The complexity of linear temporal verification
for continuous counter systems

Michael Blondin

UD Université de
Sherbrooke

The complexity of linear temporal verification
for continuous counter systems

Michael Blondin

Joint work with Alex Sansfacon-Buchanan and Philip Offtermatt
Slides based on those of Alex

UD Université de
Sherbrooke

Constant-rate multi-mode systems (MMS) Alur et al. HSCC'12

An MMS is a finite set M C RY

1/16

Constant-rate multi-mode systems (MMS) Alur et al. HSCC'12

An MMS is a finite set M C RY
For example, M = {my, m,, m-} where

m m,

(1,2) (1,0) (—=1,-1)

/Ly

1/16

Constant-rate multi-mode systems (MMS) Alur et al. HSCC'12

An MMS is a finite set M C RY
For example, M = {my, m,, m-} where

m m,

(1,2) (1,0) (—=1,-1)

/Ly

Introduced by Alur et al. to reason about problems related to
green scheduling and energy peak-consumption reduction

1/16

Schedules and executions

2/16

Schedules and executions

2/16

Schedules and executions

m=10m;1.0m,

2/16

Schedules and executions

m=10m;1.0m,

2/16

Schedules and executions

3,
2,
1r —
O,
0 1 é 3
m=10m;1.0m, 1.5m,

2/16

Schedules and executions

3,
2,
’I,
O,
0 1 é 3
m=10m;1.0m, 1.5m;, 0.5m,

2/16

Schedules and executions

3,
2,
’I,
O,
0 1 é 3
m=10m;1.0m, 1.5m, 0.5m, ---

2/16

Schedules and executions

Schedule: m = asm; aom;, --- where o € Ryp and) o = o0

2/16

Schedules and executions

Execution: o: Rso — RY with ¢(0) = x

2/16

Safe scheduling Safe reachability Safe planning
Can always remain Can reach target Can reach target while
within a zone? within a zone? avoiding obstacles?

PTIME-complete
(Alur et al. HSCC'12)

(/A

H_,.

Decidable
(Krishna et al. ATVA'17)

3/16

Safe scheduling Safe reachability Safe planning
Can always remain Can reach target Can reach target while
within a zone? within a zone? avoiding obstacles?

(/A

H .
PTIME-complete* Decidable*
(Alur et al. HSCC'12) (Krishna et al. ATVA'17)

* When each zone is a bounded closed convex polytope

3/16

Safe scheduling Safe reachability Safe planning
Can always remain Can reach target Can reach target while
within a zone? within a zone? avoiding obstacles?
| | - i | /: |
i] i] i H viaamwy
PTIME-complete* Decidable*
(Alur et al. HSCC'12) (Krishna et al. ATVA'17)

* When each zone is a bounded closed convex polytope

Zone = {X c Rd - AX < b} 3/16

Safe scheduling Safe reachability Safe planning
Can always remain Can reach target Can reach target while
within a zone? within a zone? avoiding obstacles?
| | - i | /: |
i] i] i H viaamwy
PTIME-complete* Decidable
(Alur et al. HSCC'12) (Krishna et al. ATVA'17)

* Safe reachability with Zone = Rgo is also PTIME-complete

by work on continuous VAS / Petri nets (fraca and Haddad PN'13) e

- Can we unify these results?
- What are the decidable problems?

- What is their complexity?

416

Linear temporal logic (LTL): syntax

pu=true | Z|-p | pAp | Ve |Fp|Gp|pU g

5/16

Linear temporal logic (LTL): syntax

pu=true | Z|-p | pAp | Ve |Fp|Gp|pU g

_

Zones: closed convex Pol\fl‘oPes

5/16

Linear temporal logic (LTL): syntax

pu=true | Z|-p | pAp | Ve |Fp|Gp|pU g

Fi'\a”y 2 LlO lés

5/16

Linear temporal logic (LTL): syntax

pu=true | Z|-p | pAp | Ve |Fp|Gp|pU g

6’05«”7 99 L.c,cls J

5/16

Linear temporal logic (LTL): syntax

pu=true|Z|~¢p | oA | Ve |Fo|Gp|pU ¢

© Lolds until @' Lolds J

5/16

Linear temporal logic (LTL): informal semantics

AN

5/16

Linear temporal logic (LTL): informal semantics

o= FA

AN

5/16

Linear temporal logic (LTL): informal semantics

o= FA
o~ GA

AN

5/16

Linear temporal logic (LTL): informal semantics

o= FA Vi
o~ GA é?
o EF(AAFB)
/)
//

5/16

Linear temporal logic (LTL): informal semantics

o= FA //
o~ GA //
o= F(AAFB) //
o = F(BAF(AA-B)) ///
/
/

i

5/16

Linear temporal logic (LTL): informal semantics

O-‘:FA :““““““;‘5 |
o~ GA i /? |
o= F(AAFB) - //]
o EF(BAF(AA-B)) | /// |
cE(0UB Ao

: / - 1°E

5/16

Linear temporal logic (LTL): informal semantics

o |- FA -
o~ GA i //
o= F(AAFB) i //
o EF(BAF(AA-B)) | /// |
o= (=0 USB A7
g#EAUB L s

f / B C

5/16

Linear temporal logic (LTL): informal semantics

o EFA i A,
o~ GA i //)
o= F(AAFB) i // :
o EF(BAF(AA-B)) | /// |
o= (=0 USB A7
cAUB - VAl / |
o = (GFB) A (GFC) | / rammE

5/16

Linear temporal logic (LTL): informal semantics

o= FA

o~ GA

o = F(AAFB)

o = F(BAF(AA-B))
o= (—-C)UB
oc~=AUB

o | (GFB) A (GF ()
o = GF(BAC) AR

AN

5/16

Linear temporal logic (LTL): formal semantics

o,T = true < true

oTEZ <~ o(r)eZ

\‘T—ime T € REO

Execution o Rzo — Rd

5/16

Linear temporal logic (LTL): formal semantics

o,T = true < true
oTEZ <~ o(r)eZ

o, T E - <~ (0,7 E @)

5/16

Linear temporal logic (LTL): formal semantics

o,T = true < true
oTEZ <~ o(r)eZ
o, T E - <~ (0,7 E @)

o TEQNY = (0T EQ) A (0T)

5/16

Linear temporal logic (LTL): formal semantics

o,T = true < true

oTEZ <~ o(r)e”Z

oTE-p = (0,7 E)

o, TEeNY = (0,TE Q) A (0T E¢)

o TEeVY = (0,7 EQ)V (0T V)

5/16

Linear temporal logic (LTL): formal semantics

o,T = true < true

o,TEZ «— o(r)eZ

o,TE-p = (0T)
oTEeNY = (0T EQ) (0T EY)
oTEeVY = (T EQ)V(eTEY)
o, 7 = Fp — I’ >71:07 FEp

5/16

Linear temporal logic (LTL): formal semantics

o,T = true < true

o,TEZ «— o(r)eZ

oTE-p = (0,7 E)

o, TEeANY = (0,71 EQ)A (0,7 ¢)
o, TEeVY = (0,71 EQ)V(o,TE¢)
o,7 = Fp — I’ >71:07 FEp

o, 7 = Gp — V' >1:07

5/16

Linear temporal logic (LTL): formal semantics

o,T = true < true

o,TEZ «— o(r)eZ

o, T |E - <— (0,7 E p)

o, TEeNY = (0,TE Q) A (0T E¢)
o, TEeVY = (0,1 @) V(T EY)
o,7 = Fp — I’ >71:07 FEp

o, 7 = Gp — V' >1:07

o.TEeU¢ = I >7: (0,7 ES)ANNVT €, 7) 0,7 E @)

5/16

Linear temporal logic (LTL): formal semantics

cEp = 0,0Fyp

5/16

Model checking: problem

X =u o iff there is a schedule 7 of M such that exec(m,X) E ¢

6/16

Model checking: problem

X =u o iff there is a schedule 7 of M such that exec(m,X) E ¢

Model checking problem

Given: MMS M, initial point x,
LTL formula ¢

Decide: whether x =y ¢

6/16

Model checking: problem

X =u o iff there is a schedule 7 of M such that exec(m,X) E ¢

Model checking problemy (r6.u. v,

Given: MMS M, initial point X,
LTL formula o with operators only from X

Decide: whether x =y ¢

6/16

Model checking: our contribution

Undecidable

NP-complete

P-complete

{F} {G}

7/16

Model checking: our contribution

&

a

©

i

(9]

[}

qe)

{=

=)

3

9

a'

£

o

o

a

=

A

A

{F.G} 2
/‘ '\ .8
{F} {G} o

7/16

Model checking: our contribution

Undecidable

NP-complete

{F, v} a §

ﬂ_
e
)
N
R
A
()
G
JO .
\q‘l# H’_/
|
P-complete

7/16

Model checking: our contribution

@
0
(o]
o
15
()
12)
o
D
{u,...}
&
)
o
€
(o]
o
a
=
{F.v} g
o
€
o
o
a

7/16

Model checking: our contribution

{U7F7G7/\7\/?_‘}

{F,G7A,v%;e———_\\\\\\\ E%
{F,G,v} {G,A,V} =
N =

Uk aeh {G, v}
=

F £L
{F, v} s {F } {G,A} &
Fe o7 £
7 S
{F} {G} &

7/16

Model checking: our contribution

{U7 F7 G7 /\7 \/7 _‘} b sl

{F,v,=}={F, A, =}={F,A,V,m} =

{G, Vv, =} = {G, A, 3}= {G, A, V,n} =
{F,G,Vv, =} = {F,G,A, =} = {F,G, A, V,—} K]
/ ®
10
{Fa G7 /\7 \/} \ -8
~ (7]
{F,G,v} {G,A,V} 2
K =

{u,..} {G, v}
3
<
=L
&
3
a
=
F,

[0}
{Fa \/} /) {E {Ga /\} :6_-,"
{F.G} g
7 S
{F} {6} o

7/16

Model checking: our contribution

{U7 F7 G7 /\7 \/7 _‘} b sl

{F,v,=}={F, A, =}={F,A,V,m} =

{G,v,=} = {G, A, =}={G,A,V,—} =
{F,G,Vv, =} = {F,G,A, =} = {F,G, A, V,—} @
i =
{F,G,A,V} — 2
~ (5]
{F,G,v} {G,A,V} 2
=)

et

3
<
Q
&
o
¥
=22
=2
{F.v} 5
[=%
&
o
7
[a

7/16

Model checking: our contribution

{U7 F7 G7 /\7 \/, _‘} b sl

{F. v}

Undecidable

NP-complete

P-complete

7/16

Model checking: our contribution

{U7 F7 G7 /\7 \/, _‘} b sl

&
o)
[5°]
S
:
{F6v} {GAV) z
sz
Q
{F, A, V} k!
) £
S
a
=2
{F.v) g
=
(=
S
a

7/16

{F,G, A} € NP: overview

1. Flatten formula ¢

® C—D) flat(y)

8/16

{F,G, A} € NP: overview

1. Flatten formula ¢
2. Convert into an almost acyclic automaton A,

0 3 flat(e) 3 A4,

8/16

{F,G, A} € NP: overview

1. Flatten formula ¢
2. Convert into an almost acyclic automaton A,

3. Nondeterministically guess a “path” 7 of A,

e C—D) flat(y) @) A, — 7

8/16

{F,G, A} € NP: overview

1. Flatten formula ¢

2. Convert into an almost acyclic automaton A,
3. Nondeterministically guess a “path” 7 of A,
4

. Convert 7 into a “linear” LTL formula ¢’

@C—D)ﬂat(cp)g)).%hp—) T — ¢

8/16

{F,G, A} € NP: overview

. Flatten formula ¢

. Convert into an almost acyclic automaton A,
. Nondeterministically guess a “path” 7 of A,

. Convert 7 into a “linear” LTL formula ¢’

g 2 W N

. Construct a first-order formula ¢ s.t. ¥(X) <> X |=m ¢

0 3 flat(e) 3 A4,

3
AS)
<

8/16

{F,G, A} € NP: overview

. Flatten formula ¢

Convert into an almost acyclic automaton A,
Nondeterministically guess a “path” = of A,
Convert 7 into a “linear” LTL formula ¢’

Construct a first-order formula ¢ s.t. ¥(X) <> X |=m ¢’

I

Check whether ¢(x) holds (in polynomial time)

® @ ® Yes

® C—D) flat(p) @) A, > T

ﬁ\
<
®

No

8/16

@ Formula flattening

Definition
An LTL formula is flat if it can be derived from ¢ in

@ = goal | Ggoal | GFgoal | Fp | ¢ A p
goal ::= true | Z | goal A goal

9/16

@ Formula flattening

Definition
An LTL formula is flat if it can be derived from ¢ in

@ = goal | Ggoal | GFgoal | Fp | ¢ A p
goal ::= true | Z | goal A goal

lnfoition: on[s7 F

can '\eS‘IL COMP,eXéOaIS

9/16

@ Formula flattening

Definition
An LTL formula is flat if it can be derived from ¢ in

@ = goal | Ggoal | GFgoal | Fp | ¢ A p
goal ::= true | Z | goal A goal

Example

Formula Equivalent flat formula

GF(AANGBAFCQ) GFAANFGBAGFC

9/16

@ Formula flattening

Theorem
For every ¢ € LTL(F,G,)
There is an equivalent flat formula flat(y) of linear size

9/16

@ Formula flattening

Theorem
For every ¢ € LTL(F,G,)
There is an equivalent flat formula flat(y) of linear size

Proof.
Follows by simple recursive rewriting rules O

9/16

@ From flat formulas to almost acyclic automata

GFAANFGCAFB

10/16

@ From flat formulas to almost acyclic automata
:

10/16

@ From flat formulas to almost acyclic automata

(B}, {A, B},

B = o aB.0

10/16

@ From flat formulas to almost acyclic automata

(B}, {A, B},

B = o aB.0

10/16

@ From flat formulas to almost acyclic automata

(B}, {A, B},

B = o aB.0

10/16

@ From flat formulas to almost acyclic automata

{B},{A, B},

B = o aB.0

10/16

@ From flat formulas to almost acyclic automata

{B},{A, B},

B = o aB.0

10/16

@ From flat formulas to almost acyclic automata

M GFAAFGCAFB

{B},{A, B},

B = o aB.0

N

GFAANGC

10/16

@ From flat formulas to almost acyclic automata

M GFAAFGCAFB

{B},{A, B},

B = o aB.0

N

GFA/\G 1> {C}

10/16

@ From flat formulas to almost acyclic automata

M GFAAFGCAFB

{B},{A, B},

B = o aB.0

N

GFA/\G 1> {C}

A, C} /
10/16

@ From flat formulas to almost acyclic automata

10 CL GFAAFGCAFB

{B},{A, B},

HBY= 5) 1aB.0)

HG

T{B,C}

GFA/\G > t{C}

AI’V\OS‘/' acyc{ic:

only SeI-C-IooPs T
10/16

@ From flat formulas to almost acyclic automata

10 CL GFAAFGCAFB

(B}, {A, B},

HBY= 5) 1aB.0)

HG

1B, C}

Al - GFAAGC YD H{C)
nos+ acyc[uc. s 4reansitions

Pr‘Oéf'eS

A C} are more ~estrictive

+L\a'\ looPS 10/16

only Se[ﬁlooPs

@ From flat formulas to almost acyclic automata

Theorem

For every formula ¢ € LTL(F, G, \)
There is an almost acylic automaton A,, s.t.

+ language(A,) = ¢
 width(Ay) € O(l¢))
- transitions have “good properties”

Proof.
Inspired by unfoldings of Kretinsky and Esparza CAV'12 O

10/16

@ From flat formulas to almost acyclic automata

Theorem
For every formula ¢ € LTL(F, G, \)
There is an almost acylic automaton A,, s.t.

+ language(A,) = ¢
 width(Ay) € O(l¢))
- transitions have “good properties”

(Generalized Biichi automaton with transition-acceptance)

Proof.
Inspired by unfoldings of Kretinsky and Esparza CAV'12 O

10/16

@ Linear path schemes (LPS)

W GFAAFGCAFB

NG

GFA/\G > {C}

™A, C}
11/16

@ Linear path schemes (LPS)

1{B,C}

Geuess (PS

A, C)

11/16

@ From LPS back to linear LTL

0 {8 HC}

—»& C})& B, C})5:) HALC)

12/16

@ From LPS back to linear LTL

0 {8 HC}

4»& C})& B, C})5:) HALC)

true U (CA(CU ((BAC)A(GFAAGOQ))))

12/16

@ From LPS back to linear LTL

0 {8 HC}

4»& H{C} }& {8, C})5;) HALC)

true U (CA(CU ((BAC)A(GFAAGOQ))))

12/16

@ From LPS back to linear LTL

0 N HC}

4»& H{C} }& {8, C})5;) HALC)

true U (CA(CU ((BAC)A(GFAAGOQ))))

12/16

@ From LPS back to linear LTL

0 N HC}

¢} /Q\ 8.} &,‘)
> > A C
"& W, HAC)

true U (CA(CU ((BAC)A(GFAAGOQ))))

12/16

@ From LPS back to linear LTL

10 NHC

6 HC) /Q\ 14B,C} Q
() ,

true U (CA(CU ((BAC)A)

12/16

@ From LPS back to linear LTL

X =y true U (CA (CU ((BAC) A)

12/16

@ From LPS back to linear LTL

X =y true U (CA (CU ((BAC) A)

Iff
dyeCzeBnC: x—"y— zand

12/16

® From linear LTL to FO: safe reachability

Convex semi-linear Horn formulas
Such a formula can be checked in polynomial time:

HXGRd :/\ a;x ~i b;
i

With ~; € {<, <, =, 2, >}

13/16

® From linear LTL to FO: safe reachability

Convex semi-linear Horn formulas (B. and Haase LICS’17)
Such a formula can be checked in polynomial time:

xeR X eRY,: A (a;x+a§x’ ~ibiv\/ A\ X (R) > 0)
i j R

With ~; € {<, <, =, 2, >}

13/16

® From linear LTL to FO: safe reachability

13/16

® From linear LTL to FO: safe reachability

13/16

® From linear LTL to FO: safe reachability

13/16

® From linear LTL to FO: safe reachability

Proposition (generalization from Fraca and Haddad PN'13)
We have x —3 y iff there exist schedules 7, g, Tpwg With

(i) x ="y (i) x -3 . (iii) - —7ow y

and supp(m) = supp(7fwd) = SUPP(Tpwd)

13/16

® From linear LTL to FO: safe reachability

Proposition (generalization from B. and Haase LICS'17)
There is a convex semi-linear Horn formulas ;7 s.t.

bz(x,y) = X—=zy

13/16

® From linear LTL to FO: safe repeated reachability

GFAANGFBAG

m, = (0,0,1) m, = (0,0, 1)
m;=(-120) m,=(-1,-2,0)

14/16

® From linear LTL to FO: safe repeated reachability

GFAAGFBAG
! A

0

1 B

14/16

® From linear LTL to FO: safe repeated reachability

GFAAGFBAG
! A

0

1 B

14/16

® From linear LTL to FO: safe repeated reachability

GFAAGFBAG
! A

0

1 B

k3
1

14/16

® From linear LTL to FO: safe repeated reachability

GFAAGFBAG
! A

0

1 B

14/16

® From linear LTL to FO: safe repeated reachability

GFAANGFBAG

14/16

® From linear LTL to FO: safe repeated reachability

GFAANGFBAG

4 80
ﬁm3 mm, ﬁmz, m;

14/16

® From linear LTL to FO: safe repeated reachability

GFAANGFBAG

4 80
ﬁm3 mm, ﬁmz, mm,

14/16

® From linear LTL to FO: safe repeated reachability

GFAANGFBAG

4 80 720
ﬁm3 mm, ﬁmz, mm, ﬁm3

14/16

® From linear LTL to FO: safe repeated reachability

GFAANGFBAG

4 80 720
ﬁm3 mm, ﬁmz, mm, ﬁm3 m,

14/16

® From linear LTL to FO: safe repeated reachability

GFAANGFBAG

4 80 720
ﬁm3 mm, ﬁmz, mm, ﬁm3 mm,

14/16

® From linear LTL to FO: safe repeated reachability

GFAANGFBAG

4 80 720
ﬁm3 mm, ﬁmz, mm, ﬁm3 mm, ---

14/16

® From linear LTL to FO: safe repeated reachability

GFAANGFBAGC

1. Safe exec. (SE) 2. Inter. exec. (IE) 3. Loop (L)

14/16

® From linear LTL to FO: safe repeated reachability

Informal theorem
There is a safe exec. (SE) from x, an
and a loop (L) s.t. @ # supp(L) C supp(SE) = supp(/E)

iff

X GFAAGFBAGC

Proof sketch of <
(SE) follows by definition

(IE, L) follows from Farkas’ lemma

14/16

® From linear LTL to FO: safe repeated reachability

Informal theorem

There is a safe exec. (SE) from x, an intermediate exec. (IE)
and a loop (L) s.t. @ # supp(L) C supp(SE) = supp(/E)

iff

X =u GFAAGFBAGC

ExPressible as a

convex semi-linear Horn Fornulea

14/16

{F,G, A} € NP: recap

Flatten formula ¢

Convert into an almost acyclic automaton A,
Nondeterministically guess a “path” = of A,
Convert 7 into a “linear” LTL formula ¢’

Construct a first-order formula ¢ s.t. ¥(X) <> X |=m ¢’

2 o B

Check whether ¢ (x) holds (in polynomial time)

Yes
® C—D) flat(p) g)) A, ®) T e 9 @D@:I

No

¥
ASY
¥

15/16

* Introduced LTL for MMS

- Classified each syntactic fragment as
P-c., NP-c. or undecidable

- Generalizes and unifies results on
continuous counter systems

16/16

Conclusion: future work

- Handling richer properties
- Practical implementation

- Extension of LTL to 2-player games

16/16

Thank you!
Vielen Dank!

