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An MMS is a finite set M C RY
For example, M = {my, m,, m-} where
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Introduced by Alur et al. to reason about problems related to
green scheduling and energy peak-consumption reduction
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Schedules and executions

Schedule: m = asm; aom;, --- where o € Ryp and ) o = o0
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Schedules and executions

Execution: o: Rso — RY with ¢(0) = x
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Safe scheduling Safe reachability Safe planning
Can always remain Can reach target Can reach target while
within a zone? within a zone? avoiding obstacles?

PTIME-complete
(Alur et al. HSCC'12)
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Safe scheduling Safe reachability Safe planning
Can always remain Can reach target Can reach target while
within a zone? within a zone? avoiding obstacles?
| | - i | /: |
i ] i ] i H viaamwy
PTIME-complete* Decidable
(Alur et al. HSCC'12) (Krishna et al. ATVA'17)

* Safe reachability with Zone = Rgo is also PTIME-complete

by work on continuous VAS / Petri nets (fraca and Haddad PN'13) e



- Can we unify these results?
- What are the decidable problems?

- What is their complexity?
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Linear temporal logic (LTL): formal semantics

o,T = true < true

oTEZ <~ o(r)eZ
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Execution o Rzo — Rd
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Linear temporal logic (LTL): formal semantics

cEp = 0,0Fyp
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Model checking: problem

X =u o iff there is a schedule 7 of M such that exec(m,X) E ¢

Model checking problemy  (r6.u. v,

Given: MMS M, initial point X,
LTL formula o with operators only from X

Decide: whether x =y ¢
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{F,G, A} € NP: overview
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{F,G, A} € NP: overview

. Flatten formula ¢

Convert into an almost acyclic automaton A,
Nondeterministically guess a “path” = of A,
Convert 7 into a “linear” LTL formula ¢’

Construct a first-order formula ¢ s.t. ¥(X) <> X |=m ¢’

I

Check whether ¢(x) holds (in polynomial time)

® @ ®  Yes

® C—D) flat(p) @) A, > T

ﬁ\
<
®

No
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@ Formula flattening

Definition
An LTL formula is flat if it can be derived from ¢ in

@ = goal | Ggoal | GFgoal | Fp | ¢ A p
goal ::= true | Z | goal A goal
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@ Formula flattening

Definition
An LTL formula is flat if it can be derived from ¢ in

@ = goal | Ggoal | GFgoal | Fp | ¢ A p
goal ::= true | Z | goal A goal

Example

Formula Equivalent flat formula

GF(AANGBAFCQ) GFAANFGBAGFC
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@ Formula flattening

Theorem
For every ¢ € LTL(F,G, )
There is an equivalent flat formula flat(y) of linear size
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@ Formula flattening

Theorem
For every ¢ € LTL(F,G, )
There is an equivalent flat formula flat(y) of linear size

Proof.
Follows by simple recursive rewriting rules O
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@ From flat formulas to almost acyclic automata
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@ From flat formulas to almost acyclic automata

10 CL GFAAFGCAFB

(B}, {A, B},

HBY= 5 ) 1aB.0)

HG

1B, C}

Al - GFAAGC YD H{C)
nos+ acyc[uc. s 4reansitions

Pr‘Oéf'eS

A C}  are more ~estrictive
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@ From flat formulas to almost acyclic automata

Theorem

For every formula ¢ € LTL(F, G, \)
There is an almost acylic automaton A,, s.t.

+ language(A,) = ¢
 width(Ay) € O(l¢))
- transitions have “good properties”

Proof.
Inspired by unfoldings of Kretinsky and Esparza CAV'12 O
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@ From flat formulas to almost acyclic automata

Theorem
For every formula ¢ € LTL(F, G, \)
There is an almost acylic automaton A,, s.t.

+ language(A,) = ¢
 width(Ay) € O(l¢))
- transitions have “good properties”

(Generalized Biichi automaton with transition-acceptance)

Proof.
Inspired by unfoldings of Kretinsky and Esparza CAV'12 O
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@ Linear path schemes (LPS)
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® From linear LTL to FO: safe reachability

Convex semi-linear Horn formulas
Such a formula can be checked in polynomial time:

HXGRd :/\ a;x ~i b;
i

With ~; € {<, <, =, 2, >}
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Convex semi-linear Horn formulas (B. and Haase LICS’17)
Such a formula can be checked in polynomial time:

xeR X eRY,: A (a;x+a§x’ ~ibiv\/ A\ X (R) > 0)
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® From linear LTL to FO: safe reachability

Proposition (generalization from Fraca and Haddad PN'13)
We have x —3 y iff there exist schedules 7, g, Tpwg With

(i) x ="y (i) x -3 . (iii) - —7ow y

and supp(m) = supp(7fwd) = SUPP(Tpwd)
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® From linear LTL to FO: safe reachability

Proposition (generalization from B. and Haase LICS'17)
There is a convex semi-linear Horn formulas ;7 s.t.

bz(x,y) = X—=zy
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® From linear LTL to FO: safe repeated reachability

GFAANGFBAG

m, = (0,0,1) m, = (0,0, 1)
m;=(-120) m,=(-1,-2,0)
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® From linear LTL to FO: safe repeated reachability

GFAANGFBAGC

1. Safe exec. (SE) 2. Inter. exec. (IE) 3. Loop (L)

14/16



® From linear LTL to FO: safe repeated reachability

Informal theorem
There is a safe exec. (SE) from x, an
and a loop (L) s.t. @ # supp(L) C supp(SE) = supp(/E)

iff

X GFAAGFBAGC

Proof sketch of <
(SE) follows by definition

(IE, L) follows from Farkas’ lemma
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® From linear LTL to FO: safe repeated reachability

Informal theorem

There is a safe exec. (SE) from x, an intermediate exec. (IE)
and a loop (L) s.t. @ # supp(L) C supp(SE) = supp(/E)

iff

X =u GFAAGFBAGC

ExPressible as a

convex semi-linear Horn Fornulea
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{F,G, A} € NP: recap

Flatten formula ¢

Convert into an almost acyclic automaton A,
Nondeterministically guess a “path” = of A,
Convert 7 into a “linear” LTL formula ¢’

Construct a first-order formula ¢ s.t. ¥(X) <> X |=m ¢’

2 o B

Check whether ¢ (x) holds (in polynomial time)

Yes
® C—D) flat(p) g)) A, ®) T e 9 @D@:I

No

¥
ASY
¥
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* Introduced LTL for MMS

- Classified each syntactic fragment as
P-c., NP-c. or undecidable

- Generalizes and unifies results on
continuous counter systems
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Conclusion: future work

- Handling richer properties
- Practical implementation

- Extension of LTL to 2-player games
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Thank you!
Vielen Dank!



