\{0,1,2,3,4\}$
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$ if $m+n \geq 4$

Example: majority protocol

\# blue agents \geq \# red agents?

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert
 small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert
 small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert
 small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert
 small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents

- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents

- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents

- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents

- Large agents convert
 small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents

- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents
- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents

- Large agents convert small agents to their colour

Example: majority protocol

\# blue agents \geq \# red agents?

Protocol:

- Two large agents become small blue agents

- Large agents convert small agents to their colour

Population protocols: formal model

- States:
- Opinions:
- Initial states:
-Transitions:
$T \subseteq Q^{2} \times Q^{2}$

finite set Q

$O: Q \rightarrow\{$ false, true $\}$
$I \subseteq Q$

Population protocols: formal model

- States:
finite set Q
- Opinions:
$O: Q \rightarrow\{$ false, true $\}$
- Initial states: $I \subseteq Q$
- Transitions: $\quad T \subseteq Q^{2} \times Q^{2}$

Population protocols: formal model

- States:
- Opinions:
- Initial states:
- Transitions:
$T \subseteq Q^{2} \times Q^{2}$

Population protocols: formal model

- States:
- Opinions:
- Initial states: $\quad I \subseteq Q$
- Transitions: $\quad T \subseteq Q^{2} \times Q^{2}$

Population protocols: interactions

All agents can interact pairwise

 (complete topology)

Population protocols: interactions

$$
\mathbb{P}\left[\text { fire } p, q \mapsto p^{\prime}, q^{\prime} \text { in } C\right]= \begin{cases}\frac{2 \cdot C(p) \cdot C(q)}{n^{2}-n} & \text { if } p \neq q \\ \frac{C(p) \cdot(C(p)-1)}{n^{2}-n} & \text { if } p=q\end{cases}
$$

Population protocols: interactions

$\mathbb{P}\left[\right.$ fire $p, q \mapsto p^{\prime}, q^{\prime}$ in $\left.C\right]= \begin{cases}\frac{2 \cdot C(p) \cdot C(q)}{n^{2}-n} & \text { if } p \neq q \\ \frac{C(p) \cdot(C(p)-1)}{n^{2}-n} & \text { if } p=q\end{cases}$

Population protocols: interactions

$\mathbb{P}\left[\right.$ fire $p, q \mapsto p^{\prime}, q^{\prime}$ in $\left.C\right]= \begin{cases}\frac{2 \cdot C(p) \cdot C(q)}{n^{2}-n} & \text { if } p \neq q \\ \frac{C(p) \cdot(C(p)-1)}{n^{2}-n} & \text { if } p=q\end{cases}$

Population protocols: interactions

$\mathbb{P}\left[\right.$ fire $p, q \mapsto p^{\prime}, q^{\prime}$ in $\left.C\right]= \begin{cases}\frac{2 \cdot C(p) \cdot C(q)}{n^{2}-n} & \text { if } p \neq q \\ \frac{C(p) \cdot(C(p)-1)}{n^{2}-n} & \text { if } p=q\end{cases}$

Population protocols: interactions

$$
\mathbb{P}\left[\text { fire } p, q \mapsto p^{\prime}, q^{\prime} \text { in } C\right]= \begin{cases}\frac{2 \cdot C(p) \cdot C(q)}{n^{2}-n} & \text { if } p \neq q \\ \frac{C(p) \cdot(C(p)-1)}{n^{2}-n} & \text { if } p=q\end{cases}
$$

$$
\mathbb{P}\left[C \rightarrow C^{\prime}\right]=\sum_{t \text { s.t. } C \rightarrow C^{t}} \mathbb{P}[\text { fire } t \text { in } C]
$$

Population protocols: computations

Underlying Markov chain:

Population protocols: computations

A protocol computes a predicate $f: \mathbb{N}^{I} \rightarrow\{0,1\}$ if runs reach common stable consensus with probability 1

Population protocols: computations

A protocol computes a predicate $f: \mathbb{N}^{\prime} \rightarrow\{0,1\}$ if runs reach common stable consensus with probability 1

Expressive power
Angluin, Aspnes, Eisenstat PODC'06
Population protocols compute precisely predicates definable in Presburger arithmetic, i.e. $\operatorname{FO}(\mathbb{N},+,<)$

Verifying correctness

Protocols can become complex, even for $B \geq R$:

Fast and Exact Majority in Population Protocols

```
    Dan Alistarh Rati Gelashvili* Milan Vojnović
Microsoft Research
```

Rati Gelashvili ${ }^{*}$ MIT

Milan Vojnović Microsoft Research

```
1 weight \((x)= \begin{cases}|x| & \text { if } x \in \text { StrongStates or } x \in \text { WeakStates; } \\ 1 & \text { if } x \in \text { IntermediateStates }\end{cases}\)
1 if \(x \in\) IntermediateStates
\(2 \operatorname{sgn}(x)= \begin{cases}1 & \text { if } x \in\left\{+0,1_{d}, \ldots, 1_{1}, 3,5, \ldots, m\right\} ; \\ -1 & \text { otherwise. }\end{cases}\)
3 value \((x)=\operatorname{sgn}(x) \cdot\) weight \((x)\)
/* Functions for rounding state interactions */
\(4 \phi(x)=-1_{1}\) if \(x=-1 ; 1_{1}\) if \(x=1 ; x\), otherwise
\(5 R_{\downarrow}(k)=\phi(k\) if \(k\) odd integer, \(k-1\) if \(k\) even \()\)
\(6 R_{\uparrow}(k)=\phi(k\) if \(k\) odd integer, \(k+1\) if \(k\) even \()\)
7 Shift-to-Zero \((x)= \begin{cases}-1_{j+1} & \text { if } x=-1_{j} \text { for some index } j<d \\ 1_{j+1} & \text { if } x=1_{j} \text { for some index } j<d \\ x & \text { otherwise. }\end{cases}\)
Sign-to-Zeno \((x)= \begin{cases}+0 & \text { if } \operatorname{sgn}(x)>0 \\ -0 & \text { oherwise. }\end{cases}\)
procedure update \(\langle x, y\rangle\)
if \((\) weight \((x)>0\) and weight \((y)>1)\) or \((\) weight \((y)>0\) and weight \((x)>1)\) then
\(x^{\prime} \leftarrow R_{\downarrow}\left(\frac{\operatorname{value}(x)+\text { value }(y)}{2}\right)\) and \(y^{\prime} \leftarrow R_{\uparrow}\left(\frac{\text { value }(x)+\text { value }(y)}{2}\right)\)
else if weight \((x)\). weight \((y)=0\) and value \((x)+\) value \((y)>0\) then
if weight \((x) \neq 0\) then \(x^{\prime} \leftarrow \operatorname{Shift}\)-to-Zero \((x)\) and \(y^{\prime} \leftarrow \operatorname{Sign}\)-to-Zero \((x)\)
else \(y^{\prime} \leftarrow\) Shift-to-Zero \((y)\) and \(x^{\prime} \leftarrow \operatorname{Sign}\)-to-Zero \((y)\)
else if \(\left(x \in\left\{-1_{d},+1_{d}\right\}\right.\) and weight \((y)=1\) and \(\left.\operatorname{sgn}(x) \neq \operatorname{sgn}(y)\right)\) or
\(\left(y \in\left\{-1_{d}, 1_{d}\right\}\right.\) and weight \((x)=1\) and \(\left.\operatorname{sgn}(y) \neq \operatorname{sgn}(x)\right)\) then
\(x^{\prime} \leftarrow-0\) and \(y^{\prime} \leftarrow+0\)
else
\(x^{\prime} \leftarrow\) Shift-to-Zero \((x)\) and \(y^{\prime} \leftarrow\) Shift-to-Zero \((y)\)

\section*{Verifying correctness}

\section*{Protocols can become complex, even for \(B \geq R\) :}

\section*{Fast and Exact Majority in Population Protocols}

Dan Alistarh Microsoft Research

Rati Gelashvili \({ }^{*}\)
MIT

Milan Vojnović Microsoft Research
```

1 weight $(x)= \begin{cases}|x| & \text { if } x \in \text { StrongStates or } x \in \text { WeakStates; } \\ 1 & \text { if } x \in \text { Intermediesta }\end{cases}$

```

```

$3 \operatorname{value}(x)=\operatorname{sgn}(x) \cdot \operatorname{weight}(x)$
/* Functions for rounding state interactions */
$4 \phi(x)=-1_{1}$ if $x=-1 ; 1_{1}$ if $x=1 ; x$, otherwise
$5 R_{\downarrow}(k)=\phi(k$ if k odd integer, $k-1$ if k even $)$
$6 R_{\uparrow}(k)=\phi(k$ if k odd integer, $k+1$ if k even $)$

```

```

$\operatorname{Sign-to-Zero}(x)= \begin{cases}+0 & \text { if } \operatorname{sgn}(x)>0 \\ -0 & \text { oherwise. }\end{cases}$
procedure update $\langle x, y\rangle$
if $($ weight $(x)>0$ and weight $(y)>1)$ or $($ weight $(y)>0$ and weight $(x)>1)$ then
$x^{\prime} \leftarrow R_{\downarrow}\left(\frac{\text { value }(x)+\text { value }(y)}{2}\right)$ and $y^{\prime} \leftarrow R_{\uparrow}\left(\frac{\operatorname{value}(x)+\text { value }(y)}{2}\right)$
else if weight $(x) \cdot$ weight $(y)=0$ and value $(x)+$ value $(y)>0$ then
if weight $(x) \neq 0$ then $x^{\prime} \leftarrow$ Shift-to-Zero (x) and $y^{\prime} \leftarrow \operatorname{Sign}$-to-Zero (x)
else $y^{\prime} \leftarrow \operatorname{Shift-to-Zero}(y)$ and $x^{\prime} \leftarrow \operatorname{Sign}$-to-Zero (y)
else if $\left(x \in\left\{-1_{d},+1_{d}\right\}\right.$ and weight $(y)=1$ and $\left.\operatorname{sgn}(x) \neq \operatorname{sgn}(y)\right)$ or
$\left(y \in\left\{-1_{d},+1_{d}\right\}\right.$ and weight $(x)=1$ and $\left.\operatorname{sgn}(y) \neq \operatorname{sgn}(x)\right)$ then
$x^{\prime} \leftarrow-0$ and $y^{\prime} \leftarrow+0$
else
$x^{\prime} \leftarrow$ Shift-to-Zero (x) and $y^{\prime} \leftarrow$ Shift-to-Zero(y)

Verifying correctness

Testing whether a protocol computes φ amounts to testing:

$$
\begin{aligned}
\neg \exists C, D: & C \xrightarrow{*} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is in a } \operatorname{BSCC} \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
$$

Verifying correctness

Testing whether a protocol computes φ amounts to testing:

$$
\begin{aligned}
\neg \exists C, D: & C \xrightarrow{*} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is in a } B S C C \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
$$

Theorem
Verification is decidable

Verifying correctness

Testing whether a protocol computes φ amounts to testing:

$$
\begin{aligned}
\neg \exists C, D: & C \xrightarrow{*} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is in a } B S C C \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
$$

As difficult as verification

$$
\begin{array}{r}
\text { TOWER-hard (Czerwinski et al. STOC'19, } \\
\text { Esparza et al. CONCUR'15) }
\end{array}
$$

Verifying correctness

Testing whether a protocol computes φ amounts to testing:

$$
\begin{aligned}
\neg \exists C, D: & C \xrightarrow{*} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is in a } B S C C \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
$$

Relaxed with Presburger-definable overapproximation!

Verifying correctness

Testing whether a protocol computes φ amounts to testing:

$$
\begin{aligned}
\neg \exists C, D: & C \xrightarrow[*]{*} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is in a } B S C C \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
$$

Difficult to express

Verifying correctness

Testing whether a protocol computes φ amounts to testing:

$$
\begin{aligned}
\neg \exists C, D: & C \xrightarrow[*]{*} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is terminal } \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
$$

BSCCs are of size 1 for most protocols!

Verifying correctness

Testing whether a protocol computes φ amounts to testing:

$$
\begin{aligned}
\neg \exists C, D: & C \xrightarrow[*]{*} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is terminal } \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
$$

Testable with an SMT solver

Verifying correctness

Testing whether a protocol computes φ amounts to testing:

$$
\begin{aligned}
\neg \exists C, D: & C \stackrel{*}{\rightarrow} D \wedge \\
& C \text { is initial } \wedge \\
& D \text { is terminal } \wedge \\
& \text { opinion }(D) \neq \varphi(C)
\end{aligned}
$$

But how to know whether all BSCCs are of size 1?

Silent protocols

Protocol is silent if fair executions reach terminal configurations

Silent protocols

Protocol is silent if fair executions reach terminal configurations

- Testing silentness is as hard as verification of correctness
- But most protocols satisfy a common design

BSCCs of size 1

Silent protocols: layered termination

Partition $T=T_{1} \cup T_{2} \cup \cdots \cup T_{n}$ s.t. for every i

- all executions restricted to T_{i} terminate
- if $T_{1} \cup \cdots \cup T_{i-1}$ disabled in C and $C \xrightarrow{T_{i}^{*}} D$, then $T_{1} \cup \cdots \cup T_{i-1}$ also disabled in D

Silent protocols: layered termination

Partition $T=T_{1} \cup T_{2} \cup \cdots \cup T_{n}$ s.t. for every i

- all executions restricted to T_{i} terminate
- if $T_{1} \cup \cdots \cup T_{i-1}$ disabled in C and $C \xrightarrow{T_{i}^{*}} D$, then $T_{1} \cup \cdots \cup T_{i-1}$ also disabled in D

Silent protocols: layered termination

Partition $T=T_{1} \cup T_{2} \cup \cdots \cup T_{n}$ s.t. for every i

- all executions restricted to T_{i} terminate
- if $T_{1} \cup \cdots \cup T_{i-1}$ disabled in C and $C \xrightarrow{T_{i}^{*}} D$, then $T_{1} \cup \cdots \cup T_{i-1}$ also disabled in D

Silent protocols: layered termination

Partition $T=T_{1} \cup T_{2} \cup \cdots \cup T_{n}$ s.t. for every i

- all executions restricted to T_{i} terminate
- if $T_{1} \cup \cdots \cup T_{i-1}$ disabled in C and $C \xrightarrow{T_{i}^{*}} D$, then $T_{1} \cup \cdots \cup T_{i-1}$ also disabled in D

Silent protocols: layered termination

Partition $T=T_{1} \cup T_{2} \cup \cdots \cup T_{n}$ s.t. for every i

- all executions restricted to T_{i} terminate
- if $T_{1} \cup \cdots \cup T_{i-1}$ disabled in C and $C \xrightarrow{T_{i}^{*}} D$, then $T_{1} \cup \cdots \cup T_{i-1}$ also disabled in D

T_{1}

$$
\begin{aligned}
& B R \rightarrow b b \\
& B r \rightarrow B b \\
& R b \rightarrow R r \\
& b r \rightarrow b b
\end{aligned}
$$

Silent protocols: layered termination

$$
\begin{array}{rl}
T_{1} & B R b b \\
B r & \rightarrow B b \\
R b & \rightarrow R r \\
b r & \rightarrow b b
\end{array}
$$

Bad partition: not all executions over T_{1} terminate

Silent protocols: layered termination

$$
\begin{array}{r}
T_{1} \quad B R \rightarrow b b \\
B r \rightarrow B b \\
R b \rightarrow R r \\
b r \rightarrow b b
\end{array}
$$

Bad partition: not all executions over T_{1} terminate

$$
\begin{aligned}
\{\boldsymbol{B}, \boldsymbol{B}, \boldsymbol{R}, \boldsymbol{R}\} \rightarrow & \{\boldsymbol{B}, \boldsymbol{b}, \boldsymbol{b}, \boldsymbol{R}\} \rightarrow\{\boldsymbol{B}, \boldsymbol{b}, \boldsymbol{r}, \boldsymbol{R}\} \rightarrow \\
& \{\boldsymbol{B}, \boldsymbol{b}, \boldsymbol{b}, \boldsymbol{R}\} \rightarrow\{\boldsymbol{B}, \boldsymbol{b}, \boldsymbol{r}, \boldsymbol{R}\} \rightarrow \cdots
\end{aligned}
$$

Silent protocols: layered termination

Silent protocols: layered termination

\# B \geq \# R:
$\left\{B^{*}, R^{*}\right\}$

Silent protocols: layered termination

\# $B \geq$ \# R:

$$
\left\{B^{*}, R^{*}\right\} \rightarrow\left\{B^{*}, b^{*}\right\}
$$

Silent protocols: layered termination

\# $B \geq$ \#R:

$$
\left\{B^{*}, R^{*}\right\} \xrightarrow{*}\left\{B^{*}, b^{*}\right\}
$$

Silent protocols: layered termination

\# $B \geq$ \#R:

$$
\left\{B^{*}, \boldsymbol{R}^{*}\right\} \rightarrow\left\{B^{*}, \boldsymbol{b}^{*}\right\} \ddot{\longrightarrow}\left\{B^{*}, \boldsymbol{b}^{*}\right\}
$$

Silent protocols: layered termination

\# $B \geq$ \# R:

$$
\left\{\boldsymbol{B}^{*}, \boldsymbol{R}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}\right\}
$$

\#R > \#B:

$$
\left\{R^{+}, B^{*}\right\}
$$

Silent protocols: layered termination

\# $B \geq$ \#R:

$$
\left\{\boldsymbol{B}^{*}, \boldsymbol{R}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}\right\}
$$

\#R > \# B:

$$
\left\{R^{+}, B^{*}\right\} \rightarrow\left\{R^{+}, b^{*}\right\}
$$

Silent protocols: layered termination

\# $B \geq$ \# R:

$$
\left\{B^{*}, \boldsymbol{R}^{*}\right\} \xrightarrow{*}\left\{B^{*}, \boldsymbol{b}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}\right\}
$$

\#R > \# B:

$$
\left\{\mathbf{R}^{+}, \mathbf{B}^{*}\right\} \xrightarrow{*}\left\{\mathbf{R}^{+}, \boldsymbol{b}^{*}\right\} \xrightarrow{*}\left\{\mathbf{R}^{+}, \boldsymbol{r}^{*}\right\}
$$

Silent protocols: layered termination

\# $B \geq$ \# :

$$
\left\{\boldsymbol{B}^{*}, \boldsymbol{R}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}\right\} \xrightarrow{*}\left\{\boldsymbol{B}^{*}, \boldsymbol{b}^{*}\right\}
$$

\#R > \#B:

$$
\left\{R^{+}, B^{*}\right\} \xrightarrow{*}\left\{R^{+}, b^{*}\right\} \xrightarrow{*}\left\{R^{+}, r^{*}\right\}
$$

Silent protocols: layered termination

Theorem

Deciding whether a protocol is strongly silent $\in N P$

Proof sketch

Guess partition $T=T_{1} \cup T_{2} \cup \cdots \cup T_{n}$ and test whether it is correct by verifying

- Petri net structural termination
- Additional simple structural properties

Peregrine: 》=Haskell + Microsoft Z3 + JavaScript peregrine.model.in.tum.de

- Design of protocols
- Manual and automatic simulation
- Statistics of properties such as termination time
- Automatic verification of correctness
- More to come!

Peregrine: a tool for population protocols

Protocol	Predicate	\# states	\# trans.	Time (secs.)
Majority [a]	$x \geq y$	4	4	0.1
Broadcast [b]	$x_{1} \vee \cdots \vee x_{n}$	2	1	0.1
Lin. ineq. [c]	$\sum a_{i} x_{i} \geq 9$	75	2148	2376
Modulo [c]	$\sum a_{i} x_{i}=0 \bmod 70$	72	2555	3177
Threshold [d]	$x \geq 50$	51	1275	182
Threshold [b]	$x \geq 325$	326	649	3471
Threshold [e]	$x \geq 10^{7}$	37	155	19

[a] Draief et al. 2012 [c] Angluin et al. 2006
[e] Offtermatt 2017
[b] Clément et al. 2011
[d] Chatzigiannakis et al. 2010

Peregrine: a tool for population protocols

For example, if population size $=1000$:
PRISM takes 1 hour to verify a single configuration

Protocol	Predicate	\# states	\# trans.	Time (secs.)
Majority [a]	$x \geq y$	4	4	0.1
Broadcast [b]	$x_{1} \vee \cdots \vee x_{n}$	2	1	0.1
Lin. ineq. [c]	$\sum a_{i} x_{i} \geq 9$	75	2148	2376
Modulo [c]	$\sum a_{i} x_{i}=0 \bmod 70$	72	2555	3177
Threshold [d]	$x \geq 50$	51	1275	182
Threshold [b]	$x \geq 325$	326	649	3471
Threshold [e]	$x \geq 10^{7}$	37	155	19

$\begin{array}{lll}\text { [a] Draief et al. } 2012 & \text { [c] Angluin et al. } 2006 & \text { [e] Offtermatt } 2017 \\ \text { [b] Clément et al. } 2011 & \text { [d] Chatzigiannakis et al. } 2010 & \end{array}$

Demonstration

Expected termination time

$$
\left.\begin{array}{rl}
\mathrm{B}, \mathrm{R} & \mapsto \mathrm{~b}, \mathrm{~b} \\
\mathrm{~B}, \mathrm{r} & \mapsto \mathrm{~B}, \mathrm{~b} \\
\mathrm{R}, \mathrm{~b} & \mapsto
\end{array}\right) \mathrm{R}, \mathrm{r},
$$

Correctly computes predicate \#B \geq \# ...but how fast?

Expected termination time

$$
\begin{array}{rlll}
B, R & \mapsto b, b \\
B, r & \mapsto & B, b \\
\mathbf{R}, \mathrm{~b} & \mapsto & \mathrm{R}, \mathrm{r} \\
\mathrm{~b}, \mathrm{r} & \mapsto & b, b
\end{array}
$$

Correctly computes predicate \#B \geq \# ...but how fast?

- Natural to look for fast protocols
- Bounds on expected termination time useful since generally not possible to know whether a protocol has stabilized

Expected termination time

$B, R \mapsto b, b$
$B, r \mapsto B, b$
$\mathbf{R}, \mathbf{b} \mapsto \mathbf{R}, \mathbf{r}$
$b, r \mapsto b, b$
Correctly computes predicate \#B?\#R
...but how fast?

Theorem

Angluin et al. PODC'04
Every Presburger-definable predicate is computable by a protocol with expected termination time $\in \mathcal{O}\left(n^{2} \log n\right)$

Expected termination time

$B, R \mapsto b, b$
$B, r \mapsto B, b$
$\mathbf{R}, \mathbf{b} \mapsto \mathbf{R}, \mathbf{r}$
$\mathbf{b}, \mathbf{r} \mapsto \mathrm{b}, \mathrm{b}$
Simulations show that it is slow when R has slight majority:
$\left.\left.\begin{array}{rl}\text { Steps } & \begin{array}{l}\text { Initial } \\ \text { configuration }\end{array} \\ 100000 & \{B: 7, R: 8\} \\ 7 & \{B: 3, R: 12\} \\ 27 & \{B: 4, R: 11\}\end{array}\right\} \begin{array}{ll}100000\{B: 7, R: 8\}\end{array}\right\}$

Expected termination time

$$
\begin{aligned}
& \mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t} \quad X, y \mapsto X, x \text { for } x, y \in\{\mathbf{b}, \mathbf{r}, \mathbf{t}\} \\
& B, \mathbf{T} \mapsto B, b \\
& \mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r} \\
& \mathbf{T}, \mathbf{T} \mapsto \mathbf{T}, \mathbf{t} \\
& O(\mathbf{B})=O(\mathbf{b})=O(\mathbf{T})=O(\mathbf{t})=1 \\
& O(\mathbf{R})=O(\mathbf{r})=0
\end{aligned}
$$

Alternative protocol

Expected termination time

$$
\begin{aligned}
& \mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t} \quad X, y \mapsto X, x \text { for } x, y \in\{\mathbf{b}, \mathbf{r}, \mathbf{t}\} \\
& \mathbf{B}, \mathbf{T} \mapsto \mathbf{B}, \mathbf{b} \\
& \mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r} \\
& \mathbf{T}, \mathbf{T} \mapsto \mathbf{T}, \mathbf{t} \\
& O(\mathbf{B})=O(\mathbf{b})=O(\mathbf{T})=O(\mathbf{t})=1 \\
& O(\mathbf{R})=O(\mathbf{r})=0
\end{aligned}
$$

Alternative protocol

Expected termination time

$\mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t} \quad X, y \mapsto X, x$ for $x, y \in\{\mathbf{b}, \mathbf{r}, \mathbf{t}\}$
$B, \mathbf{T} \mapsto B, b$
$\mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r}$
$\mathbf{T}, \mathbf{T} \mapsto \mathbf{T}, \mathbf{t}$
Is it faster?

$$
\text { Yes, for size } 15 \ldots
$$

Expected termination time

$$
\begin{array}{llrl}
\mathbf{B}, \mathbf{R} & \mapsto \mathbf{T}, \mathbf{t} & X, y \mapsto X, x \text { for } x, y \in\{\mathbf{b}, \mathbf{r}, \mathbf{t}\} \\
\mathbf{B}, \mathbf{T} & \mapsto \mathbf{B}, \mathbf{b} & \\
\mathbf{R}, \mathbf{T} & \mapsto \mathbf{R}, \mathbf{r} & \text { Obtained using PRISM } \\
\mathbf{T}, \mathbf{T} & \mapsto \mathbf{T}, \mathbf{t} & \text { Clément et al. ICDCS'11, Offtermatt'17 }
\end{array}
$$

Expected termination time

Expected termination time: a simple temporal logic

$$
\begin{array}{ll}
C \models q & \Longleftrightarrow C(q) \geq 1 \\
C \models q! & \Longleftrightarrow C(q)=1 \\
C \models O \text { ut }{ }_{b} & \Longleftrightarrow O(q)=b \text { for every } C \models q \\
C \models \neg \varphi & \Longleftrightarrow C \neq \varphi \\
C \models \varphi \wedge \psi & \Longleftrightarrow C \models \varphi \wedge C \models \psi \\
C \models \square \varphi & \Longleftrightarrow \\
C \not \mathbb{P}_{C}\left(\left\{\sigma \in \operatorname{Runs}(C): \sigma_{i} \models \varphi \text { for every } i\right\}=1\right. \\
C \models \diamond \varphi & \Longleftrightarrow \mathbb{P}_{C}\left(\left\{\sigma \in \operatorname{Runs}(C): \sigma_{i} \models \varphi \text { for some } i\right\}=1\right.
\end{array}
$$

Expected termination time: a simple temporal logic

$$
\begin{array}{ll}
C \models q & \Longleftrightarrow C(q) \geq 1 \\
C \models q! & \Longleftrightarrow C(q)=1 \\
C \models O t_{b} & \Longleftrightarrow \quad O(q)=b \text { for every } C \models q \\
C \models \neg \varphi & \Longleftrightarrow C \neq \varphi \\
C \models \varphi \wedge \psi & \Longleftrightarrow C \models \varphi \wedge C \models \psi \\
C \models \square \varphi & \Longleftrightarrow \\
C \models \Delta \varphi & \Longleftrightarrow \mathbb{P}_{C}\left(\left\{\sigma \in \operatorname{Runs}(C): \sigma_{i} \models \varphi \text { for every } i\right\}=1\right. \\
C & \mathbb{P}_{C}\left(\left\{\sigma \in \operatorname{Runs}(C): \sigma_{i} \models \varphi \text { for some } i\right\}=1\right.
\end{array}
$$

Expected termination time: a simple temporal logic

$$
\begin{array}{ll}
C \models q & \Longleftrightarrow C(q) \geq 1 \\
C \models q! & \Longleftrightarrow C(q)=1 \\
C \models O t_{b} & \Longleftrightarrow C(q)=b \text { for every } C \models q \\
C \models \neg \varphi & \Longleftrightarrow C \neq \varphi \\
C \models \varphi \wedge \psi & \Longleftrightarrow C \models \varphi \wedge C \models \psi
\end{array}
$$

$$
C \models \square \varphi
$$

$$
\Longleftrightarrow
$$

$$
\mathbb{P}_{C}\left(\left\{\sigma \in \operatorname{Runs}(C): \sigma_{i} \models \varphi \text { for every } i\right\}=1\right.
$$

$$
C \models \Delta \varphi \quad \Longleftrightarrow
$$

$$
\mathbb{P}_{C}\left(\left\{\sigma \in \operatorname{Runs}(C): \sigma_{i} \models \varphi \text { for some } i\right\}=1\right.
$$

Expected termination time: formal definition

Random variable Steps ${ }_{\varphi}$:
assigns to each run σ the smallest k s.t. $\sigma_{k} \models \varphi$, otherwise ∞

Expected termination time: formal definition

Random variable Steps ${ }_{\varphi}$:
assigns to each run σ the smallest k s.t. $\sigma_{k} \models \varphi$, otherwise ∞

> Maximal expected termination time
> We are interested in time $: \mathbb{N} \rightarrow \mathbb{N}$ where
> $\operatorname{time}(n)=\max \left\{\mathbb{E}_{C}\left[\right.\right.$ Steps $\left._{\square O u t_{0} \vee \square O u t_{1}}\right]: C$ is initial and $\left.|C|=n\right\}$

Expected termination time: formal definition

Random variable Steps ${ }_{\varphi}$:
assigns to each run σ the smallest k s.t. $\sigma_{k} \models \varphi$, otherwise ∞

$$
\begin{aligned}
& \text { Maximal expected termination time } \\
& \text { We are interested in time }: \mathbb{N} \rightarrow \mathbb{N} \text { where } \\
& \operatorname{time}(n)=\max \left\{\mathbb{E}_{C}\left[\text { Steps }_{\left.\square \text { Out }_{0} \vee \square 0 u t_{1}\right]}\right]: C \text { is initial and }|C|=n\right\}
\end{aligned}
$$

Expected termination time: formal definition

Random variable Steps ${ }_{\varphi}$:
assigns to each run σ the smallest k s.t. $\sigma_{k} \models \varphi$, otherwise ∞

$$
\begin{aligned}
& \text { Maximal expected termination time } \\
& \text { We are interested in time }: \mathbb{N} \rightarrow \mathbb{N} \text { where } \\
& \operatorname{time}(n)=\max \left\{\mathbb{E}_{C}\left[\text { Steps }_{\square \text { Out }_{0} \vee \square 0 \text { ut }}\right]: C \text { is initial and }|C|=n\right\}
\end{aligned}
$$

Expected termination time: formal definition

Random variable Steps ${ }_{\varphi}$:
assigns to each run σ the smallest k s.t. $\sigma_{k} \models \varphi$, otherwise ∞

$$
\begin{aligned}
& \text { Maximal expected termination time } \\
& \text { We are interested in time }: \mathbb{N} \rightarrow \mathbb{N} \text { where } \\
& \operatorname{time}(n)=\max \left\{\mathbb{E}_{C}\left[\text { Steps }_{\square \text { Out }_{0} \vee \square O \text { out }}\right]: C \text { is initial and }|C|=n\right\}
\end{aligned}
$$

Stage graphs

Our approach:

- Most protocols are naturally designed in stages
- Construct these stages automatically
- Derive bounds on expected termination time from stages structure

Stage graphs

A stage graph is a directed acyclic graph $(\mathbb{S}, \rightarrow)$ such that

- every node $S \in \mathbb{S}$ is associated to a formula φ_{S}

Stage graphs

A stage graph is a directed acyclic graph $(\mathbb{S}, \rightarrow)$ such that

- every node $S \in \mathbb{S}$ is associated to a formula φ_{S}
- for every $C \in$ Init, there exists $S \in \mathbb{S}$ such that $C \models \varphi_{S}$

Stage graphs

A stage graph is a directed acyclic graph $(\mathbb{S}, \rightarrow)$ such that

- every node $S \in \mathbb{S}$ is associated to a formula φ_{S}
- for every $C \in$ Init, there exists $S \in \mathbb{S}$ such that $C \models \varphi_{S}$
- $C \models \Delta V_{S \rightarrow S^{\prime}} \varphi_{S^{\prime}}$ for every $S \in \mathbb{S}$ and $C \models \varphi_{S}$

Stage graphs

A stage graph is a directed acyclic graph $(\mathbb{S}, \rightarrow)$ such that

- every node $S \in \mathbb{S}$ is associated to a formula φ_{S}
- for every $C \in$ Init, there exists $S \in \mathbb{S}$ such that $C \models \varphi_{S}$
- $C \equiv \diamond V_{S \rightarrow s^{\prime}} \varphi_{S^{\prime}}$ for every $S \in \mathbb{S}$ and $C \models \varphi_{S}$
- $C \mid=\varphi_{\text {S }}$ implies $C \models \square$ Out $_{0} \vee \square$ Out $_{1}$ for every bottom $S \in \mathbb{S}$

Stage graphs

time(n) is bounded by the maximal expected number of steps to move from a stage to a successor

Stage graphs

time (n) is bounded by the maximal expected number of steps to move from a stage to a successor

For example, time $(n) \in \mathcal{O}\left(n^{2} \log n\right)$ if:

A procedure for computing stage graphs

$B, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t}$

$$
S_{0}:(B \vee R) \wedge \bigwedge_{q \notin\{B, R\}} \neg q
$$

$$
\mathbf{B}, \mathbf{T} \mapsto \mathbf{B}, \mathbf{b}
$$

$$
\mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r}
$$

$$
\mathbf{T}, \mathbf{T} \quad \mapsto \quad \mathbf{T}, \mathbf{t}
$$

$$
X, y \quad \mapsto \quad X, x
$$

A procedure for computing stage graphs

$$
\begin{array}{lllll}
\mathbf{B}, \mathbf{R} & \mapsto & \mathbf{T}, \mathbf{t} & \\
\mathbf{B}, \mathbf{T} & \mapsto & \mathbf{B}, \mathbf{b} & \mathcal{O}(1) & S_{0}:(\mathbf{B} \vee \mathbf{R}) \wedge \bigwedge_{q \nsubseteq\{\mathbf{B}, \mathbf{R}\}} \neg q \\
\mathbf{R}, \mathbf{T} & \mapsto & \mathbf{R}, \mathbf{r} & \mathcal{O}(1) \downarrow \\
\mathbf{T}, \mathbf{T} & \mapsto & \mathbf{T}, \mathbf{t} & S_{1}: \square\left(\mathbf{B} \wedge \bigwedge_{q \neq \mathrm{B}} \neg q\right) & S_{2}: \square\left(\mathbf{R} \wedge \bigwedge_{q \neq \mathbf{R}} \neg q\right) \\
X, Y & \mapsto & X, X & &
\end{array}
$$

A procedure for computing stage graphs
$\mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t}$

$\mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r}$
$S_{1}: \square\left(\mathrm{B} \wedge \bigwedge_{q \neq \mathrm{B}} \neg q\right)$
$S_{2}: \square\left(\mathrm{R} \wedge \bigwedge_{q \neq \mathrm{R}} \neg q\right)$
$X, y \quad \perp \quad x$
Transformation graph
(B) T
(R)
(b) t

A procedure for computing stage graphs

$$
\begin{array}{llll}
\mathbf{B}, \mathbf{R} & \mapsto \mathbf{T}, \mathbf{t} & & \mathcal{O}(1) \\
\begin{array}{llll}
\mathbf{B}, \mathbf{T} & \mapsto \mathbf{B}, \mathbf{b} & S_{0}:(\mathbf{B} \vee \mathbf{R}) \wedge \bigwedge_{q \notin\{\mathbf{B}, \mathbf{R}\}} \neg q \\
\mathbf{R}, \mathbf{T} & \mapsto & \mathbf{R}, \mathbf{r}
\end{array} & \mathcal{O}(1) \downarrow \\
\mathbf{T}, \mathbf{T} & \mapsto & \mathbf{T}, \mathbf{t} \\
X, y & \mapsto & X, x & S_{1}: \square\left(\mathbf{B} \wedge \bigwedge_{q \neq B} \neg q\right)
\end{array} \quad \quad S_{2}: \square\left(\mathbf{R} \wedge \bigwedge_{q \neq \mathbf{R}} \neg q\right)
$$

A procedure for computing stage graphs

$$
\begin{array}{lll}
\mathbf{B}, \mathbf{R} & \mapsto \mathbf{T}, \mathbf{t} \\
\mathbf{B}, \mathbf{T} & \mapsto & \mathbf{B}, \mathbf{b}
\end{array} \quad \mathcal{O}(1) \downarrow S_{0}:(\mathbf{B} \vee \mathbf{R}) \wedge \bigwedge_{q \notin\{\mathbf{B}, \mathbf{R}\}} \neg q
$$

A procedure for computing stage graphs

$$
\begin{array}{lll}
\mathbf{B}, \mathbf{R} & \mapsto & \mathbf{T}, \mathbf{t} \\
\mathbf{B}, \mathbf{T} & \mapsto & \mathbf{B}, \mathbf{b}
\end{array} \quad \mathcal{O}(1) \downarrow S_{0}:(\mathbf{B} \vee \mathbf{R}) \wedge \bigwedge_{q \notin\{\mathbf{B}, \mathbf{R}\}} \neg q
$$

A procedure for computing stage graphs

$$
\begin{array}{lllll}
\mathbf{B}, \mathbf{R} & \mapsto \mathbf{T}, \mathbf{t} & & S_{0}:(\mathbf{B} \vee \mathbf{R}) \wedge \bigwedge_{q \notin \mathbf{B}, \mathbf{R}\}} \neg q \\
\mathbf{B}, \mathbf{T} & \mapsto & \mathbf{B}, \mathbf{b} & \mathcal{O}(1) \downarrow & \mathcal{O}(1) \downarrow \\
\mathbf{R}, \mathbf{T} & \mapsto & \mathbf{R}, \mathbf{r} & & \\
\begin{array}{lllll}
\mathbf{T}, \mathbf{T} & \mapsto & \mathbf{T}, \mathbf{t} & S_{1}: \square\left(\mathbf{B} \wedge \bigwedge_{q \neq \mathbf{B}} \neg q\right) & S_{2}: \square\left(\mathbf{R} \wedge \bigwedge_{q \neq \mathbf{R}} \neg q\right)
\end{array}
\end{array}
$$

A procedure for computing stage graphs

$$
\begin{array}{lllll}
\mathbf{B}, \mathbf{R} & \mapsto \mathbf{T}, \mathbf{t} & \\
\mathbf{B}, \mathbf{T} & \mapsto & \mathbf{B}, \mathbf{b} & \mathcal{O}(1) & S_{0}:(\mathbf{B} \vee \mathbf{R}) \wedge \bigwedge_{q \notin\{\mathrm{~B}, \mathbf{R}\}} \neg q \\
\mathbf{R}, \mathbf{T} & \mapsto & \mathbf{R}, \mathbf{r} & \mathcal{O}(1) \downarrow \\
\mathbf{T}, \mathbf{T} & \mapsto & \mathbf{T}, \mathbf{t} & S_{1}: \square\left(\mathbf{B} \wedge \bigwedge_{q \neq \mathrm{B}} \neg q\right) & S_{2}: \square\left(\mathbf{R} \wedge \bigwedge_{q \neq \mathbf{R}}\right. \\
X, y & \mapsto & X, X &
\end{array}
$$

A procedure for computing stage graphs

$$
\begin{aligned}
& \mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t} \\
& B, T \mapsto B, b \\
& \mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r} \\
& \mathbf{T}, \mathbf{T} \mapsto \mathbf{T}, \mathbf{t} \\
& X, y \quad \perp \quad X, x \\
& S_{1}: \square\left(B \wedge \bigwedge_{q \neq B} \neg q\right) \quad S_{2}: \square\left(R \wedge \bigwedge_{q \neq R} \neg q\right)
\end{aligned}
$$

Will become permanently disabled

almost surely

A procedure for computing stage graphs

$S_{3}: \square[(\neg \mathbf{B} \vee \neg \mathbf{R}) \wedge(\neg \mathbf{B} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{R} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{T} \vee \mathbf{T}!)] \wedge$

$((\mathbf{B} \wedge \mathbf{b}) \vee(\mathbf{R} \wedge \mathbf{r}) \vee(\mathbf{T} \wedge \mathbf{t}))$

A procedure for computing stage graphs

$$
\begin{gathered}
S_{3}: \square[(\neg \mathbf{B} \vee \neg \mathbf{R}) \wedge(\neg \mathbf{B} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{R} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{T} \vee \mathbf{T})] \wedge \\
((\mathbf{B} \wedge \mathbf{b}) \vee(\mathbf{R} \wedge \mathbf{r}) \vee(\mathbf{T} \wedge \mathbf{t}))
\end{gathered}
$$

A procedure for computing stage graphs

$$
\begin{gathered}
S_{3}: \square[(\neg \mathbf{B} \vee \neg \mathbf{R}) \wedge(\neg \mathbf{B} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{R} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{T} \vee \mathbf{T})] \wedge \\
((\mathbf{B} \wedge \mathbf{b}) \vee(\mathbf{R} \wedge \mathbf{r}) \vee(\mathbf{T} \wedge \mathbf{t}))
\end{gathered}
$$

T

Will become permanently disabled

 almost surely
A procedure for computing stage graphs

$$
S_{3}: \square[(\neg \mathbf{B} \vee \neg \mathbf{R}) \wedge(\neg \mathbf{B} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{R} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{T} \vee \mathbf{T})] \wedge
$$

$$
((B \wedge \mathbf{b}) \vee(\mathbf{R} \wedge \mathbf{r}) \vee(\mathbf{T} \wedge \mathbf{t}))
$$

$$
S_{6}: \square\left(\mathrm{T}!\wedge \mathrm{t} \wedge \bigwedge_{q \notin\{\mathrm{~T}, \mathrm{t}\}} \neg q\right)
$$

A procedure for computing stage graphs

$$
S_{3}: \square[(\neg \mathbf{B} \vee \neg \mathbf{R}) \wedge(\neg \mathbf{B} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{R} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{T} \vee \mathbf{T}!)] \wedge
$$

$$
\begin{align*}
\mathbb{E}_{C}\left[\text { Steps }_{\neg \mathrm{b} \wedge \neg \mathrm{r}}\right] & \leq \sum_{i=1}^{c(\mathrm{~b})+C(\mathrm{r})} \frac{n^{2}}{2 \cdot C(\mathbf{T}) \cdot i} \\
& \leq \sum_{i=1}^{n} \frac{n^{2}}{i} \\
& \leq \alpha \cdot n^{2} \cdot \log n
\end{align*}
$$

A procedure for computing stage graphs

$$
\begin{aligned}
\mathbb{E}_{C}\left[\text { Steps }_{\neg \mathbf{b} \wedge \neg \mathbf{r}}\right] & \leq \sum_{i=1}^{C(\mathbf{b})+C(\mathbf{r})} \frac{n^{2}}{2 \cdot C(\mathbf{T}) \cdot i} \quad \begin{array}{c}
S_{3}: \square[(\neg \mathbf{B} \vee \neg \mathbf{R}) \wedge(\neg \mathbf{B} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{R} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{T} \vee \mathbf{T}!)] \wedge \\
(\mathbf{B} \wedge \mathbf{b}) \vee(\mathbf{R} \wedge \mathbf{r}) \vee(\mathbf{T} \wedge \mathbf{t}))
\end{array} \\
& \leq \sum_{i=1}^{n} \frac{n^{2}}{i} \\
& \left.\leq \alpha \cdot n^{2} \log n\right)
\end{aligned}
$$

A procedure for computing stage graphs

$S_{3}: \square[(\neg \mathbf{B} \vee \neg \mathbf{R}) \wedge(\neg \mathbf{B} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{R} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{T} \vee \mathbf{T}!)] \wedge$

A procedure for computing stage graphs

$S_{3}: \square[(\neg \mathbf{B} \vee \neg \mathbf{R}) \wedge(\neg \mathbf{B} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{R} \vee \neg \mathbf{T}) \wedge(\neg \mathbf{T} \vee \mathbf{T})] \wedge$

$S_{4}: \square\left(\mathbf{B} \wedge \mathbf{b} \wedge \bigwedge_{q \notin\{\mathrm{~B}, \mathrm{~b}\}} \neg q\right) \quad S_{5}: \square\left(\mathbf{R} \wedge \mathbf{r} \wedge \bigwedge_{q \notin\{\mathrm{R}, \mathrm{r}\}} \neg q\right) \quad S_{6}: \square\left(\mathrm{T}!\wedge \mathbf{t} \wedge \bigwedge_{q \notin\{\mathrm{~T}, \mathrm{t}\}} \neg q\right)$

A procedure for computing stage graphs

Φ : propositional formula describing current configurations
π : set of permanently present/absent states
\mathcal{T} : set of permanently disabled transitions

Successors computed by enriching
π through trap/siphon-like analysis and
\mathcal{T} and Φ from transformation graph

A procedure for computing stage graphs

Φ : propositional formula describing current configurations
π : set of permanently present/absent states
\mathcal{T} : set of permanently disabled transitions

Successors computed by enriching π through trap/siphon-like analysis and \mathcal{T} and Φ from transformation graph

Experimental results

- Prototype implemented in python" + Microsoft Z3
- Can report: $\mathcal{O}(1), \mathcal{O}\left(n^{2}\right), \mathcal{O}\left(n^{2} \log n\right), \mathcal{O}\left(n^{3}\right), \mathcal{O}($ poly $(n))$ or $\mathcal{O}(\exp (n))$
- Tested on various protocols from the literature

Experimental results

Protocol			Stages	Bound	Time	
$\varphi /$ params.	$\|Q\|$	\|T				
$x_{1} \vee \ldots \vee x_{n}[b]$	2	1	5	$n^{2} \log n$	0.1	
$x \geq y[a]$	6	10	23	$n^{2} \log n$	0.9	
$x \geq y[c]$	4	3	9	$n^{2} \log n$	0.2	
$x \geq y$ [c]	4	4	11	$\exp (n)$	0.3	
Threshold [a]: $x \geq c$						
$c=5$	6	21	26	n^{3}	0.8	
$c=15$	16	136	66	n^{3}	12.1	
$c=25$	26	351	106	n^{3}	58.0	
$c=35$	36	666	146	n^{3}	222.3	
$c=45$	46	1081	186	n^{3}	495.3	
$c=55$	56	1596	-	-	T/O	
Logarithmic threshold: $x \geq c$						
$c=7$	6	14	34	n^{3}	1.9	
$c=31$	10	34	130	n^{3}	6.1	
$c=127$	14	62	514	n^{3}	39.4	
$c=1023$	20	119	4098	n^{3}	395.7	
$c=4095$	24	167	-	-	T/O	

[a] Angluin et al. 2006
[b] Clément et al. 2011
[c] Draief et al. 2012
[d] Alistarh et al. 2015

Protocol			Stages	Bound	Time	
φ / params.	\|Q		$\|T\|$			
Threshold [b]: $x \geq c$						
$c=5$	6	9	54	n^{3}	2.5	
$c=7$	8	13	198	n^{3}	11.3	
$c=10$	11	19	1542	n^{3}	83.9	
$c=13$	14	25	12294	n^{3}	816.4	
$c=15$	16	29	-	-	T/O	
Average-and-conquer [d]: $x \geq y$ (param. m, d)						
$m=3, d=1$	6	21	41	$n^{2} \log n$	2.0	
$m=3, d=2$	8	36	1948	$n^{2} \log n$	98.7	
$m=5, d=1$	8	36	1870	n^{3}	80.1	
$m=5, d=2$	10	55	-		T/O	
Remainder [a]: $\sum_{1 \leq i \leq m} i \cdot x_{i} \equiv 0(\bmod c)$						
$c=5$	7	25	225	$n^{2} \log n$	12.5	
$c=7$	9	42	1351	$n^{2} \log n$	88.9	
$c=9$	11	63	7035	$n^{2} \log n$	544.0	
$c=10$	12	75	-	-	T/O	
Linear inequalities [a]						
$-x_{1}+x_{2}<0$	12	57	21	n^{3}	3.0	
$-x_{1}+x_{2}<1$	20	155	131	n^{3}	30.3	
$-x_{1}+x_{2}<2$	28	301	-	-	T/O	

Conclusion: summary

Population protocols analyzable automatically:

- Formal verification of correctness
- Bounds on expected termination time
- Tool support

Conclusion: future work

- Combining verification and expected termination time analysis?
- Asymptotic lower bounds on expected termination time?
- Interesting class of protocols with decidable quantitative model checking?

Thank you!

Merci!

